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Finite Difference Methods for
Caputo—Hadamard Fractional Differential
Equations
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Abstract. In this paper, we study finite difference methods for fractional
differential equations (FDEs) with Caputo-Hadamard derivatives. First,
smoothness properties of the solution are investigated. The fractional
rectangular, Liog,1 interpolation, and modified predictor—corrector meth-
ods for Caputo—Hadamard fractional ordinary differential equations (FODESs)
are proposed through approximating the corresponding equivalent Volterra
integral equations. The stability and error estimate of the derived meth-
ods are proved as well. Then, we investigate finite difference meth-
ods for fractional partial differential equations (FPDEs) with Caputo—
Hadamard derivative. By applying the constructed L1 scheme for ap-
proximating the time fractional derivative, a semi-discrete difference
scheme is derived. The stability and convergence analysis are shown
too in detail. Furthermore, a fully discrete scheme is established by the
standard second-order difference scheme in spacial direction. Stability
and error estimate are also presented. The numerical experiments are
displayed to verify the theoretical results.
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1. Introduction

In recent years, fractional differential equations (FDEs) have received in-
creasing attention because of their widespread applications in science and
engineering [2,3,5,11,14,15,18,19]. It is well known that it is difficult to di-
rectly derive the analytic solutions of FDEs, particularly for nonlinear FDEs.
For this reason, it is important to develop reliable numerical algorithms for
FDEs, see [13] and their references.
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In this paper, we study the following initial value problem (IVP) with
Caputo—Hadamard derivative:

CHDg,ty(t) = f(t’y)v 0<a<i,
{y(a) = Ya, (L

where 0 < a < 1, f(¢,y) is a nonlinear function on domain 2, and initial
value y, is given. Here, Dy, ,y(t) is the Caputo-Hadamard derivative with
order v [9]:

—v-1

1 t t n—v dS
cuDyy(t) = Tn—v) / (log S) "y(s)—, 0<a<t,
a

I(n—v s
with 6"y(s) = (s%)ny(s),n —l<v<nelZt.

If f(t,y) is continuous in a given domain €2, then (1.1) exists at least
one solution in the subset of the given domain. This is just the Peano exis-
tence theorem for the case of Caputo-Hadamard derivative. To guarantee the
uniqueness of solutions to FDEs, for convenience, we often suppose that the
nonlinear function f(¢,y) satisfies Lipschitz condition with respect to y, that
is |f(t,y1) — f(t,92)] < L|y1 — y2| with L > 0 being the Lipschitz constant.
For the continuous function f(t,y), IVP (1.1) is equivalent to the following
Volterra integral equation [1]:

T N (S e (1.2

Although Hadamard fractional derivative was proposed early in 1892
[8], there are few studies for this fractional derivative problem except [2,6,7,
10,16,17]. Especially, Gohar et al. [6] studied the existence and uniqueness
of solution to Caputo—-Hadamard FDE and the corresponding continuation
theorem, where the Euler and predictor—corrector methods were also inves-
tigated. Recently, the Hadamard derivative and Hadamard-type fractional
differential equations have been found to be useful in the practical problems
related to mechanics and engineering, e.g., the fracture analysis, or both pla-
nar and three-dimensional elasticities [2]. In this paper, we first investigate
smoothness properties of the solution of the problem (1.1) under the vector
function f in equation (1.1) fulfills suitable conditions. By borrowing the ideas
derived in [12], the fractional rectangular, L. 1 interpolation, and modified
predictor—corrector methods are developed for the Volterra integral equation
(1.2) which is equivalent to IVP (1.1). With the help of modified Gronwall
inequality, stability and error estimates for these three methods are proved in
detail. Then, we study the initial-boundary value problem with Hadamard-
type derivative using the techniques presented in [20]. The Caputo-Hadamard
derivative in temporal direction is approximated by a simple method, which
yields a semi-discrete scheme. The proposed semi-discrete scheme is stable
in H' semi-norm and is of O(7?~%) accuracy in H' norm. A fully discrete
scheme is obtained by employing the second-order central difference formula
in spatial discretization. Stability and convergence (with O(72=% + h?)) of
the fully discrete scheme are shown as well.
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The remainder of this paper is organized as follows. In Sect. 2, we
present smooth properties of the solution for the problem (1.1) and establish
numerical schemes for Volterra integral equation (1.2) using the fractional
rectangular, Lo 1 interpolation, and modified predictor—corrector methods.
Numerical stability and error estimates of the derived schemes are analyzed.
We study numerical methods of FPDE with Caputo-Hadamard derivative in
Sect. 3, along with stability and convergent results for semi-discrete and fully
discrete schemes. Numerical examples which support the theoretical analysis
are provided in Sect. 4. The conclusions and remarks are included in the last
section.

Throughout the paper, C' denotes a generic constant that depends on
parameters «, L, a, and T', but is independent of the stepsize 7 and h. It can
take different values in different situations.

2. FODE with Caputo-Hadamard Derivative

In this section, we aim at investigating numerical methods for fractional
ordinary differential equation (FODE) with Caputo-Hadamard derivative.
Smoothness properties of the solution to equation (1.1) are first given when
the nonlinear function f satisfies certain conditions. Then, by approximating
the corresponding equivalent Volterra integral equation (1.2) of IVP (1.1),
three kinds of numerical schemes are derived. Stability and convergence are
studied as well.

2.1. Smoothness Properties

We start by discussing the relationship between Caputo-Hadamard derivative
and Caputo derivative. It follows from the definitions of Caputo-Hadamard
and Caputo derivatives with 0 < a < 1 that:

N 1 k AN ds
cuDg y(t) = m/ (103 s) 6y(s)?
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1 log ¢ t ~“d . s
= mA (10g a — T) Ey(ae )dT (’7— = log E)

1 v / —« d T / 4
= 1_‘(1_0()/0 (t 77') Ey(ae )dT (t —log a)

= ﬁ/o (t’ _ 7-)—0 %g@(T)dT (y(ae™) = Yo (1))

= CD&t,ﬂa(t’). (2.1)

From the relation (2.1), it is evident that the initial value problem with
Caputo-Hadamard derivative (1.1) and the Volterra integral equation (1.2)
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are equivalent to the initial value problem with Caputo derivative:

¢Df vFa(t') = flac” ,Ga), ¢ >0,a>0,
Ya(0) = Ya-
It immediately follows from (2.2) that:

Falt') = yo + ﬁ / (= 1) flae” Gu(r))dr.

Therefore:

solves (1.1).

MJOM

(2.3)

Then, according to Diethelm’s smoothness results [4], we immediately
get similar theorems. Following [6], there exists a T' > a > 0, such that the
uniquely determined solution y of the problem (1.1) holds on the interval
[a, T]. Here, the assumption that the function f is continuous and satisfies a
Lipschitz condition with respect to y on the considered domain {2 is used.

Theorem 2.1. 1. Suppose that 0 < o < 1 and f € C?(Q). Then, there
exists a function ¢ € Clla,T], such that the solution y(t) of the IVP

(1.1) can be expressed in the form:

[1/a]—1 £\ ok
v =0+ 3 n(long)

where A\, € R(k=1,2,...,[1/a] — 1) and [1/a] denotes the smallest

integer greater than or equal to 1/c.

2. Suppose that 0 < a < 1 and f € C3(Q). Then, there exists a func-
tion ¢ € C?[a,T], such that the solution y(t) of the IVP (1.1) can be

expressed in the form:

[2/a]—1 £\ ok [1/a]-1 £\ el
t) =t A | log — log —
w0 =p0+ 3 we(losp) 30 (o)

=1

where Ay e R(k=1,2,...,[2/a]l—=1) and y e R(1=1,2,...,[1/a] —

1).

Theorem 2.2. Assume that 0 < o < n(n € ZT) and y € C"[a,T]. Then,

there exists a certain function 1 € C"~1%1[a, T], such that:

n—[a]—1

Sk+Tal) [a]—atk
enDiat) = Y gt (lel) S u,
k=0

al —a+k+1)

Moreover, 8~1eDay fulfills a Lipschitz condition of order [a] — a.

Corollary 2.1. Let0 < a <n(n € Z") andy € C"[a,T]. Then, cuDg y(t) €

Cla,T).
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2.2. Numerical Schemes

For given time T'(> a > 0) and a positive integer N, we divide the interval
[a,T] into a = tg < t1 < -+ <t < tpp1 < -+ < ty = T, with uniform
mesh 7 = tg41 —tg, Kk =0,1,..., N — 1. In the following, we do not make
any distinction between g, and yg just for convenience.

To numerically solve the IVP (1.1), we only need to approximate the
integral of formula (1.2), since (1.1) is equivalent to (1.2). Denote:

bt t ol ds
Iiy1 =/ (log k;rl> f(s,y(s))?

k tit1 t a—1 d
= g / (logk+1> f(s,y(s))—s, k=0,1,...,N —1.
b s s

j=0"1%

Then:
k tit1 ¢ a—1 _ ds
Ty = Z/ (log k;rl> fj(say(s))?v
j=0"t

where ]?j(s, y(s)) = f(s,y(s)), s € [tj,tj+1], j=0,1,..., k. By adopting dif-
ferent approaches to approximate function f(s,y(s)), we get three kinds of nu-
merical schemes as follows. Let y; ~ y(¢;), =0,1,...,k, k=0,1,...,N—1.
(1) The fractional rectangular method
Choosing f;(s,y(s)) = f(t;,u;),j = 0,1,....k, k =0,1,...,N — 1,
(1.2) yields:

k

Yk+1 = Ya + Z wjk+1f(t5,95), (24)
J=0

where

Wi k+1 = : /tHl log E+1 o ds
jk+1 = (@) y g s s
1 tk+1>a ( tk+1)a} ‘
lo — | log —— , 7=0,1,... k.
[ +1) K *7 ® ’

(2) The fractional Liog,1 interpolation method
.z 8 T log ¢~ .
Choosing fj(sa y(s)) - ]tJ;I f(tjvyj) + logﬁf(tj‘i'l?yj%—l)v J=01,

98 741
...k, k=0, which can be regarded as “one order” interpolation in the sense
of base of the logarithmic function (denoted as one Liog 1 interpolation for
convenience), obtains from (1.2) that:

lo

k+1

Yk+1 = Ya T+ Z Wi k1f(tj,v5)s (2.5)
=0
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where
1
logtflA()? J _07
a
1 1 1
. - - B'a _1727" 7ka
Wy k+1 T(a+2) log tjt-;—l J log t]t;l i J
t «
(1 ’““) , j=k+1
g
n a+1 ¢ a+1
A (10 Hl) ) (10 k+l>
tj+1 tj
tiv1 trr1 \
+(a+1) | log +— 1 ,7=0,1,...,k,
tj t
ton at+1 ton a+1
B; = <1og t*) - (1ogﬁ+ >
J j—1
t; ter1 \
+(a+1)(log—— ) (lo ,i=12 ...k
-1 tj
In fact

s

lo
i t g3 ds
< k+1) |: ﬁl f(tj,y]) + tHf(tJ+1ayJ+1)]
tj log ;]
i L (P P
iZ0 tj+1 S
)o‘ 1 s ds:|
k
=3 (tJ:yJ <_ > (l tk+1>
izo log t t]+1
tj i t 1 tj t “d
+7f(”1;y]+1) (— > log - ( ’““) —/ h <1og '““) =
log -2+ t; s s

. 1 f(to,yo ( tk+1> atl < tk+1> atl
Tala+1) log

tk+1 }

f(tis1,y; i
n (J+1t'yj+1) (
J+1

log ~%

| _/tj+1 <10g tk+1>a ds)
t s s

J+
J
J+

+ (a+ l)log

k e
1 ) f(t5,95) (log tk+1> ot <log tk+1> i
a(a+ 1) i1 log% tit+1 t;

+ (a+1)log Lj_l <1og —tk“) }
J

tj
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k
1 t', . t a+1 t a+1
N 3 f( ]tyjl) (log k+1> 3 <log k+1>
a(a + 1) i1 log ]tij t; tj—1

t; thar \® 1 ( tk+1>°‘
11 I (1og L 1 t .
+ (a+1)log r— <Og > > } + aa D) 8, (g1, Ynt1)

Remark 2.1. Scheme (2.5) is different from that in [6]. In [6], f(s,y(s)) in
subinterval [t;, ;1] is approximated by f;(s,y(s))=3(f(t;, yj Hf (tis1, yj+1)).
The former has higher accuracy. Besides, it is not difficult to verify that the
coefficients w; 11 and Ww; x41 in (2.4) and (2.5) satisfy the following proper-
ties:

Wige1 >0, j=0,1,....k k=0,1,...,N—1,
’lﬂj7k+1 >0, j=0,1,...,k+1, k=0,1,...,N — 1.
(3) The modified predictor—corrector method
Based on the left fractional rectangular scheme (2.4) and the Ljog1

interpolation scheme (2.5), the modified predictor-corrector scheme is given
by:

k
Yer1 = Ya T Y wint1 (5, 95),
§=0
. (2.6)
Ykl = Ya + Z Wi g 1.f (5, Y5) + Wkt k1 f ot 15 Yir)-
=0

with k =0,1,...,N — 1.

2.3. Several Lemmas

In the following, we present some properties of the coefficients in (2.4) and
(2.5) along with several useful lemmas.

Lemma 2.1. Suppose 0 < a < 1, k = 0,1,...,N — 1, and N 1is a posi-
tive integer. Then, the coefficients in (2.4) and (2.5) satisfy the following
inequalities:

t; tre )

W py1 < Ologft—f1 (log ’T) . i=0,1,...,k (2.7)
J J

and

¢ ¢ a—1
log ot <log k+1> , =0,
a a

ts ¢ a—1
log ]—H (log k;l)
J

t: ¢ a—1
—|—log](logk+1> . i=1,2,...k
tj,1 tj,1

¢ ¢ a—1
log 2FL (g KL . j=k+1,
125 125

where C' is a constant depending on a,a, and T.

Wjkt1 < C
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The proof of this lemma can be referred to that of Lemma 4.1 in [6].
Next, we present the following modified Gronwall inequality (Lemma 4.3 in
[6]) which is crucial to the proof of the stability and error analysis for the
above derived numerical methods.

Lemma 2.2. Assume that 0<a<1l,T >a>0, N is a positive integer,
md%kzo%%> log 4t (j = 0.1,....k—1, k = 1,2,....N) with

a=t) <t < - <t < - <ty =T. Suppose pg is positive and the
positive sequence {0y} satisfies:

oo < po,
k—1
2.9
ngzbj,ka'j“rpo- 29)
j=0
Then:
or < Cpo, k=1,2,...,N, (2.10)

where C' is a positive constant independent of k.

Lemma 2.3. If g(t) € C'[a,T], then:

1 tri1 thrl a—1
wa ) (e Z“’f’k“g ")

Proof. By the mean value theorem, there exists &; € (t;,t;41), such that:

1o\ ds &
(o) /a <log Y 9(8); - j;)wj,k+19(tj)

- 7 > [ (108 2) " (gt0) gt %

< Cllogll T\"
_F( 1) loga T.

k ts a—1
! /ﬁ1< %H> s g(s) —g(t;)| ds
<37 (log ) flog & S
I'(a) =0/t s t; logt‘—j s
k ts a—1
1 /3+1 ( tk+1> S ds
- log 251} llog = - 59(¢;)| =
I'(a) =07t § tj !

INA
=iE
\%:
3
(]~
ku“
ol
—
-::
N
=
CIJ‘J’,
—
N———
Q
|
—
‘Q..
[V

j=0 J j
5 ket t > 1q
|| gHoo max log +1 lo k+1 as
I(a) o<i<N-1 tr Ja 5

1109|] 0 tep1\ Y, h
- 1 log X
P(a+1) % &

Clloglloo T\*"
< ———— | log — .
~I(a+1) ey
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The proof is thus complete. O
Lemma 2.4. If g(t) € C?[a,T], then:

k41

1 tet1 tht1 a-1
F(Ol)/a <1 0og ij k+1g

Proof. For s € (tj,tj41), there holds:

< ClIa%gll T\" »
1"( 1) loga T

log 2 log >
) i alt) = el
tj+1 tj
log +* log &
= ——(9(s) —g(t;)) 1 Jil (9(s) — g(tj+1))
08 77 og
t.S Og T S
= thl IOgt— ~6g(n;) + Tog Gt 08— 9(¢;)
08 T J tj LA
log T logt—j ¢ ) ()
o tit1 9\si
log t; ]

where t; < n; <& < (G <tjtr.
As a result, one obtains:

1 et ot a-1 kt1
1 (t;)
F(a)/a (og ; Zka+lg J

S S
) tk+l)a_1 o8 517 log 37 ds
g9(s) - —g(t;) — — 7 9ti) | —
/t LT Jog T s

1)

1
=071t ( log ¢ log =7
ja1 t a=1|log % log T ds
< P— / ( k“) %bgc 59(&)| —
j=0"7t; log t; i
+1 a—1
b3 L () o |2
F( j=0"tj ti+1 tj
2 tht1 a—1
< < - log tli) / <1og fhi ) =
S t a s S
C|\52g\|m T\" »
< ————|log— .
-~ I'(a+1) 08 T
All this completes the proof. 0

2.4. Stability Analysis
In this subsection, we derive stability of the proposed numerical schemes.
Theorem 2.3. Suppose that y; (j = 1,2,...,k) are the solutions of scheme

(2.4) and that f(t,y) is Lipschitz continuous with respect toy with a Lipschitz
constant L. Then, the fractional rectangular scheme (2.4) is stable.

The proof of this theorem can be referred to [6] or left to the interested
readers.
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Theorem 2.4. Suppose that y; (j = 1,2,...,k) are the solutions of scheme
(2.5) and that f(t,y) satisfies the Lipschitz condition with respect to the sec-
ond argument y with a Lipschitz constant L. Then, the Liog 1 interpolation
scheme (2.5) is stable.

Proof. Let y, and y; (j = 1,...,k + 1) be the perturbations of y, and y;,
respectively. Then, the perturbation equation is:

k1
Ukt =Ta + > Wiks1 (Ft, 05 +75) — Ft5,07)) -
i=0
Thus:
k1
k41| = |Ya + Z@j,kﬂ (f,y5 +95) — f(t5,95))
i=0
k1
<NGal + LY @ a1 [,
=0
that is:
k
(1= L @1 pr ) |Trr1| < [Jal + LD @501 |T51-
i=0

For any given positive constant € € (0,1), the inequality 1 — L - Wg41 541 > €
r(2+a)(1—e)\1/a

holds as long as we choose 7 < a e(FEEEE) T 1} For this choice, it

follows from Lemmas 2.1 and 2.2 that:

k41| < Clyal.
Hence, the proof is completed. O

Theorem 2.5. Suppose that y; (j = 1,2,...,k) are the solutions of scheme
(2.6) and that f(t,y) satisfies the Lipschitz condition with respect to the sec-
ond argument y with a Lipschitz constant L. Then the modified predictor—
corrector scheme (2.6) is stable.

Proof. Let Yo, y; (j = 1,...,k+1), and yjf;l (k=0,1,...,N — 1) be the
perturbations of y,, y;, and y,f 1, respectively. Then:

K
Ui = Ta+ > wiksr (Ft, 05 +75) — F(t5,95))
=0
K
Uhtr =Ta + > Wikt (Ft5, 05 +75) — Ft5,97))
=0

+ W1, k41 (f(tk+1,yzf+1 + g}fﬂ) - f(tk+1,yzf+1)) .

Noticing that

. - 1 | T @
WhA41,k+1 S 7I‘(a+2) 0g 0 ,
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there holds:

k
k1| =(Ta + Y Wjarr (F(E5, 05 +75) — £t 95))
=0
+ Wit k41 (F(Ers1,s Yii1 + @1;1) - f(tk+1,ylf+1)) ‘
k
<al + L @ k41 |75] + Lkg 15425541
i=0
k «
_ L L ™
<|Yal| + sz:;)wj,k+1|yj| + m <1og a) k111
L T\
<(14+ =———log— U,
< (14 rtg (16T) ) 1
k «
. L T -
+ L]Z::O (wj,k-i-l + T(at2) (log a) wj,k+1) |51

(o g (1) )

o k a—1
L T tis ot _
LOy (24 ——— (log — § log 211 [ 1og £+
’ 1( +F(O¢+2) (Oga> >j_0 e (Og t) bl

L T\ _
< = -
< (1 Tt 2) (lOg ) ) el

<Cl¥al,
where Lemmas 2.1 and 2.2 are utilized. Therefore, the proof is ended. O

2.5. Error Analysis
Using Lemmas 2.3 and 2.4, it is easy to get Theorems 2.6 and 2.7.

Theorem 2.6. Assume that cyDg ,y(t) € C'[a,T]. Then, the left rectangular
scheme (2.4) for equation (1.2) has the following estimate:

|yk+1_y(tk+l)|§07-a k:O7173N_1

Theorem 2.7. Assume that gD ,y(t) € C?a,T]. Then, the Ly, interpo-
lation scheme (2.5) for equation (1.2) has the following estimate:

lyps1 — y(tes1) < CT%, k=0,1,...,N — 1.

Now, we study error estimate of the modified predictor—corrector scheme
(2.6).
Theorem 2.8. Assume that ¢y DS y(t) € C?[a, T]. Then, modified predictor-

corrector the scheme (2.6) for equation (1.2) has the following estimate:

lyer1 —y(tep1)| < CTVTY k=0,1,...,N — 1.
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Proof. Since f(t,y) = cuDy,y(t) € C?a,T] is bounded, there exists a
constant M > 0, such that |§f] < M and |§2f] < M. Denote eyy1 =
ly(tk+1) — Yrtal, k=0,1,..., N — 1, then:

o [ (o) s

k
(Z Wy 1S (g, Y5) + Wy, k+1f(tk+17yk+l)) ‘

€k4+1 =

k+1

g (e s - 3 TS (4 9(1)

k+1
1Y @k [t y(t)) — (Z Wi k1S (55 95) + Weg1 k1S (Chta, yk+1)) ‘

j=0 7=0

k41

" /tk+1 ( tk+1) f(s,y s))— - Z @jni1f(t,y(t))

Z Wi kt1 (F(t5,y(t5)) — £(t5,95))

=0
@1 (F (e, (1)) = FEr1, vis)) |
=l + I> + Is.

By Lemma 2.4, one gets:
Il é 01’7'2.
For I, by virtue of the Lipschitz condition of f, it is evident that:

ij k1 (f(E5,9(t5)) = f(t5,9;))

k
< S @ £t y(8)) — £t )]
=0
k

=LY @jkies.

=0

<.

For I3, since:

& _ 1 o trt1 < Cor®
R T T o % T ) STt 2)
then

I3 = ‘@kﬂ k1 (f(tk+1:y(tk+l)) - f(tk+1,yif+1)>‘

Cor
<ﬁ’f b1, Y (tet1)) — f(tk+17ylf+1)‘
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LG ‘y(tk+l) — k. 1‘
Ia+2) +
_ LOQTa 1 1 tk+1 ot
“T(a+2) F(oc)‘/a (10g s f(s,y(s ij k+1.f (L5, 5)
LCzT 1 tht1 tk+1 ol
Sﬁ I'(a )/ (log 3 f(s,y(s *_ijkﬂf (t5,y(t5))
LCzT

k
ij ki (5, y(t)) = > wikea f(t, ;)

=0

LCym Cs)|6£|]oo T\" chf .
STlat+2) TlatD) \%q Zwﬂk+1|f 5 () — F(t5,57)]

o LPCoTe
<CaT' T+ T(o+2) Zw] k+1€j5,

where Lemma 2.3 is utilized and Cy = #ﬁ?@iz) (log I)a.

Consequently:

err1 <L+ L+ 13
k
<O+ Oyt + LZ <{5j,k+1 +
J=0

CoLT
T(a+2) 7FH!

< Orlite,

The proof is then finished.

3. Extension to FPDE with Caputo—Hadamard Derivative

In this section, we propose a numerical method for fractional partial differen-
tial equation (FPDE) with Caputo—Hadamard derivative. We get a discrete
scheme of Caputo-Hadamard derivative by linear interpolation, and then
show the stability and convergence of a semi-discrete scheme. Finally, by ap-
plying the second-order central difference in spatial direction, we obtain the
fully discrete scheme along with its stability and convergence analysis.
Consider the following initial-boundary value problem with 0 < a < 1:

crDg u(r,t) — Au(x,t) = f(z,t), a<t<T, 0<z<1,
u(z,a) = ug(z), 0<z <1, (3.1)
u(0,t) =u(l,t) =0, a<t<T.

3.1. Numerical Approximation of Caputo—Hadamard Derivative

We first approximate Caputo—Hadamard derivative. For a given positive
number T > a, we divide the interval [a,T] into N subintervals with a =
to < t1 < -+ < tp_1 < tp < --- < ty = T with the uniform stepsize
T=1t —tr_1,1 <k <N.
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At t =t5,1 < k < N, there holds:

1 tk tk * dS
! t=t), F(l - a)/a (1 gi) 69(8)?

1 1 tk )1—& ( tk)l—a
;L = log —— — | log — , 3.3

1 &Y ) t ds
RF = Ti—a) ;/tjl (log ;) (59(5) - —g( l)og 4 )> .

ti_

(3.4)

Remark 3.1. Formula (3.2) can be rewritten as the following convolutional
form:

k
crDgg(t )‘Hk =D azlg(ty) = g(tj—1)) + R,
=1
’ k-1
=arg(tr) + ) (ajk — ajp1)9(t;) — arrg(to) + R*
=1
-
=bokg(tr) + Y be_jrg(t;) + brrg(to) + R
=1
k
:Zbk kg(t;) + RY,
=0
where
—a1k, J=0,
bi—jk =18 @ik — a1k, J=1,2,...,k—1,
gk, J=k.

This can be regarded as L1 scheme for Caputo-Hadamard derivative.
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Lemma 3.1. For 0 < o < 1, the coefficients a; (1 <j <k,1<k<N) in
(3.3) satisfy:

Ak > Qk—1k > "+ > Qj > Qj—1 ) > " > Q1 > 0.

Proof. According to the mean value theorem, for j =1,2,...,k:

a;p = ! 1 <10 L >1°‘ — (lo tk) o
Ik F(Q — a) ]Og % & t]‘_l & tj

1 1 t;
= 1— log —I
I‘(2 —a)log ttj (=) 51 lj—1
T T oé)E
Since log = < & < log 7= 7%= and 27 is monotonically
J J— -
decreasing, we thus have a;, > a;_1,1. All this completes the proof. O

Lemma 3.2. If0 < a <1 and g(t) € C?[a,T], then the local truncation error
RF (1 <k < N) in (3.4) has the following estimate:

2 2
1 tr 1 t
RF| < 1 log ——
IR < (F(2a) (Ogtk_1> Ty S (Ogtl_1> )

X <log ttk> max [6%g(t)|.

k—1 a<t<tg

Proof. According to (3.4), one has:

k t;
1 7 k — g(t _1) ds
) — / log = EANTTANE A ik VA
'l —a) j; ts s < log t:il s
k—1 t;
SR j g(t;) —g(t;—1) ) ds
rl—a) =i s 1og t;i'l s
1 /t’“ < ) g(tk) — g(tk 1)\ ds
_ log = dg(s) — 2| =
rdi—-o) s (s) - log - tk—l s

— [Y e\ (t;) —g(tj—1) | ds
R — o
T(1—a) Z/ ( s) (9(8) log 2 s
j=1 ti1
k=1 4 - log = lo
1 /tJ ( tk) @ gt gt 1
= log — d|g(s) - I —g(tj_1) — == g(t;)
F(l — 0[) =17t S 1 tjt71 J log tjtj - J
k—1 o log = tj
1 k tj tji—1
- oe %) (a6 = et - O ale)
r—a) j:1< ( log L= 7" )

k=1 —a—1 log = log —2
@ /J ( tk> t; ti—1 ds
R DO AT 9(8) = — gty ) — — gty | &
I'(l-a) j=17ti—1 § log ]z;1 log 55 3
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e
k=1 ¢, log -L log = ) —a—1

«@ J ti_ ¢ tr ds

=ci o §j/ 6%g(&)) ———— 2 log (bg—) =,

(1-a) j=17tj—1 log—t 4 s s

j—1

where t;_1 <n; <& < (; <t;. Hence:

k—1 ) 2 pts —a—1
|RF| < @ max  |62g(t)| E <log b > / ’ <10g t—k> ds
(1 —a) a<t<tp_y st ti—1 tj_1 s s

2 —a—1
t t d
@ max <log —l> max  [62g( t)|/ < —k> bl
I'(l—«) 1<ISN ti_1 a<t<tp_1 s s
t 2 t —a t —«
= @ max_(log —— max ‘529(t)|, <log k — | log -
I'(l—«) 1<I<N ti_1) a<t<tn_ a th_1 a

t \?2 ty O\
ma; 5%2g(t)| ma log —— lo .
r'l—a) a§t§t§,1| 9( nglng( gtl,l) ( gtk,1>

On the other hand:
1 b 7N tr) — g(tu_ ds
_—— / (log k) Sq(s) — g(tk) !]ts k—1) | ds
(1—-a) Jy,_, s log 7= s
1 /tk ( tk>“ ds
< 07— log —
rl—a) /iy _, s

IN

<

R3] =

Sg(s) — 9(tk) — g(te—1)

log tktf

1 tk tk tk e ds
< 1 8%q(t log — —
- T- a) 8 te—1 tkfrlnﬁatxﬁtk 19%(2)] th_1 (Og s $

1 2—«
< - 52 log —— .

T2 - a)t- 1<t<t | ()|(Ogt—1>

Combining the above estimates of R¥ and RY, one can obtain the desired
result. All this ends the proof. O

Remark 3.2. In the case of uniform mesh, the local truncation error for (3.4)
is:

|RF| < Cr?7e,

For equation (3.1), at the time level ¢;,1 < k < N, we have:

a) =uq(z), 0<z<l, 35)

k
Zaﬁ k —u(z,tj—1)) — Au(z, ty) = f(z,tr) + R*(z),
u(z,
w(0,tr) = u(l,tx) =0, 1<k<N,

on the basis of (3.2), where R¥(z) is local truncation error.
Let u*(z) ~ u(z,t;) with 1 < k < N be the numerical approxima-
tion. Omitting the truncation error R¥(z) in (3.5), we derive the following
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difference scheme:

u(z) = ug(z), 0<w<1,
uF(0) =uF(1)=0, 1<E<N,
where f*(x) = f(x,t;), 1 <k <N.

3.2. Stability and Convergence of Semi-discrete Scheme

We present L? inner product, L? norm, H'! semi-norm, and H'! norm as
follows:

1
(0,w) = / vwdz, ol = V(0,0), [[Voll = Vo, V0),
oll = VIIE FTVoIP.

The following theorem gives stability of difference scheme (3.6) with the
given initial value u, and right-hand side term f.

Theorem 3.1. Let u*(x) be the solution of (3.6). Then, difference scheme
(3.6) is stable. That is:

I'l-—a) T\
kj2 < 2 4 12 <k<N.
196 < 9l + 2 (g D) o 172, 1<k N

Proof. The first formula of (3.6) is rewritten as:
k—1 _
ap gt (x) — AuF(z) = (aj10 — a0) v (2)

j=1
tap ,u’(z) + fF¥(x), 1<k <N.

Taking the inner product with —2Au* () on both sides of the above equality,
then:

ak’k(uk7 —2Auk) — (Auk7 —2Auk)
k—1 ,
= Z(aj“’k —ajr)(u?, —28u") + ag 5 (u°, —2AuF) + (fF, —2A0").
j=1

It follows from Lemma 3.1 and Cauchy—Schwarz inequality that:
2a. 1| | Vu®||? + 2||AuF||?

k—1
= 22(%“»’“ —a; 1) (Vud, Vub) + 2a; 1 (Va®, V) — 2(F%, Au®)
j=1
k—1
< D (e = ag ) (IVE ]+ [[VuF|?) + ar i (V]2 + || Vat]]?)
j=1

k—1
+ §\|f’“ll2 + 20| Au )P =D (@511,0 — ag )|V [P + an k] [Vub]?
j=1

—_
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1
+ vkl Vull 4 I+ 2l Ak

Therefore:
k—1 _ 1
ar i [VU 2 < (g — ag ) [V ] + a1 | [VuO] | + I 1<k <N
j=1
Notice that:
1 _ 1 te ¢ 1 T\ ¢
Uk T Z T o) (Og a) “T(1—a) (Og a) ’
or
1 T\“
- <r-a) (log )
a1k a

where log i—’f < & < log %" Thus, there holds:

k—1
ag k| [Vu|[? < Z(aj+1,k —aj)|| V|2
j=1
Ir(1- T\°
raus (1964 202 (10 2) JP4R) 1< ks

(3.7)
Let

I'l—a) T\

_ 012 4 12
e T I
Inequality (3.7) is written as:

k—1
a i |VUF()? <Y (a1 — aj )|V +ar kI, 1<k <N
j=1

Using mathematic induction, we shall prove:
|[VuF||> <1, 1<k<N.
For k = 1, it is easy to see that ||[Vu!|[? < I. Suppose that for k =
1,2,...,m — 1, one has ||[Vu*||> < I. Then, for k = m:

m—1

G, ][V [[* < Z (@j+1,m — aj,m)Hvuj”Q +a1,ml!

j=1
m—1
< (@j41,m — ajm)] + a1ml
j=1
= am,mI;
that is:
IVum|2 < 1.

The proof is thus finished. 0
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Denote
e*(z) = u(z, ty) —uF(z), 1<k <N.

In view of (3.5) and (3.6), we derive the following error equation:

k
Zaj’k (ej(x) - ej_l(x)) — Aef(z) = R¥(z),

) =0, 0<z<1,
F0)=ef(1)=0, 1<k <N.

It follows from Theorem 3.1 that:

- T\
[vek|2 < T =) (log > max ||[R%, 1<k<N.  (3.8)
2 a 1<I<N
Using Poincaré inequality, inequality (3.8), and Lemma 3.2, the follow-

ing theorem holds for ‘?9273 € Cla, T].

Theorem 3.2. Suppose that u(z,t) which is twice continuous differentiable
with respect to t in the interval [a,T] is the solution of the initial-boundary
value problem (3.1), and u*(z) with 1 < k < N is the solution of semi-discrete
difference scheme (3.6). Then, we have:

[lu(-, tr) — uk()Hl < C’\/F(la) <10g T> F2-o

2 a
3.3. A Fully Discrete Difference Scheme

Let 0 = 20 < 21 < -+ < 241 < x5 < -+ < zpyp = 1, x; = ih with
h =4 (0<i< M). For any grid function V = {v;|0 < i < M}, denote:

S VTVl s Vig1 = 20 + i1 _ Oz L — Oz;_1
=Vi=s oo h2 h
It is well known that for suitable smooth function g(z):
0%g(z)
=629, + R;, 3.9
022 lpy, = 020 T (3.9)

where the truncation error |R;| < Ch2.
Define the grid functions:

UF = u(wi,ty), fF=flzit), 0<i<M, 0<k<N.

Equations (3.5) and (3.9) imply:
k
S ain (U7 - U7 ) - 82Uk = 4+ RE, 1<i<M -1, 1<K<N,
j=1
(3.10)

where R¥ = R* + R;.
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Let uf with 1 <7< M —1and 1 <k < N be the numerical solution
to (3.10). Omitting the small term RY and using the initial and boundary
conditions, we get the fully discrete difference scheme as follows:

k

j j-1 2k _ sk
E:aj,kr (ui_ui )_51% =Ji
i=1

u?:ua(xi), 0<i< M,
ugzuﬁ/[:O, 1<k<N.

(3.11)

We next introduce some notations about the discrete inner product and
the corresponding norm. Let V, = {v|v = (v, v1,...,v0m),v0 = vpr = 0}.
For any v € Vp,, define:

M—1
(whn =h Y vawi, Plla = V@0, 0)n,  |I6:0]ln =
i=1

Lemma 3.3. [13] For any v,w € Vy, there holds:
(v, 6%w), = — (6,0, 6xw)p.
Lemma 3.4. [20] For any v € V,, there holds:
1
lvlln < —=I11620]n-

V6

Theorem 3.3. Let uf withl1 <i<M—1and 1 <k <N be the solution of
the difference scheme (3.11). Then, there holds:

I'l —« T\“
I8t < vl + 25 (1o ) s IF1R, 1< k<N

a) 1<I<N

Proof. We first write (3.11) as:
k-1

k 2 k J 0 k
appuf — Souf = (ajpk — aju)ul + aypud + fF.
=

Multiplying —2h5guf on the both sides of the above equality and summing
over ¢ for i =1,2,..., M — 1, there holds:

% Vax Y

M—-1 M—-1
—2arch Y uFe2ub + 20 Y S2ulolul
i=1 i=1

k—1 M—1 M—1 M—1
j £2. k 02k ks2, k.
=2 § (@416 — ajr)h § u;dzu; — 2a1h E u; 0 yu; — 2h § fi0zugs
j=1 i=1 1=1 i=1

that is:

— 2ay, x (u”, 02uF)), + 2(62u", 52u")

k—1
= =2 (ajrin — ajp) (W, 650", — 2a1 k (u, 630k ) — 2(f, 55uM ).
j=1
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Using Lemma 3.3 yields:

Qa1 (8,18, 5,1k + 2(62uF, §2uk),,
k—1

=92 Z(ajJrl,k; — aj,k)(éa:uj, 5Iuk)h + 2a17k(6wu0,(5muk)h — 2(fk, 5guk)h.
j=1

Lemma 3.1 and Cauchy—Schwarz inequality give:

2ap, || 6:u" |17 + 2107”7
k—1
< D (@jr1k = a) (1024717 + 102" (17) + av (18- |17 + [162u"][7)

Jj=

+ S I1FPIR + 21[02u" 7.

N — =

Consequently:

k—1
. 1
ag kll6zu |7 <D (g — ap)l18ow |7 + arkl|82u’l]7, + 5\|fk|\%w I<k<N.
j=1
By the induction principle, it is easy to derive:
'l —a) T\
k|2 0))2 112
|[6zu”|[; < [|6zu ||h+T logg max |[f*|[;, 1<k<N.

1<I<N

Hence, the proof is shown. O
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Now, we study the error estimate of the fully discrete scheme (3.11).
Let ef = u(x;,tx) —uf, 0<i< M, 1<k<N. Then, the error equation is
written as:

k

j j—1 2
Z%k(e?—ef )—51»?:}3?»
j=1
e =0, 0<i<M,
elgzeﬁ[:(), 1<k<N.

By virtue of Lemma 3.4 and Theorem 3.3, the following error estimate
holds for u(zx,t) € C’if([(), 1] x [a, TY).

Theorem 3.4. Suppose that u(z,t) which is twice continuous differentiable
with respect to t in the interval [a,T] is the solution of the initial-boundary
value problem (3.1), and uf with 0 <i < M and 1 < k < N is the solution
of fully discrete difference scheme (3.11). Then, we have:

(1 - T\“
|ek||h+||6$ek||h§0\/(2a> (loga) (7’2_a—i—l12)7 1<k<N.

4. Numerical Examples

This section gives two numerical examples to verify the proposed schemes for
nonlinear FODE (1.1) and FPDE (3.1).

Ezample 4.1. Consider the following nonlinear FODE with « € (0, 1):

{ CHD(ll,ty(t) = f(tvy)v 1< ta

y(1) = 0, (4.1)

where

F6Y) = 56— (E(E)a) (log#)*™* — F(g(f)a) (logt)=* + F(24r(_4)a) (logt)®~®

— %+ [(logt)® — (log t)* + 2(log t)*]%.

The exact solution of this equation is y(t) = (logt)® — (log t)*+2(log )2,
and:

r r 2I'(4

DS ylt) = s (gt = s ogy e + 2
It is not difficult to verify that ¢uyD§,y(t) € C?[1,T] with T > 1. Thus,
the conditions of Theorems 2.6-2.8 are satisfied. The numerical results of
Example 4.1 are displayed in Tables 1, 2, and 3. From Table 1, we can see
that the experimental order of convergence (EOC) for rectangular scheme is
1 which is consistent with the theoretical convergent order in Theorem 2.6.
For Tables 2 and 3, the similar situations also occur.

ogt)3 .
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Table 1. Absolute errors at t = 2 for IVP (4.1) using the left
rectangular scheme (2.4)

N a=020 EOC a=040 EOC aa=0.60 EOC a=0.80 EOC

10 6.30E-002 6.26E—002 6.52E—002 6.93E—002

20 2.90E-002 1.12 2.90E—-002 1.11 3.10E-002 1.07 3.40E—002 1.03
40  1.37TE-002 1.08 1.38E—002 1.07 1.51E—-002 1.04 1.68E—002 1.02
80  6.54E—-003 1.06 6.64E—003 1.05 7.38E—003 1.03 8.34E—-003 1.01
160 3.15E—003 1.05 3.23E—003 1.04 3.65E—003 1.02 4.15E—003 1.01
320 1.53E—003 1.05 1.58E—003 1.03 1.81E—003 1.01 2.07E—003 1.00
640 7.42E—004 1.04 7.80E—004 1.02 9.00E—004 1.01 1.03E—-003 1.00
1280 3.62E—-004 1.04 3.86E—004 1.02 4.48E—004 1.00 5.17E—004 1.00

Table 2. Absolute errors at ¢ = 2 for IVP (4.1) using the
Liog,1 interpolation scheme (2.5)

N «a=020 EOC a=040 EOC a=0.60 EOC a=0.80 EOC

10 7.97E-003 1.58E-003 2.00E—-003 2.59E—-003

20 1.94E-003 2.04 3.81E—004 2.05 5.03E—004 1.99 6.49E—-004 2.00
40  4.60E—004 2.08 9.44E—-005 2.01 1.27E—-004 1.99 1.62E—004 2.00
80 1.09E—004 2.08 2.37TE—005 2.00 3.18E—005 1.99 4.06E—005 2.00
160 2.57E—-005 2.08 5.95E—006 1.99 7.97E—006 2.00 1.02E—005 2.00
320 6.13E—006 2.07 1.50E—006 1.99 2.00E—006 2.00 2.54E—006 2.00
640 1.47E—-006 2.06 3.76E—007 1.99 5.00E—-007 2.00 6.35E—007 2.00
1280 3.53E—007 2.06 9.44E—-008 1.99 1.25E—007 2.00 1.59E—007 2.00

Table 3. Absolute errors at t = 2 for IVP (4.1) using the
modified predictor—corrector scheme (2.6)

N a=020 EOC a=040 EOC a=060 EOC a=0.80 EOC

10 6.17E-002 2.40E—-002 1.20E-002 7.30E—-003

20  2.69E—-002 1.20 8.43E—-003 1.51 3.67E—-003 1.71 1.99E—003 1.88
40  1.09E—-002 1.30 2.94E—-003 1.52 1.13E—-003 1.69 5.43E—004 1.87
80 4.33E-003 1.34 1.03E—-003 1.51 3.54E—-004 1.68 1.49E—-004 1.87
160 1.71E—-003 1.34 3.69E—004 1.49 1.12E—004 1.66 4.11E—005 1.86
320 6.79E—004 1.33 1.34E—004 1.47 3.58E—005 1.64 1.14E—-005 1.85
640 2.73E—004 1.31 4.88E—005 1.45 1.16E—-005 1.63 3.17E—006 1.84
1280 1.11E—-004 1.30 1.80E—005 1.44 3.75E—006 1.62 8.87E—007 1.84
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Table 4. Maximum norm error at ¢ = 2 for (4.2) using
scheme (3.11)

N a=020 EOC a=040 EOC aa=0.60 EOC a=0.80 EOC

10 2.43E-005 8.41E—-005 2.33E—-004 6.00E—004

20 7.15E—-006 1.76 2.76E—005 1.61 8.71E—005 1.42 2.57E—004 1.22
40  2.10E—-006 1.77 9.09E—006 1.60 3.27TE—005 1.41 1.11E—004 1.21
80  6.15E—-007 1.77 2.99E—006 1.60 1.23E—-005 1.41 4.81E—-005 1.21
160 1.80E—007 1.78 9.86E—007 1.60 4.65E—006 1.41 2.09E—005 1.20
320 5.23E—-008 1.78 3.25E—007 1.60 1.76E—006 1.40 9.07TE—006 1.20
640 1.52E—008 1.78 1.07TE—007 1.60 6.65E—007 1.40 3.95E—006 1.20
1280 4.41E-009 1.78 3.53E—008 1.60 2.52E—007 1.40 1.72E—006 1.20

Ezample 4.2. Consider the following fractional partial differential equation:
oD u(r,t) — Au(z,t) = f(z,t), 1<t<T, 0<x<l,
u(z,1) =0, 0 <z <1, (4.2)
u(0,t) =u(l,t) =0, 1<t<T,

where o € (0,1) and the source term:

f(z,t) = (logt)* ®x(1 — z) + 2(log t)?.

2

'3 —a)

The exact solution of this equation is u(z,t) = x(1 — z)(logt)?. We
mainly present the temporal errors in the sense of maximum norm and
the corresponding convergence order, where the spatial stepsize is taken as
h = wlﬁ. Table 4 shows the experimental results of Example 4.2. It is easy
to observed that the experimental convergent order is exactly 2 — «, which
supports theoretical analysis derived in Theorems 3.2 and 3.4.

5. Conclusion

This paper focuses on numerical simulation for fractional differential equation
with Caputo-Hadamard derivative. We discuss the smoothness properties of
the solution to equation (1.1). Stability, convergence, and error estimate of
the left fractional rectangular, Liog 1 interpolation, and modified predictor—
corrector methods are studied in the setting of uniform meshes. Then, we
construct numerical schemes to approximate to Caputo—Hadamard fractional
partial differential equation with initial and boundary conditions, via using
linear interpolation in temporal direction and the standard second-order cen-
tral difference in spatial direction. We prove the stability and error estimates
which turns out to be O(72=% + h?) for a semi-discrete and a fully discrete
scheme in H' norm.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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