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1. Introduction

One of the most elegant results in the theory of approximation is Korovkin’s
theorem, which provides a generalization of the well-known proof of Weier-
strass’s classical approximation theorem as was given by Bernstein.

Theorem 1. (Korovkin [18], [19]) Let (Ln)n be a sequence of positive linear
operators that map C([0, 1]) into itself. Suppose that the sequence (Ln(f))n
converges to f uniformly on [0, 1] for each of the test functions 1, x and x2.
Then, this sequence converges to f uniformly on [0, 1] for every f ∈ C([0, 1]).

Simple examples show that the assumption concerning the positivity of
the operators Ln cannot be dropped. What about the assumption on their
linearity?

Over the years, many generalizations of Theorem 1 appeared in a variety
of settings including important Banach function spaces. A nice account on the
present state of art is offered by the authoritative monograph of Altomare
and Campiti [3] and the excellent survey of Altomare [2]. The literature
concerning the subject of Korovkin-type theorems is really huge, a search
on Google offering more than 26,000 results. However, except for Theorem
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2.7 in the 1973 paper of Bauer [4], the extension of this theory beyond the
framework of linear functional analysis remained largely unexplored.

Inspired by the Choquet theory of integrability with respect to a nonad-
ditive measure, we will prove in this paper that the restriction to the class of
positive linear operators can be relaxed by considering operators that verify
a mix of conditions characteristic for Choquet’s integral.

As usual, for X, a Hausdorff topological space, we will denote by F(X)
the vector lattice of all real-valued functions defined on X endowed with the
pointwise ordering. Two important vector sublattices of it are:

C(X) = {f ∈ F(X) : f continuous}
and

Cb(X) = {f ∈ F(X) : f continuous and bounded} .

With respect to the sup norm, Cb(X) becomes a Banach lattice. See [22] for
the theory of these spaces.

Suppose that X and Y are two Hausdorff topological spaces and E
and F are, respectively, vector sublattices of C(X) and C(Y ). An operator
T : E → F is called:

– sublinear if it is both subadditive, that is:

T (f + g) ≤ T (f) + T (g) for all f, g ∈ E,

and positively homogeneous, that is:

T (af) = aT (f) for all a ≥ 0 and f ∈ E;

– monotonic if f ≤ g in E implies T (f) ≤ T (g);
– comonotonic additive if T (f + g) = T (f)+T (g) whenever the functions

f, g ∈ E are comonotone in the sense that:

(f(s) − f(t)) · (g(s) − g(t)) ≥ 0 for all s, t ∈ X.

Our main result extends Korovkin’s results to the framework of oper-
ators acting on vector lattices of functions of several variables that play the
properties of sublinearity, monotonicity, and comonotonic additivity. We use
families of test functions including the canonical projections on R

N :

prk : (x1, . . . , xN ) → xk, k = 1, . . . , N.

Theorem 2. (The nonlinear extension of Korovkin’s theorem: the several vari-
ables case) Suppose that X is a locally compact subset of the Euclidean space
R

N and E is a vector sublattice of F(X) that contains the test functions
1, ±pr1, . . . , ±prN and

∑N
k=1 pr2k.

(i) If (Tn)n is a sequence of monotone and sublinear operators from E into
E, such that:

lim
n→∞ Tn(f) = f uniformly on the compact subsets of X (1.1)

for each of the 2N + 2 aforementioned test functions, then the property
(1.1) also holds for all nonnegative functions f in E ∩ Cb(X).
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(ii) If, in addition, each operator Tn is comonotone additive, then (Tn(f))n
converges to f uniformly on the compact subsets of X, for every f ∈
E ∩ Cb (X).

Notice that in both cases (i) and (ii), the family of testing functions can
be reduced to 1, −pr1, . . . , −prN and

∑N
k=1 pr2k when K is included in the

positive cone of RN . Also, the convergence of (Tn(f))n to f is uniform on X
when f ∈ E is uniformly continuous and bounded on X.

The details of this result make the objective of Sect. 2.
Theorem 2 extends not only Korovkin’s original result (which represents

the particular case where N = 1, K = [0, 1], all operators Tn are linear
bounded and monotone, and the function pr1 is the identity of K) but also
the several variable version of it due to Volkov [25]. It encompasses also the
technique of smoothing kernels, in particular Weierstrass’ argument for the
Weierstrass approximation theorem: for every bounded uniformly continuous
function f : R → R :

(Whf) (t) =
1

h
√

π

∫ ∞

−∞
f(s)e−(s−t)2/h2

ds −→ f(t)

uniformly on R as h → 0.
Applications of Theorem 2 in the nonlinear setting are presented in

Sect. 3. They are all based on Choquet’s theory on integration with respect
to a capacity. Indeed, this theory, which was initiated by Choquet [6], [7] in
the early 1950s, represents a major source of comonotonic additive, sublinear,
and monotone operators.

It is worth mentioning that, nowadays, Choquet’s theory provides pow-
erful tools in decision-making under risk and uncertainty, game theory,
ergodic theory, pattern recognition, interpolation theory, and very recently
on transport under uncertainty. See Adams [1], Denneberg [8], Föllmer and
Schied [9], Wang and Klir [26], Wang and Yan [27], Gal and Niculescu [13],
as well as the references therein.

For the convenience of reader, we summarized in the Appendix at the
end of this paper some basic facts concerning this theory.

Some nonlinear extension of Korovkin’s theorem within the framework
of compact spaces are presented in Sect. 4.

2. Proof of Theorem 2

Before to detail the proof of Theorem 2, some preliminary remarks on the
behavior of operators T : Cb(X) → Cb(Y ) are necessary.

If T is subadditive, then it verifies the inequality:

|T (f) − T (g)| ≤ T (|f − g|) for all f, g. (2.1)

Indeed, f ≤ g + |f − g| yields T (f) ≤ T (g) + T (|f − g|) , i.e., T (f) −
T (g) ≤ T (|f − g|), and interchanging the role of f and g, we infer that
− (T (f) − T (g)) ≤ T (|f − g|) .
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If T is linear, then the property of monotonicity is equivalent to that of
positivity, whose meaning is:

T (f) ≥ 0 for all f ≥ 0.

If the operator T is monotone and positively homogeneous, then neces-
sarily:

T (0) = 0.

Every positively homogeneous and comonotonic additive operator T
verifies the formula:

T (f + a · 1) = T (f) + aT (1) for all f and all a ∈ [0,∞); (2.2)

indeed, f is comonotonic to any constant function.

Proof of Theorem 2. (i) To make more easier the handling of the test func-
tions, we denote:

e0 = 1, ek = prk (k = 1, . . . , N) and eN+1 =
N∑

k=1

pr2k .

Replacing each operator Tn by Tn/Tn(e0), we may assume that Tn(e0) =
1 for all n.

Let f ∈ E ∩Cb(Ω) and let K be a compact subset of X. Then, for every
ε > 0, there is δ̃ > 0, such that:

|f(s) − f(t)| ≤ ε for every t ∈ K and s ∈ X with ‖s − t‖ ≤ δ̃;

this can be easily proved by reductio ad absurdum.
If ‖s − t‖ ≥ δ̃, then:

|f(s) − f(t)| ≤ 2‖f‖∞
δ̃2

· ‖s − t‖2,

so that letting δ = 2‖f‖∞/δ̃2, we obtain the estimate:

|f(s) − f(t)| ≤ ε + δ · ‖s − t‖2 (2.3)

for all t ∈ K and s ∈ X. Since K is a compact set, it can embedded into
an N -dimensional cube [a, b]N for suitable b ≥ 0 ≥ a and the estimate (2.3)
yields:

|f(s) − f(t)e0| ≤ εe0

+δ(ε)
[
e2N+1(s) + 2

N∑

k=1

(ek(t) − a) (−ek(s))

−2a

N∑

k=1

ek(s) + ‖t‖2 e0(s)
]
.
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Taking into account the formula (2.1) and the fact that the operators Tn are
subadditive and positively homogeneous, we infer that:

|Tn(f)(s) − f(t)| = |Tn(f)(s) − Tn(f(t)e0)(s)| ≤ Tn (|f(s) − f(t)e0|)

≤ ε + δ(ε)
[
Tn(e2N+1)(s) + 2

N∑

k=1

(ek(t) − a) Tn(−ek)(s)

−2a

N∑

k=1

Tn (ek)(s)) + ‖t‖2
]

for every n ∈ N and s, t ∈ K. Here, we used the assumption that f is non-
negative. By our hypothesis:

Tn(e2N+1)(s) + 2
N∑

k=1

(ek(s) − a) Tn(−ek)(s) − 2a
N∑

k=1

Tn (ek)(s)) + ‖s‖2 → 0

uniformly on K as n → ∞. Therefore:

lim sup
n→∞

|Tn(f)(s) − f(s)| ≤ ε

whence we conclude that Tn(f) → f uniformly on K, because ε was arbi-
trarily fixed.

(ii) Suppose, in addition, that each operator Tn is also comonotone
additive. According to the assertion (i) :

Tn(f + ‖f‖e0) → f + ‖f‖e0, uniformly on K.

Since a constant function is comonotone with any arbitrary function, using
the comonotone additivity of Tn, it follows that Tn(f + ‖f‖e0) = Tn(f) +
‖f‖ · Tn(e0). Therefore, Tn(f) → f uniformly on K. �

When K is included in the positive cone of RN , it can embedded into
an N -dimensional cube [0, b]N for a suitable b > 0 and the estimate (2.3)
yields:

|f(s) − f(t)e0| ≤ εe0

+δ(ε)

[

e2N+1(s) + 2
N∑

k=1

ek(t) (−ek(s)) + ‖t‖2 e0(s)

]

.

Proceeding as above, we infer that:

|Tn(f)(s) − f(t)|

≤ ε + δ(ε)

[

Tn(e2N+1)(s) + 2
N∑

k=1

ek(t)Tn(−ek)(s) + ‖t‖2
]

for every n ∈ N and s, t ∈ K, provided that f ≥ 0. As a consequence, in
both cases (i) and (ii), the family of testing functions can be reduced to
e0,−e1, . . . ,−eN and eN+1.

When dealing with functions f ∈ E uniformly continuous and bounded
on X, an inspection of the argument above shows that f verifies an estimate
of the form (2.3) for all s, t ∈ X, a fact that implies the convergence of
(Tn(f))n to f uniformly on X.
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3. Applications of Theorem 2

We will next discuss several examples of operators illustrating Theorem 2.
They are all based on Choquet’s theory of integration with respect to a
capacity μ, in our case, the restriction of the submodular capacity:

μ(A) = (L(A))1/2

to various compact subintervals of R; here, L denotes the Lebesgue measure
on real line. The necessary background on Choquet’s theory is provided by
the Appendix at the end of this paper.

The one-dimensional case of Theorem 2 is illustrated by the following
three families of nonlinear operators, first considered in [11]:

– the Bernstein–Kantorovich–Choquet operators act on C([0, 1]) by the
formula:

Kn,µ(f)(x) =
n∑

k=0

(C)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dμ

μ([k/(n + 1), (k + 1)/(n + 1)])
·
(

n

k

)

xk(1 − x)n−k;

– the Szász–Mirakjan–Kantorovich–Choquet operators act on C([0,∞))
by the formula :

Sn,µ(f)(x) = e−nx
∞∑

k=0

(C)
∫ (k+1)/n

k/n
f(t)dμ

μ([k/n, (k + 1)/n])
· (nx)k

k!
;

– the Baskakov–Kantorovich–Choquet operators act on C([0,∞)) by the
formula:

Vn,µ(f)(x) =
∞∑

k=0

(C)
∫ (k+1)/n

k/n
f(t)dμ

μ([k/n, (k + 1)/n])
·
(

n + k − 1
k

)
xk

(1 + x)n+k
.

Since the Choquet integral with respect to a submodular capacity μ
is comonotone additive, sublinear and monotone, it follows that all above
operators also have these properties.

Clearly, Kn,µ(e0)(x) = 1 and by Corollary 3.6 (i) in [11], we immediately
get that Kn,µ(e2)(x) → e2(x) uniformly on [0, 1]. Again, by Corollary 3.6 (i),
it follows that Kn,µ(1 − e1)(x) → 1 − e1, uniformly on [0, 1]. Since Kn,µ is
comonotone additive:

Kn,µ(1 − e1)(x) = Kn,µ(e0)(x) + Kn,µ(−e1)(x),

which implies that Kn,µ(−e1) → −e1 uniformly on [0, 1]. Therefore, the oper-
ators Kn,µ satisfy the hypothesis of Theorem 2, whence the conclusion

Kn,µ(f)(x) → f(x) uniformly for every f ∈ C([0, 1]).

Similarly, one can show that the operators Sn,µ and Vn,µ satisfy the
hypothesis of Theorem 2 for N = 1 and X = [0,+∞). In the first case,
notice that the condition Sn,µ(e0) = e0 is trivial. The convergence of the
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sequence of functions Sn,µ(e2)(x) will be settled by computing the integrals√
n · (C)

∫ (k+1)/n

k/n
t2dμ. We have:

√
n · (C)

∫ (k+1)/n

k/n
t2dμ =

√
n

∫ ∞

0
μ({t ∈ [k/n, (k + 1)/n] : t ≥ √

α})dα

=
√

n

∫ ((k+1)/n)2

0
μ({t ∈ [k/n, (k + 1)/n] : t ≥ √

α})dα

=
√

n

∫ (k/n)2

0
μ({t ∈ [k/n, (k + 1)/n] : t ≥ √

α})dα

+
√

n

∫ ((k+1)/n)2

(k/n)2
μ({t ∈ [k/n, (k + 1)/n] : t ≥ √

α})dα

=
√

n ·
(

k

n

)2

· 1√
n

+
√

n ·
∫ ((k+1)/n)2

(k/n)2

√

(k + 1)/n − √
αdα

=

(
k

n

)2

+
√

n ·
∫ 1/n

0
β1/2((k + 1)/n − β)dβ

=

(
k

n

)2

+
√

n · 2(k + 1)

n
· 2
3

· β3/2|1/n0 − 2
√

n · 2
5

β5/2|1/n0

=
1

15n2

(
15k2 + 20k + 8

)
.

This immediately implies:

Sn,µ(e2)(x) = Sn(e2)(x) +
4
3n

Sn(e1)(x) +
4

3n2
− 4

5n2
→ e2(x),

uniformly on every compact subinterval [0, a]. Here, Sn denotes the classical
Szász–Mirakjan–Kantorovich operator, associated with the Lebesgue mea-
sure.

It remains to show that Sn,µ(−e1)(x) → −e1(x), uniformly on every
compact subinterval [0, a]. For this goal, we have to perform the following
computation:

√
n · (C)

∫ (k+1)/n

k/n

(−t)dμ

=
∫ 0

−∞

{

μ({ω ∈ [k/n, (k + 1)/n] : −ω ≥ α}) − 1√
n

}

dα

=
√

n

∫ 0

−k/n

{

μ({ω ∈ [k/n, (k + 1)/n] : ω ≤ −α}) − 1√
n

}

dα

+
√

n

∫ −k/n

−(k+1)/n

{

μ({ω ∈ [k/n, (k + 1)/n] : ω ≤ −α}) − 1√
n

}

dα

= −k

n
+

√
n ·

∫ −k/n

−(k+1)/n

(
√

−α − k/n − 1√
n

)

dα

= −k

n
+

√
n

∫ (k+1)/n

k/n

√
β − k/ndβ − 1

n

= −k

n
+

√
n

∫ 1/n

0

β1/2dβ − 1
n

= −(3k + 1)/(3n).
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Consequently:

Sn,µ(−e1)(x) = Sn(−e1)(x) − 1
n

→ −x,

uniformly on any compact interval [0, a].
In a similar way, one can be prove that the Baskakov–Kantorovich–

Choquet operators Vn,µ satisfy the hypothesis of Theorem 2.
The several variables framework can be illustrated by the following spe-

cial type of Bernstein–Durrmeyer–Choquet operators (see [14] for the general
case) that act on the space of continuous functions defined on the N -simplex

ΔN = {(x1, . . . , xN ) : 0 ≤ x1, . . . , xN ≤ 1, 0 ≤ x1 + · · · + xN ≤ 1}
via the formulas:

Mn,µ(f)(x) = Bn(f)(x) − f(x) + xn
N

[
(C)

∫
ΔN

f(t1, . . . , tN )tnNdμ

(C)
∫
ΔN

tnNdμ
− f(0, . . . , 0, 1)

]

.

Here, x = (x1, . . . , xN ), Bn(f)(x) is the multivariate Bernstein polynomial
and μ =

√LN , where LN is the N -dimensional Lebesgue measure. The fact
that these operators verify the hypotheses of Theorem 2 is an exercise left to
the reader.

4. The Case of Spaces of Functions Defined on Compact Spaces

The alert reader has probably already noticed that the basic clue in the proof
of Theorem 2 is the estimate (2.3), characterized in [21] (see also [20]) as a
property of absolute continuity. This estimate occurs in the larger context of
spaces C(M), where M is a metric space on which is defined a separating
function, that is, a nonnegative continuous function γ : M × M → R, such
that:

γ(s, t) = 0 implies s = t.

If M is a compact subset of RN , and f1, . . . , fm ∈ C(M) is a family of
functions which separates the points of M (in particular this is the case of
the coordinate functions pr1, . . . ,prN ), then:

γ(s, t) =
m∑

k=1

(fk(s) − fk(t))
2 (4.1)

is a separating function.

Lemma 1. (See [21]) If K is a compact metric space, and γ : K × K → R is
a separating function, then any real-valued continuous function f defined on
K verifies an estimate of the following form:

|f(s) − f(t)| ≤ ε + δ(ε)γ(s, t) for all s, t ∈ K.

The separating functions play an important role in obtaining Korovkin-
type theorems. A sample is as follows:
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Theorem 3. Suppose that K is a compact metric space and γ is a separating
function for M. If Tn : C(K) → C(K) (n ∈ N) is a sequence of comonotone
additive, sublinear and monotone operators, such that Tn(1) → 1 uniformly
and:

Tn(γ(·, t))(t) → 0 uniformly in t, (4.2)

then Tn(f) → f uniformly for each f ∈ C(K).

The details are similar to that used for Theorem 2, so they will be omitted.
In a similar way, one can prove the following nonlinear extension of the

Korovkin-type theorem (due in the linear case to Schempp [23] and Grossman
[17]):

Theorem 4. Let X be a compact Hausdorff space and F be a subset of C(X)
that separates the points of X. If (Tn)n is a sequence of comonotonic additive,
sublinear, and monotone operators that map C(X) into C(X) and satisfy the
conditions limn→∞ Tn(fk) = fk for each f in F and k = 0, 1, 2, then:

lim
n→∞ Tn(f) = f,

for every f in C(X).

5. Appendix: Some Basic Facts on Capacities and Choquet
Integral

For the convenience of the reader, we will briefly recall in this section some
basic facts concerning the mathematical concept of capacity and the integral
associated to it. Full details are to be found in the books of Denneberg [8],
Grabisch [16], and Wang and Klir [26].

Let (X,A) be an arbitrarily fixed measurable space, consisting of a
nonempty abstract set X and a σ-algebra A of subsets of X.

Definition 1. A set function μ : A → [0,∞) is called a capacity if μ(∅) = 0
and:

μ(A) ≤ μ(B) for all A,B ∈ A, with A ⊂ B.

A capacity is called normalized if μ(X) = 1;

An important class of normalized capacities is that of probability mea-
sures (that is, the capacities playing the property of σ-additivity). Probability
distortions represents a major source of nonadditive capacities. Technically,
one start with a probability measure P : A →[0, 1] and applies to it a dis-
tortion u : [0, 1] → [0, 1], that is, a nondecreasing and continuous function,
such that u(0) = 0 and u(1) = 1; for example, one may chose u(t) = ta with
α > 0. The distorted probability μ = u(P ) is a capacity with the remarkable
property of being continuous by descending sequences; that is:

lim
n→∞ μ(An) = μ

( ∞⋂

n=1

An

)
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for every nonincreasing sequence (An)n of sets in A. Upper continuity of a
capacity is a generalization of countable additivity of an additive measure.
Indeed, if μ is an additive capacity, then upper continuity is the same with
countable additivity. When the distortion u is concave (for example, when
u(t) = ta with 0 < α < 1), then μ is also submodular in the sense that:

μ(A ∪ B) + μ(A ∩ B) ≤ μ(A) + μ(B) for all A,B ∈ A.

Another simple technique of constructing normalized submodular capac-
ities μ on a measurable space (X,A) is by allocating to it a probability space
(Y,B, P ) via a map ρ : A → B, such that:

ρ(∅) = ∅, ρ(X) = Y and

ρ
(⋂∞

n=1
An

)
=

⋂∞
n=1

ρ(An) for every sequence of sets An ∈ A.

This allows us to define μ by the formula:

μ(A) = 1 − P (ρ(X\A)) .

See Shafer [24] for details.
The next concept of integrability with respect to a capacity refers to

the whole class of random variables, that is, to all functions f : X → R, such
that f−1(A) ∈ A for every Borel subset A of R.

Definition 2. The Choquet integral of a random variable f with respect to
the capacity μ is defined as the sum of two Riemann improper integrals:

(C)
∫

X

fdμ =
∫ +∞

0

μ ({x ∈ X : f(x) ≥ t}) dt

+
∫ 0

−∞
[μ ({x ∈ X : f(x) ≥ t}) − μ(X)] dt.

Accordingly, f is said to be Choquet integrable if both integrals above are
finite.

If f ≥ 0, then the last integral in the formula appearing in Definition 2
is 0.

The inequality sign ≥ in the above two integrands can be replaced by
>; see [26], Theorem 11.1,p. 226.

Every bounded random variable is Choquet integrable. The Choquet
integral coincides with the Lebesgue integral when the underlying set function
μ is a σ-additive measure.

The integral of a function f : X → R on a set A ∈ A is defined by the
formula:

(C)
∫

A

fdμ = (C)
∫

X

fdμA,

where μA is the capacity defined by μA(B) = μ(B ∩ A) for all B ∈ A.

We next summarize some basic properties of the Choquet integral.
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Remark 1. (a) If μ : A → [0,∞) is a capacity, then the associated Choquet
integral is a functional on the space of all bounded random variables, such
that:

f ≥ 0 implies (C)
∫

A

fdμ ≥ 0 ( positivity)

f ≤ g implies (C)
∫

A

fdμ ≤ (C)
∫

A

gdμ (monotonicity)

(C)
∫

A

afdμ = a ·
(

(C)
∫

A

fdμ

)

for a ≥ 0 (positive homogeneity )

(C)
∫

A

1 · dμ(t) = μ(A) ( calibration);

see [8], Proposition 5.1 (ii), p. 64, for a proof of the property of positive
homogeneity.

(b) In general, the Choquet integral is not additive, but, if the bounded
random variables f and g are comonotonic, then:

(C)
∫

A

(f + g)dμ = (C)
∫

A

fdμ + (Ch)
∫

A

gdμ.

This is usually referred to as the property of comonotonic additivity and was
first noticed by Delacherie [10]. An immediate consequence is the property of
translation invariance:

(C)
∫

A

(f + c)dμ = (C)
∫

A

fdμ + c · μ(A)

for all c ∈ R and all bounded random variables f. For details, see [8], Propo-
sition 5.1, (vi), p. 65.

(c) If μ is an upper continuous capacity, then the Choquet integral is
upper continuous in the sense that:

lim
n→∞

(

(C)
∫

A

fndμ

)

= (C)
∫

A

fdμ

whenever (fn)n is a nonincreasing sequence of bounded random variables
that converges pointwise to the bounded variable f. This is a consequence of
the Beppo Levi monotone convergence theorem from the theory of Lebesgue
integral.

(d) Suppose that μ is a submodular capacity. Then, the associated Cho-
quet integral is a subadditive functional; that is:

(C)
∫

A

(f + g)dμ ≤ (C)
∫

A

fdμ + (C)
∫

A

gdμ

for all bounded random variables f and g. See [8], Corollary 6.4, p. 78. and
Corollary 13.4, p. 161. It is also a submodular functional in the sense that:

(C)
∫

A

sup {f, g} dμ + (C)
∫

A

inf{f, g}dμ ≤ (C)
∫

A

fdμ + (C)
∫

A

gdμ

for all bounded random variables f and g. See [5], Theorem 13 (c).
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A characterization of Choquet integral in terms of additivity on comono-
tonic functions is provided by the following analogue of the Riesz represen-
tation theorem. See Zhou [28], Theorem 1, and Lemma 3, for a simple (and
more general) argument.

Theorem 5. Suppose that I : C(X) → R is a comonotonically additive and
monotone functional with I(1) = 1. Then, it is also upper continuous and
there exists a unique upper continuous normalized capacity μ : B(X) → [0, 1],
such that I coincides with the Choquet integral associated with it.

On the other hand, according to Remark 1, the Choquet integral associ-
ated with any upper continuous capacity is a comonotonically additive, mono-
tone, and upper continuous functional.

Notice that under the assumptions of Theorem 5, the capacity μ is
submodular if and only if the functional I is submodular.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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