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Curvature Computations in Finsler
Geometry Using a Distinguished Class
of Anisotropic Connections

Miguel Ángel Javaloyes

Abstract. We show how to compute tensor derivatives and curvature
tensors using affine connections. This allows for all computations to be
obtained without using coordinate systems, in a way that parallels the
computations appearing in classical Riemannian geometry. In particular,
we obtain Bianchi identities for the curvature tensor of any anisotropic
connection, we compare the curvature tensors of any two anisotropic
connections, and we find a family of anisotropic connections which are
well suited to study the geometry of Finsler metrics.

Mathematics Subject Classification. Primary 53C50, 53C60.

Keywords. Anisotropic linear connections, Finsler geometry, Jacobi op-
erator, Bianchi identities.

1. Introduction

Traditionally, Finsler geometry is associated with lengthy computations in
coordinates. This is due to the dependence on directions of all the elements,
which allows for a large generality of the metrics, but sometimes makes it
difficult to understand the geometric meaning of certain quantities. In order
to overcome these difficulties, we will use affine connections ∇V , which are
defined for every vector field V which is non-zero everywhere. The connec-
tions ∇V can be interpreted as osculating affine connections in the same
way as one obtains the osculating metric gV of a Finsler metric by fix-
ing at every point p ∈ M the direction of Vp in the fundamental tensor,
namely (gV )p = gVp

, where g is the fundamental tensor in (44). This ap-
proach was first considered in [9,11], later in [12, Sect. 7] and recently in
[2,3,5].

Here we will go a step further. First, we consider anisotropic connec-
tions in a manifold M , which are not exactly connections on fiber bundles,
but especially adapted to the dependence on the direction (see Definition
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2.2 and [4, Sect. 4.4] for the relationship with connections on the verti-
cal bundle). Then we will use the anisotropic tensor calculus developed in
[4], and the formulas (6), (9) and (13), wherein the derivative of a tensor
and the curvature are computed using ∇V . To take advantage of this ap-
proach, we make a fundamental observation in Proposition 2.13: that there
is a privileged choice of the extension V which allows one to compute the
derivative of a tensor. This choice has the property that at a fixed point
p, the vector field V is parallel in all directions, namely, (∇V

XV )p = 0 for
all vector fields X. This simplifies dramatically the computations involv-
ing curvature tensors and derivatives. Indeed, it reduces, for example, the
proof of the Bianchi identities to the classical case of an affine connection
in a manifold, Sect. 2.4. It also allows us to relate the curvature tensors of
two different anisotropic connections using the difference tensor, Sect. 2.5.
In particular, this relation will lead us to distinguish a family of connec-
tions which are well suited for studying Finsler metrics, Sect. 3. Amongst
these connections, one finds the Berwald and the Chern connections, and
for all of them, it is possible to derive formulas for the first and the second
variations of the energy (Prop. 3.8), determining the same Jacobi operator,
Jacobi equation and flag curvature (Prop. 3.6). Moreover, these connections
can also be related to the Levi-Civita connection of the osculating metric
(Prop. 3.9).

The paper is organized as follows. In Sect. 2, we give the basic notions of
anisotropic tensor calculus, previously introduced in [4]. In particular, we de-
fine anisotropic tensors, anisotropic connections, and finally the tensor deriva-
tion and the curvature tensor associated with an anisotropic connection. In
Sect. 2.2, we give the notion of anisotropic covariant derivation and then of
auto-parallel curve. We also establish the Jacobi equation of an auto-parallel
curve in Prop. 2.11 and give a condition in terms of the difference tensor (see
(31)), which implies that two different anisotropic connections determine the
same Jacobi operator. In Sect. 2.3, we explain the different possibilities for
parallel transport with an anisotropic connection. In Sect. 2.4, we obtain the
anisotropic Bianchi identities and in Sect. 2.5, the comparison of the curva-
ture tensors of two anisotropic connections. Section 3 is devoted to the study
of certain connections which are well suited to study Finsler metrics. These
connections allow us to obtain formulas for the first and the second variation
of the energy.

2. Anisotropic Tensor Calculus and Affine Connections

Let M be a smooth manifold of dimension n, TM its tangent bundle and
T ∗M its contangent bundle, with π : TM → M and π̃ : T ∗M → M , the
natural projections. Given an open subset A of the tangent bundle TM with
π(A) = M , we can use the restriction π|A : A ⊂ TM → M to obtain two
pull-back vector bundles over A by lifting π and π̃, which are, respectively,
denoted by π∗

A : π∗
ATM → A and π̃∗

A : π∗
AT ∗M → A:
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π∗
ATM

π∗
A

��

TM

π

��
A ⊂ TM

πA=π|A �� M

π∗
AT ∗M

π̃∗
A

��

T ∗M

π̃

��
A ⊂ TM

πA=π|A �� M

.

Observe that for every v ∈ A, we have that (π∗
A)−1(v) = Tπ(v)M and

(π̃∗
A)−1(v) = T ∗

π(v)M . Then a section of π∗
A (resp. π̃∗

A) can be thought as
a smooth map A � v → Xv ∈ TM (resp. A � v → θv ∈ T ∗M) in such a
way that Xv ∈ Tπ(v)M (resp. θv ∈ T ∗

π(v)M). The subset of (smooth) sections
of π∗

ATM will be denoted by T1
0(M,A), while the subset of smooth sections

of π̃∗
AT ∗M will be denoted by T0

1(M,A). Then we define an A-anisotropic
tensor T of type (r, s), r, s ∈ N∪{0}, r + s > 0, as an F(A)-multilinear map

T : T0
1(M,A)r × T1

0(M,A)s → F(A),

where F(A) is the subset of smooth real functions on A, namely, f : A → R.
The space of A-anisotropic tensors of type (r, s) is denoted by Tr

s(M,A),
while by convention T0

0(M,A) ≡ F(A). The F(A)-multilinearity implies that
for every v ∈ A, T determines a multilinear map

Tv : (T ∗
π(v)M)r × (Tπ(v)M)s → R.

As a consequence, given an open subset Ω ⊂ M , it makes sense to consider
the restriction

T : T0
1(Ω, TΩ ∩ A)r × T1

0(Ω, TΩ ∩ A)s → F(TΩ ∩ A).

In particular, given a system of coordinates (Ω, ϕ), where Ω is an open
subset of M and ϕ : Ω → U ⊂ Rn, a chart of M , we define the coordinates
of T as functions T i1i2...ir

j1j2...js
: A ∩ TΩ → R defined as

T i1i2...ir
j1j2...js

(v) = Tv(dxi1 , . . . ,dxir , ∂j1 , . . . , ∂js
),

where ∂1, . . . , ∂n denotes the frame of partial vector fields associated with
the coordinate system (Ω, ϕ) and dx1, . . . ,dxn, its dual basis. Observe that
the space of smooth vector fields on M , denoted by X(M) (resp. the space
of smooth one-forms on M , denoted by X∗(M)) can be viewed as a subset of
T1

0(M,A) (resp. T0
1(M,A)), since a vector field X ∈ X(M) (resp. θ ∈ X∗(M))

can be identified with the smooth section X̃ (resp. θ̃) defined as X̃v = Xπ(v)

(resp. θ̃v = θπ(v)). By the F(A)-multilinearity, it is enough to define the
tensor as

T : X∗(M)r × X(M)s → F(A), (1)

which then will be extended by the F(A)-multilinearity using a local frame
in X(M) (resp. X∗(M)), see also [4, Remark 2].

One can also consider an F(A)-multilinear map

T : T1
0(M,A)s → T1

0(M,A), (2)

which determines the A-anisotropic tensor of type (1, s) T̄ : T0
1(M,A) ×

T1
0(M,A)s → F(A) defined by

T̄ (θ,X1, . . . ,Xs) = θ(T (X1, . . . ,Xs)). (3)
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As in classical tensor calculus, T will be considered as a tensor field
itself, using the formula above only when necessary.

We will say that a vector field V defined on an open subset Ω ⊂ M is
A-admissible if Vp ∈ A for every p ∈ Ω. In such a case, given an A-anisotropic
tensor T ∈ Tr

s(M,A), we can define a (classical) tensor TV ∈ Tr
s(Ω) in such

a way that (TV )p = TVp
for every p ∈ Ω.

As a result of the dependence on directions of A-anisotropic tensors,
one can define derivatives on the vertical bundle.

Definition 2.1. Given an A-anisotropic tensor T ∈ Tr
s(M,A), we define its

vertical derivative as the tensor ∂νT ∈ Tr
s+1(M,A) given by

(∂νT )v(θ1, . . . , θr,X1, . . . , Xs, Z) =
∂

∂t
Tv+tZπ(v)(θ

1, . . . , θr,X1, . . . , Xs)|t=0

for any v ∈ A and (θ1, θ2, . . . , θr,X1, . . . , Xs, Z) ∈ X∗(M)r × X(M)s+1, and
an analogous definition is made for A-anisotropic tensors of the type (2).

Recall that in Finsler Geometry, the linear connections used to study
geodesics and curvature are linear connections on the vertical bundle. Along
this paper we will use a different notion of connection introduced in [12, Sect.
7.1] and studied in [4], which simplifies some computations.

Definition 2.2. An A-anisotropic (linear) connection is a map

∇ : A × X(M) × X(M) → TM, (v,X, Y ) 
→ ∇v
XY ∈ Tπ(v)M,

such that
(i) ∇v

X(Y + Z) = ∇v
XY + ∇v

XZ, for any X,Y,Z ∈ X(M),
(ii) ∇v

X(fY ) = X(f)Yπ(v) +f(π(v))∇v
XY for any f ∈ F(M), X,Y ∈ X(M),

(iii) for any X,Y ∈ X(M), ∇XY ∈ T1
0(M,A) (considered as a map A � v →

∇v
XY ),

(iv) ∇v
fX+hY Z=f(π(v))∇v

XZ+h(π(v))∇v
Y Z, for any f, h ∈ F(M), X,Y,Z ∈

X(M).

For the relation of this new notion of A-anisotropic connection with
classical linear connections see [4, Sect. 4.4]. Given an A-anisotropic connec-
tion ∇ and a vector field X ∈ X(M), it is possible to define an A-anisotropic
tensor derivation ∇X (see [4, Sect. 2.2] for the general definition) in the space
of tensors Tr

s(M,A) such that for any function h ∈ F(A), ∇Xh ∈ F(A) is
determined at v ∈ A by

∇Xh(v) = Xπ(v)(h(V )) − (∂νh)v(∇v
XV ), (4)

where V is any A-admissible vector field extending v, namely Vπ(v) = v.
Observe that the expression in (4) does not depend on the choice of V (see
[4, Lemma 9]). Moreover, if θ ∈ X∗(M), then ∇Xθ ∈ T0

1(M,A) is determined
by

(∇Xθ)v(Y ) = Xπ(v)(θ(Y )) − θ(∇v
XY ), for any Y ∈ X(M). (5)

Finally, for an arbitrary A-anisotropic tensor T ∈ Tr
s(M,A), we define the

tensor derivative
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(∇XT )(θ1, . . . , θr,X1, . . . , Xs)) = ∇X(T (θ1, . . . , θr,X1, . . . , Xs))

−
r∑

i=1

T (θ1, . . . ,∇Xθi, . . . , θr,X1, . . . , Xs)

−
s∑

j=1

T (θ1, . . . , θr,X1, . . . ,∇XXj , . . . , Xs),

(6)

for any (θ1, θ2, . . . , θr,X1, . . . , Xs) ∈ X∗(M)r × X(M)s (see [4, Theorem 11]
and recall that ∇X is an A-anisotropic derivation as in [4, Definition 8]).
Observe that the same formula (6) with r = 0 also holds for tensors of the
type (2). We can also define the torsion of ∇ as

Tv(X,Y ) = ∇v
XY − ∇v

Y X − [X,Y ], for any X,Y ∈ X(M). (7)

We say that an A-anisotropic connection is torsion-free if T = 0.

Remark 2.3. Recall that even if ∇Xθ in (5), ∇XT in (6) and T in (7) are
defined only for one-forms and vector fields, they can be extended to arbitrary
elements of T0

1(M,A) and T1
0(M,A) by F(A)-multilinearity. Moreover, ∇ also

can be extended to T1
0(M,A)×T1

0(M,A) using the Leibnitz rule and (4). One
can also obtain the following formula, when given an A-admissible vector field
V on an open subset Ω and X ,Y ∈ T1

0(M,A),

∇v
X Y = ∇v

X (YV ) − (∂νY)v(∇V
X V ), (8)

where (∂νY)v(z) = d
dtY(v + tz)

∣∣
t=0

, for any vector z ∈ Tπ(v)M (see [4, Eq.
(12)]), and recall that (YV )p = YVp

for every p ∈ Ω. When T is an A-
anisotropic tensor as in (2), this can be used to compute the first term of
∇XT in (6) with the help of the associated affine connection ∇V for a given
A-admissible vector field V which extends v ∈ A, namely

∇X(T (X1, . . . , Xs))(v)=Xπ(v)(TV (X1, . . . , Xs))−(∂νT )v(X1, . . . , Xs,∇V
XV ),

(9)
where X,X1, . . . , Xs ∈ X(M) (see [4, Eq. (17)] for more details).

Given a system of coordinates (Ω, ϕ), we will define the Christoffel sym-
bols of the A-anisotropic connection ∇ as the functions Γk

ij : TΩ ∩ A → R

determined by

∇v
∂i

∂j = Γk
ij(v) (∂k)π(v) .

It is easy to check that ∇ is torsion-free, namely, T = 0, if and only if
the Christoffel symbols Γk

ij are symmetric in i and j.

2.1. The Curvature Tensor of an A-Anisotropic Connection

Given an A-anisotropic connection ∇, we can define the associated curvature
tensor Rv : X(M) × X(M) × X(M) → Tπ(v)M , as follows

Rv(X,Y )Z = ∇v
X(∇Y Z) − ∇v

Y (∇XZ) − ∇v
[X,Y ]Z, (10)
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for any v ∈ A and X,Y,Z ∈ X(M) (recall part (iii) of Definition 2.2 and
Remark 2.3 for the extension of ∇ to T1

0(M,A)×T1
0(M,A)). It is straightfor-

ward to check that R is an F(A)-multilinear map, and then an A-anisotropic
tensor as in (2). Furthermore, it is anti-symmetric in X and Y .

Recall that given an A-admissible vector field V in Ω ⊂ M , an A-
anisotropic connection ∇ provides an affine connection ∇V on Ω defined as
(∇V

XY )p = ∇v
XY for any X,Y ∈ X(M), being v = Vp. Our next aim is to

express the curvature tensor in terms of the elements associated with ∇V .
First, we need to introduce the following tensors:

Pv(X,Y,Z) =
∂

∂t

(
∇v+tZ(π(v))

X Y
)

|t=0,

RV (X,Y )Z = ∇V
X∇V

Y Z − ∇V
Y ∇V

XZ − ∇V
[X,Y ]Z,

where X,Y,Z ∈ X(Ω). Observe that P is an A-anisotropic tensor, but RV is
not. This is because RV does depend on the particular choice of V as we will
see later. The A-anisotropic tensor P will be called the vertical derivative of
∇ and the connection ∇ is said to be Berwald if and only if P = 0. Moreover,
in a natural system of coordinates of the tangent bundle (TΩ, ϕ̃), associated
with a coordinate system (Ω, ϕ) on M , one has

Pv(u,w, z) = uiwjzk
∂Γl

ij

∂yk
(v) (∂l)π(v) (11)

for every v ∈ A, and u,w, z ∈ Tπ(v)M and being ui, wi and zi the coordinates
of u,w, z. As usual, we denote the coordinates of a point v ∈ TΩ as

ϕ̃ = (x, y) = (x1, x2, . . . , xn, y1, y2, . . . , yn), (12)

and we use the Einstein summation convention when possible, omitting the
coordinate functions ϕ and ϕ̃ to avoid clutter in equations. It follows from
(11) that if ∇ is torsion-free, then P is symmetric in the first two components.

Remark 2.4. If the A-anisotropic connection is positive homogeneous of de-
gree zero, namely ∇λv = ∇v, then it follows that Pv(u,w, v) = 0 for every
v ∈ A and u,w ∈ Tπ(v)M .

Proposition 2.5. Let ∇ be an A-anisotropic connection and Ω ⊂ M , an open
subset. Then for any v ∈ A, we have that

Rv(X,Y )Z = (RV )p(X,Y )Z−(PV )p(Y,Z,∇V
XV )+(PV )p(X,Z,∇V

Y V ), (13)

where V,X, Y, Z ∈ X(Ω), being V an A-admissible extension of v and p =
π(v). Moreover, in a natural system of coordinates (TΩ, ϕ̃) of TM , we have

Rv(X,Y )Z =

[
Zi(p)Y j(p)Xm(p)(

∂Γk
ji

∂xm
(v) − vlΓh

ml(v)
∂Γk

ji

∂yh
(v))

−Zi(p)Xj(p)Y m(p)(
∂Γk

ji

∂xm
(v) − vlΓh

ml(v)
∂Γk

ji

∂yh
(v))

+Zi(p)Y j(p)Xm(p)
(
Γl

ji(v)Γk
ml(v)−Γl

mi(v)Γk
jl(v)

)]
(∂k)π(v) ,

(14)
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where Xi, Y i, Zi, vi are the coordinates of X,Y,Z, v, respectively.

Proof. To prove (13), it is enough to observe that using (8), we deduce that

∇v
X(∇Y Z) = (∇V

X(∇V
Y Z))π(v) − Pv(Y,Z,∇V

XV ),

∇v
Y (∇XZ) = (∇V

Y (∇V
XZ))π(v) − Pv(X,Z,∇V

Y V ).

Let us now check (14). Denote the Christoffel symbols of ∇V as Γ̃k
ij(p) =

Γk
ij(Vp). Then

RV (X,Y )Z =

[
ZiY jX l

∂Γ̃k
ji

∂xl
− ZiXjY l

∂Γ̃k
ji

∂xl

+ZiY jXm
(
Γ̃l

jiΓ̃
k
ml − Γ̃l

miΓ̃
k
jl

)] ∂

∂xk
. (15)

Moreover, as (∇V
XV )k = Xm ∂V k

∂xm +XmV lΓk
ml◦V , using (11), we deduce

that

PV (Y,Z,∇V
XV ) = ZiY j(Xm ∂V l

∂xm
+ XmV lΓh

ml)
∂Γk

ji

∂yh
◦ V,

PV (X,Z,∇V
Y V ) = ZiXj(Y m ∂V l

∂xm
+ Y mV lΓh

ml)
∂Γk

ji

∂yh
◦ V.

Then using the last equations, (15) and ∂Γ̃k
ji

∂xm (p) = ∂Γk
ji

∂xm (Vp)+ ∂V l

∂xm (p)∂Γk
ji

∂yl (Vp),
we finally obtain (14). �

2.2. Covariant Derivatives Along Curves

In the following, given a smooth curve γ : [a, b] → M , X(γ) will denote the
space of smooth vector fields along γ and F(I) the smooth real functions
defined on I = [a, b].

Definition 2.6. An A-anisotropic covariant derivation Dv
γ in A along a curve

γ : [a, b] → M is a map

Dv
γ : X(γ) → Tπ(v)M, X 
→ Dv

γX

for every v ∈ A with π(v) = γ(t0), and t0 ∈ [a, b], such that

(i) Dv
γ(X + Y ) = Dv

γX + Dv
γY , X,Y ∈ X(γ),

(ii) Dv
γ(fX) = df

dt (t0)X(t0) + f(t0)Dv
γX ∀ f ∈ F(I), X ∈ X(γ),

(iii) DV
γ X(t) := D

V (t)
γ X is smooth ∀ V,X ∈ X(γ) and V , A-admissible,

namely V (t) ∈ A ∀ t ∈ [a, b].

Proposition 2.7. Given a smooth curve γ : [a, b] → M , an A-anisotropic
connection ∇ determines an induced A-anisotropic covariant derivative along
γ with the following property: if X ∈ X(M), then Dv

γ(Xγ) = ∇v
γ̇X, where Xγ

is the vector field in X(γ) defined as Xγ(t) = Xγ(t) ∀t ∈ [a, b].

Proof. Analogous to [10, Prop. 3.18], see also [4, Prop. 18]. �
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Definition 2.8. We say that a smooth curve γ : [a, b] → M is A-admissible
if γ̇(t) ∈ A for all t ∈ [a, b]. Moreover, we say that an A-admissible smooth
curve is an autoparallel curve of the A-anisotropic connection ∇ if Dγ̇

γ γ̇ = 0,
where Dγ is the A-anisotropic covariant derivative associated with ∇.

In coordinates, autoparallel curves are given by the equation

γ̈k + γ̇iγ̇jΓk
ij(γ̇) = 0. (16)

We say that a two-parameter map is a smooth map Λ : O → M such
that O is an open subset of R2 satisfying the interval condition, namely,
horizontal and vertical lines of R2 intersect O on intervals. We will use the
following notation:

1. the t-parameter curve of Λ at s0 is the curve γs0 defined as t → γs0(t) =
Λ(t, s0),

2. the s-parameter curve of Λ at t0 is the curve βt0 defined as s → βt0(s) =
Λ(t0, s).

Let us define Λ∗TM as the pull-back vector bundle over O induced by lifting
π : TM → M through Λ. Then we denote the subset of smooth sections of
Λ∗TM as X(Λ):

Λ∗TM

Λ∗

��

TM

π

��
O Λ �� M

Observe that a vector field V ∈ X(Λ) induces vector fields in X(γs0) and
X(βt0). We can also define the curvature operator associated with an A-
admissible two-parameter map Λ : [a, b] × (−ε, ε) → M , (t, s) → Λ(t, s).
Here A-admissible means that γ̇s(t) ∈ A for every (t, s) ∈ [a, b]× (−ε, ε). The
curvature operator of Λ is a map RΛ : X(Λ) → X(Λ) defined, for any vector
field W ∈ X(Λ), as

RΛ(W ) := Dγ̇s
γs

Dγ̇s

βt
W − Dγ̇s

βt
Dγ̇s

γs
W − Pγ̇s

(β̇t,W,Dγ̇s
γs

γ̇s) + Pγ̇s
(γ̇s,W,Dγ̇s

βt
γ̇s).

Proposition 2.9. Given a two-parameter map, and an A-anisotropic connec-
tion in a manifold M , with RΛ the curvature operator of it induced covariant
derivative, it holds

RΛ(W ) = Rγ̇s
(γ̇s, β̇t)W, (17)

where Rγ̇s
is the curvature tensor of ∇.

Proof. First observe that by a straightforward computation, one can check
that RΛ is F(I)-multilinear on W , namely given f ∈ F(I), RΛ(fW ) =
fRΛ(W ). Then to check (17) is enough to prove that RΛ((∂i)γs

) = Rγ̇s
(γ̇s, β̇t)

∂i for any partial vector field ∂i. This is also straightforward taking into
account that

d
dt

(
Γk

ij ◦ dΛ
dt

)
=

dΛm

dt

∂Γk
ij

∂xm
◦ dΛ

dt
+

d2Λm

dt2
∂Γk

ij

∂ym
◦ dΛ

dt
,

d
dt

(
Γk

ij ◦ dΛ
dt

)
=

dΛm

ds

∂Γk
ij

∂xm
◦ dΛ

dt
+

d2Λm

dsdt

∂Γk
ij

∂ym
◦ dΛ

dt
,
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parts (i) and (ii) of Def. 2.6 and (14). �
Definition 2.10. Given an auto-parallel curve γ of an A-anisotropic connec-
tion ∇, we say that a vector field J along γ is a Jacobi field if it is the
variational vector field of a variation of γ such that the longitudinal curves
(namely, in the notation above, the curves γs) are auto-parallel curves.

Proposition 2.11. Let ∇ be an A-anisotropic connection in A ⊂ TM \ 0,
being T , P and R, respectively, the torsion, the vertical derivative and the
curvature tensor of ∇. If γ : [a, b] → M is an auto-parallel curve of ∇, Dγ ,
the induced covariant derivative along γ and J , a Jacobi field along γ, then

(Dγ̇
γ )2J = Rγ̇(γ̇, J)γ̇ −Pγ̇(γ̇, γ̇, Dγ̇

γJ +Tγ̇(J, γ̇))− (∇γ̇T )γ̇(J, γ̇)−Tγ̇(Dγ̇
γJ, γ̇).

(18)
In particular, if ∇ is torsion-free and

Pv(v, v, u) = 0 ∀v ∈ A andu ∈ Tπ(v)M, (19)

then
(Dγ̇

γ )2J = Rγ̇(γ̇, J)γ̇. (20)

Proof. Consider a variation Λ : [a, b] × (−ε, ε) → M of γ (with the above
notation) in such a way that γs is an auto-parallel curve for every s ∈ (−ε, ε)
and β̇t(0) = J(t). Then Dγ̇s

γs
γ̇s = 0 and from the definition of RΛ and (17),

we get

0 = Dγ̇s

βt
Dγ̇s

γs
γ̇s = −Rγ̇s

(γ̇s, β̇t)γ̇s + Dγ̇s
γs

Dγ̇s

βt
γ̇s + Pγ̇(γ̇, γ̇, Dγs

βt
γ̇s). (21)

Moreover, taking into account the definition of the torsion T , we get that
Dγ̇s

βt
γ̇s = Dγ̇s

γs
β̇t + Tγ̇s

(β̇t, γ̇s) and then

Dγ̇s
γs

Dγ̇s

βt
γ̇s = (Dγ̇s

γs
)2β̇t + Dγ̇s

γs
(Tγ̇s

(β̇t, γ̇s)). (22)

Furthermore,

Dγ̇s
γs

(Tγ̇s
(β̇t, γ̇s)) = (∇γ̇s

T )γ̇s
(β̇t, γ̇s)+Tγ̇s

(Dγ̇s
γs

β̇t, γ̇s)+(∂νT )γ̇s
(β̇t, γ̇s,D

γ̇s

γ̇s
γ̇s)

(23)
(recall (6) and (9)). Putting together (21)–(23), evaluating in s = 0 and
taking into account that γs is an auto-parallel curve, we easily conclude (18).

�
Definition 2.12. Let ∇ be an A-anisotropic connection in A ⊂ TM \ 0 and
γ : [a, b] → M an auto-parallel curve of ∇. We say that the map

Rγ : X(γ) → X(γ), U → Rγ(U) := Rγ̇(γ̇, U)γ̇ (24)

is the curvature operator of γ.

2.3. Parallel Transport

Given an A-anisotropic connection ∇, there are several ways to transport a
vector field along a curve γ : [a, b] → M considering the covariant derivative
Dγ associated with ∇:

(i) The parallel transport defined by DX
γ X = 0. If the subset A does not

coincide with TM \ 0, this parallel transport could not be defined along
the whole curve, but at least it is defined in an interval of a.
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(ii) The γ-parallel transport defined by Dγ̇
γX = 0, which is always defined

along γ whenever γ is A-admissible, namely, γ̇(t) ∈ A for every t ∈ [a, b].
(iii) The W -parallel transport defined by DW

γ X = 0, which is always defined
along γ whenever W is A-admissible.

Observe that in order to prove that both γ-parallel and W -parallel transports
are always defined along the whole curve γ, it is enough to apply standard
ODE Theory to the equations

Ẋi + Γi
jk(W )γ̇jXk = 0, Ẋi + Γi

jk(γ̇)γ̇jXk = 0, (25)

with i = 1, . . . , n. Instead, the parallel transport is not necessarily defined in
the whole domain of γ, but at least it is defined in some subinterval, as this
time the equations

Ẋi + Γi
jk(X)γ̇jXk = 0, (26)

with i = 1, . . . , n, are not linear.
Recall that one can compute the curvature tensor or the derivation of

any tensor with an A-anisotropic connection in terms of an affine connection
∇V using an arbitrary A-admissible extension V of v (see (9) and (13)). Let
us show that one can always choose a suitable V ∈ X(Ω) (in some open subset
Ω ⊂ M) to simplify computations.

Proposition 2.13. Given an A-anisotropic connection ∇ and a vector v ∈ A,
we can always choose an A-admissible extension V defined in an open subset
Ω ⊂ M , such that

∇v
XV = 0 (27)

for any vector field X ∈ X(Ω). Furthermore, if T ∈ Tr
s(M,A) and X ∈

T1
0(M,A), then (∇XT )v = (∇V

X(TV ))π(v), and the curvature tensor of ∇ can
be computed as

Rv(X,Y )Z = RV
π(v)(X,Y )Z = (∇V

X∇V
Y Z)π(v) − (∇V

Y ∇V
XZ))π(v), (28)

for X,Y,Z ∈ X(Ω) such that [X,Y ] = 0 (the last condition is not necessary
for the first identity), and its derivative as

(∇XR)v(Y,Z)W = (∇V
XRV )π(v)(Y,Z)W − Pv(Z,W,∇V

X∇V
Y V )

+Pv(Y,W,∇V
X∇V

Z V ) (29)

assuming that all the Lie brackets of the vector fields X,Y,Z,W ∈ X(Ω) are
zero.

Proof. To find the extension, choose a chart (Ω, ϕ) in such a way that ϕ(Ω)
is a product of open intervals. Then extend v along the integral curves of
the chart using the parallel transport given by DV

γ V = 0, namely if ϕ(p) =
(x1, . . . , xn), first extend v to a parallel vector field along the curve (a1, b1) �
t → ϕ−1(t, x2, . . . , xn), then to a parallel vector field along (a2, b2) � t →
ϕ−1(s, t, x3, . . . , xn), for every s ∈ (a1, b1) and so on, obtaining a vector field
in Ω. Observe that as the parallel transport is not defined in all the interval,
we may need to reduce Ω. The identity for ∇XT follows directly from (6),
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(9) and (27). The identity (28) follows from (13) and (27), and for (29), use
the identity (∇XT )v = (∇V

X(TV ))π(v) for T = R and observe that
(
∇V

X(PV (Z,W,∇V
Y V ))

)
π(v)

= Pv(Z,W,∇V
X∇V

Y V )

as a consequence of (27). �
Observe that with the choice of V in (27), one has that (∇V

XV )p = 0,
where p = π(v), but the vector field ∇V

XV could not be identically zero away
from p.

2.4. Bianchi Identities

Let us generalize Bianchi identities to arbitrary anisotropic connections.

Proposition 2.14. Let ∇ be an A-anisotropic connection and P , T and R its
vertical derivative, and torsion and curvature tensors, respectively. For every
v ∈ A and u,w, z ∈ Tπ(v)M , we have that Rv(u,w) = −Rv(w, u) and R
satisfies the first Bianchi identity:

∑

cyc:u,w,z

Rv(u,w)z =
∑

cyc:u,w,z

(Tv(Tv(u,w), z) + (∇uT )v(w, z)),

and the second Bianchi identity:
∑

cyc:u,w,z

(
(∇uR)v(w, z)b − Pv(w, b,Rv(u, z)v) + Rv(Tv(u,w), z)b

)
= 0.

Here
∑

cyc:u,w,z denotes the cyclic sum in u,w, z.

Proof. Consider extensions X,Y,Z,W of u,w, z, b, respectively, in such a
way that its Lie brackets are zero and an extension V of v satisfying (27).
Recall that RV satisfies the Bianchi identities (see for example [6, Th. 5.3]).
Moreover, observe that with our choice of V , ∇V

X(TV )π(v) = (∇XT )v (recall
Prop. 2.13) and it holds (28) and (29). Making the cyclic sum, one easily
concludes the second Bianchi identity. �

Finally, we will give the vertical Bianchi identity.

Proposition 2.15. Let ∇ be an A-anisotropic connection and P , T and R its
vertical derivative and torsion and curvature tensors, respectively. For every
v ∈ A and u,w, z, b ∈ Tπ(v)M ,

(∂νR)v(u,w, z, b) = (∇uP )v(w, z, b) − (∇wP )v(u, z, b) + Pv(Tv(u,w), z, b)
−Pv(w, z, Pv(u, v, b)) + Pv(u, z, Pv(w, v, b)). (30)

Proof. Let V,X, Y, Z,W be vector fields extensions of v, u, w, z, b with V ,
A-admissible satisfying (27), and such that the Lie brackets of X,W,Z, Y
cancel. Then

d
dt

∣∣∣∣
t=0

(∇V +tW
X ∇V +tW

Y Z)π(v) =∇v
X(PV (Y,Z,W )) + Pv(X,∇V

Y Z,W )

=(∇XP )v(Y,Z,W ) + Pv(∇V
XY,Z,W )

+ Pv(Y,∇V
XZ,W ) + Pv(Y,Z,∇V

XW )

+ Pv(X,∇V
Y Z,W )
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and

d
dt

∣∣∣∣
t=0

Pv+tw(Y,Z,∇V +tW
X (V + tW )) = Pv(Y,Z, PV (X,V,W ))

+Pv(Y,Z,∇V
XW ).

Taking into account the above identities together with the ones obtained by
interchanging X and Y in those identities and replacing the four identities
in the definition of ∂νR, after much cancellation, one concludes (30). �

2.5. Comparison of the Curvature Tensors

Observe that given two different A-anisotropic connections ∇̂ and ∇ defined
in the same open subset A ⊂ TM , their difference is an A-anisotropic tensor
defined as

Qv(X,Y ) = ∇̂v
XY − ∇v

XY, (31)

for any X,Y ∈ X(M). Let us relate the curvature tensors of both connections.

Proposition 2.16. Let R̂, R be the curvature tensors associated with ∇̂ and
∇, respectively, and u,w, z ∈ Tπ(v)M . Then

R̂v(u,w)z = Rv(u,w)z − Pv(w, z,Qv(u, v)) + Pv(u, z,Qv(w, v)) + Q′
v(u,w)z,(32)

where

Q′
v(u,w)z = (∇uQ)v(w, z) − (∇wQ)v(u, z) + Qv(T (u,w), z)
+∂νQv(u, z,Qv(w, v)) − ∂νQv(w, z,Qv(u, v)) (33)

+Qv(u,Qv(w, z)) − Qv(w,Qv(u, z)). (34)

Proof. Let V,X, Y, Z be local extensions of v, u, w, z, respectively, being V ,
A-admissible. We can assume that [X,Y ] = 0, and V satisfies (27) for the
connection ∇̂. Then ∇v

XV = −Qv(X,V ) and ∇v
Y V = −Qv(Y, V ). It follows

that

R̂v(X,Y )Z = (∇̂V
X∇̂V

Y Z − ∇̂V
Y ∇̂V

XZ)π(v). (35)

Moreover,

∇̂V
X∇̂V

Y Z = ∇̂V
X(∇V

Y Z + QV (Y,Z))

= ∇V
X∇V

Y Z + QV (X,∇V
Y Z) + ∇V

X(QV (Y,Z)) + QV (X,QV (Y,Z)).
(36)

Analogously,

∇̂V
Y ∇̂V

XZ = ∇V
Y ∇V

XZ + QV (Y,∇V
XZ) + ∇V

Y (QV (X,Z)) + QV (Y,QV (X,Z)).
(37)

We also have that
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(∇V
X(QV (Y,Z)))π(v) = (∇XQ)v(Y,Z) + Qv(∇V

XY,Z) + Qv(Y,∇V
XZ)

+∂νQv(Y,Z,−QV (X,V )), (38)

(∇V
Y (QV (X,Z)))π(v) = (∇Y Q)v(X,Z) + Qv(∇V

Y X,Z) + Qv(X,∇V
Y Z)

+∂νQv(X,Z,−QV (Y, V )), (39)

and

Rv(X,Y )Z = (∇V
X∇V

Y Z − ∇V
Y ∇V

XZ)π(v)

−Pv(Y,Z,−QV (X,V )) + Pv(X,Z,−QV (Y, V )). (40)

Using successively in (35), the identities (36)–(40), we finally get (32). �

Corollary 2.17. Given two A-anisotropic connections with a difference tensor
Qv which satisfies Qv(u, v) = 0 for every v ∈ A and u ∈ Tπ(v)M , then

R̂v(u,w)z = Rv(u,w)z + (∇uQ)v(w, z) − (∇wQ)v(u, z) + Qv(T (u,w), z)
+Qv(u,Qv(w, z)) − Qv(w,Qv(u, z)) (41)

and R̂v(u,w)v = Rv(u,w)v for any v ∈ A and u,w, z ∈ Tπ(v)M .

Proof. The identity (41) follows straightforwardly from (32). For the identity
R̂v(u,w)v = Rv(u,w)v, we only need to use (41) observing that (∇uQ)v(w, v)
= 0. In order to check this, consider local extensions X,Y, V of u,w, v, re-
spectively, with V , A-admissible satisfying (27), and apply definitions. �

Proposition 2.18. Let ∇ be a torsion-free A-anisotropic connection with ver-
tical derivative satisfying (19), and ∇̂ any other torsion-free A-anisotropic
connection with difference tensor (31) with respect to ∇ satisfying

Qv(v, u) = 0, ∀v ∈ A and u ∈ Tπ(v)M. (42)

Then
(i) for every v ∈ A and u,w ∈ Tπ(v)M , the vertical derivative of Q satisfies

that
∂νQv(v, u, w) = −Qv(w, u), (43)

(ii) the vertical derivative of ∇̂ satisfies (19),
(iii) ∇̂ has the same curvature operator (recall Def. 2.12) and the same Ja-

cobi equation (20) as ∇.

Proof. Observe that for any vector field J along γ, (D̂γ̇
γ )2J = (Dγ̇

γ )2J be-
cause of condition (42), where D̂γ and Dγ are the A-anisotropic covariant
derivatives along γ induced by ∇̂ and ∇, respectively. Moreover, using that
Qv+tw(v + tw, u) = 0 for every t ∈ R and computing the derivative with
respect to t, we get (43). If P̂ is the vertical derivative of ∇̂, then using (43)
and (42), we get

P̂v(v, v, u) = Pv(v, v, u) + ∂νQv(v, v, u) = −Qv(u, v) = −Qv(v, u) = 0.

Here, we have also used that Q is symmetric, because ∇ and ∇̂ are both
torsion-free. This implies that the Jacobi equation for ∇̂ is of the form (20),
and using the last statement of Cor. 2.17, we conclude (iii). �
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3. Distinguished Connections

In this section, we will study a family of A-anisotropic connections which are
suitable to study the geometry of pseudo-Finsler metrics. Let A ⊂ TM \0 be
an open conic subset, namely an open subset of TM satisfying that for every
v ∈ A and λ > 0 we have that λv ∈ A. We define a pseudo-Finsler metric
on A as a smooth, positive two-homogeneous function L : A ⊂ TM \ 0 → R,
such that its fundamental tensor defined as

gv(u,w) :=
1
2

∂2

∂t∂s
L(v + tu + sw)|t=s=0 (44)

for every v ∈ A and u,w ∈ Tπ(v)M , is non-degenerate. The Cartan tensor
associated with L is defined as

Cv(w1, w2, w3) :=
1
4

∂3

∂s3∂s2∂s1
L

(
v +

3∑

i=1

siwi

)∣∣∣∣∣
s1=s2=s3=0

. (45)

Recall that Cv is symmetric and, by homogeneity, one has that Cv(v, u, w) =
Cv(u, v, w) = Cv(u,w, v) = 0 for any v ∈ A and u,w ∈ Tπ(v)M . In this con-
text, it is possible to define a Levi-Civita A-anisotropic connection, namely a
torsion-free A-anisotropic connection ∇ such that ∇g = 0, where g is the fun-
damental tensor. This connection can be identified with the Chern connection
(see [12, Eqs. (7.20) and (7.21)] and [4, Sects. 4.1 and 4.4]), so we will refer to
it sometimes as the Levi-Civita–Chern connection. Moreover, the curvature
tensor of this connection has some symmetric properties with respect to the
fundamental tensor of the pseudo-Finsler metric. These symmetries can also
be found in [1, Sect. 3.4A].

Proposition 3.1. Let (M,L) be a pseudo-Finsler manifold and ∇, its Levi-
Civita–Chern connection. Then the curvature tensor R associated with ∇
satisfies the symmetries:

gv(Rv(u,w)z, b) + gv(Rv(u,w)b, z) = 2Cv(Rv(w, u)v, z, b) (46)

and

gv(Rv(u,w)z, b) − gv(Rv(z, b)u,w)
= Cv(Rv(w, z)v, u, b) + Cv(Rv(z, u)v, w, b) + Cv(Rv(u, b)v, z, w)
+Cv(Rv(b, w)v, z, u) + Cv(Rv(z, b)v, u, w) + Cv(Rv(w, u)v, z, b).

(47)

Proof. Let V,X, Y, Z,W be local extensions of v, u, w, z, b, respectively, being
V , A-admissible and satisfying (27). Then using [2, Prop. 3.1], we easily
conclude (46) and (47), because in this case RV (X,Y )Z = RV (X,Y )Z. �

3.1. Torsion-Free A-Anisotropic Connections and Pseudo-Finsler Metrics

Assume that ∇̂ is a torsion-free A-anisotropic connection, (M,L) is a pseudo-
Finsler manifold as above and define Q as the A-anisotropic tensor

Qv(u,w, z) = (∇̂ug)v(w, z) (48)
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for every v ∈ A and u,w, z ∈ Tπ(v)M . Then the A-anisotropic connection ∇̂
satisfies a Koszul type formula:

2gv(∇̂V
XY,Z) = Xπ(v)(gV (Y,Z)) − Zπ(v)(gV (X,Y )) + Yπ(v)(gV (Z,X))

+gv([X,Y ], Z) + gv([Z,X], Y ) − gv([Y,Z],X)

2(−Cv(Y,Z, ∇̂V
XV ) − Cv(Z,X, ∇̂V

Y V ) + Cv(X,Y, ∇̂V
Z V ))

−Qv(Y,Z,X) − Qv(Z,X, Y ) + Qv(X,Y,Z), (49)

where V is an A-admissible local extension of v ∈ A and X,Y,Z are arbitrary
vector fields. This expression can be obtained as the Koszul formula for the
Chern connection using that ∇̂ is torsion-free and

(∇̂ug)v(w, z) = Xπ(v)(gV (Y,Z)) − gv(∇̂V
XY,Z) − gv(Y, ∇̂V

XZ)

− 2Cv(Y,Z, ∇̂V
XV ),

recall [4, Sect. 4.1].

Proposition 3.2. Given a pseudo-Finsler manifold (M,L) on a conic open
subset A ⊂ TM \0 and an A-anisotropic tensor Q, there is a unique torsion-
free A-anisotropic connection ∇̂ satisfying (48). Moreover, if Q is symmetric,
then ∇̂ = ∇− 1

2Q�, where ∇ is the Chern connection of L and the tensor Q�

is determined by gv(Q�
v(u,w), z) = Qv(u,w, z).

Proof. For the first statement, observe that the Koszul formula when X =
Y = V , being V an arbitrary extension of v, reduces to

2gv(∇̂V
V V,Z) = 2v(gV (V,Z)) − Zπ(v)(gV (V, V )) + 2gv([Z, V ], V )

−Qv(V,Z, V ) − Qv(Z, V, V ) + Qv(V, V, Z),

and when Y = V ,

2gv(∇̂V
XV,Z) = Xπ(v)(gV (V,Z)) − Zπ(v)(gV (X,V )) + v(gV (Z,X))

+gv([X,V ], Z) + gv([Z,X], V ) − gv([V,Z],X)

−2Cv(Z,X, ∇̂V
V V ) − Qv(V,Z,X) − Qv(Z,X, V ) + Qv(X,V,Z). (50)

Therefore, ∇̂V
V V and ∇̂V

XV are determined and then (49) completely deter-
mines ∇̂V

XY . Moreover, from (49) and (50), it is not difficult to prove that
∇̂ must satisfy the properties (i)–(iii) in Def. 2.2 and it is F(M)-linear in
X. The relation ∇̂ = ∇ − 1

2Q� follows easily taking into account the Koszul
formulae for ∇̂ and ∇. �

Remark 3.3. It is well-known that geodesics of a pseudo-Finsler metric are
the auto-parallel curves of the Levi-Civita–Chern connection ∇. Then an
A-anisotropic connection ∇̂ as above has the same auto-parallel curves (in-
cluding the parametrization) as ∇ if and only if Q�

v(v, v) = 0 for every v ∈ A.

From now on, we will fix a symmetric A-anisotropic tensor Q satisfying
that Qv(v, u, w) = 0 for every v ∈ A and u,w ∈ Tπ(v)M and will denote by
∇̂ the A-anisotropic connection ∇̂ associated with Q, which is determined by

∇̂g = Q, (51)
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(see Prop. 3.2). Observe that by the above Remark, ∇̂ and ∇ have the same
auto-parallel curves, because the property Qv(v, u, w) = 0 implies that the
difference tensor 1

2Q� satisfies that 1
2Q�

v(v, u) = 0 for all v ∈ A and u ∈
Tπ(v)M . Let us see that we can obtain formulas for the variations of the
energy with such connections, but before we need some technical results.

Lemma 3.4. Let ∇ be the Chern connection and ∇̂ and Q as in (51), with R̂

the curvature tensor of ∇̂. Then for v ∈ A and u,w, z ∈ Tπ(v)M , one has

(i) (∇uQ�)v(v, w) = (∇uQ�)v(w, v) = 0,
(ii) gv(Q�

v(u,w), v) = gv((∇uQ�)v(w, z), v) = 0,
(iii) gv(Rv(u,w)z, v) = gv(R̂v(u,w)z, v),
(iv) gv(R̂v(u,w)z, v) = −gv(R̂v(u,w)v, z).

Proof. For (i) and (ii) use the properties of Q and an extension V of v sat-
isfying (27). In particular, for the last identity in part (ii) use the almost-
compatibility with the metric of the Chern connection. Part (iii) is a con-
sequence of part (ii) and Cor. 2.17. For part (iv), use Cor. 2.17, which in
particular implies that gv(R̂v(u,w)v, z) = gv(Rv(u,w)v, z). Putting together
the last identity with part (iii) and taking into account (46), which implies
that gv(Rv(u,w)z, v) = −gv(Rv(u,w)v, z), we conclude.

Recall that the Berwald connection ∇̃ is defined for a spray. Indeed, the
Christoffel symbols of the Berwald connection are computed as the second
derivatives of the coefficients of the spray. Moreover, a pseudo-Finsler metric
determines a spray (see [12]) and then an anisotropic Berwald connection (see
[4, Def. 22]). The Berwald tensor B is defined as the vertical derivative of ∇̃,
(see (6.4) in [12]) and the Chern tensor P as the vertical derivative of ∇ (see
(7.23) in [12], where it has the opposite sign). As ∇̃ and ∇ are torsion-free,
B and P are symmetric in the first two components, and by homogeneity, it
follows that Bv(u,w, v) = Pv(u,w, v) = 0. Furthermore, the Berwald tensor
is symmetric, and then

Bv(v, u, w) = Bv(u, v, w) = Bv(u,w, v) = 0. (52)

Finally, the Landsberg curvature of a pseudo-Finsler metric L is defined as

Lv(u,w, z) =
1
2
gv(Bv(u,w, z), v) (53)

(see (6.25) in [12, Def. 6.2.1] where it has the opposite sign). From (52), it
follows that

Lv(v, u, w) = Lv(u, v, w) = Lv(u,w, v) = 0. (54)

With these definitions, we can write down the difference tensor between the
Chern and Berwald connections as

∇v
XY − ∇̃v

XY = L�
v(X,Y ), (55)

for any X,Y ∈ X(M), where L� is determined by gv(L�
v(u,w), z) = Lv(u,w, z)

(see (7.17) in [12] and observe that the notation for the Chern and Berwald
connections is changed).
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Lemma 3.5. Given a pseudo-Finsler metric L, the vertical derivative of its
Chern connection satisfies (19).

Proof. Observe that the Berwald connection is torsion-free and its vertical
derivative satisfies (19) (it follows from (52)). Moreover, the difference tensor
between the Chern connection ∇ and the Berwald connection ∇̃ is L� (see
(55)) and L�

v(v, u) = 0 for every v ∈ A and u ∈ Tπ(v)M (it follows from (54)).
By part (ii) of Prop. 2.18, the vertical derivative of the Chern connection also
satisfies (19). �

Recall that given a pseudo-Finsler metric L : A → R, for every v ∈ A,
one can define the flag curvature Kv : Tπ(v)M → R using one of the classical
linear connections. In particular, when the Chern connection is considered as
an A-anisotropic connection, then the flag curvature is expressed in terms of
its associated curvature tensor as

Kv(w) =
gv(Rv(v, w)w, v)

gv(w,w)L(v) − gv(v, w)2
,

where g is the fundamental tensor of L and w ∈ Tπ(v)M . One way to check
this formula is by observing that the (non-null) Christoffel symbols of the
Chern connection in [1, Eq. (2.4.9)] as a linear connection coincide with the
Christoffel symbols of the A-anisotropic Chern connection, and then the flag
curvature in [1, Sect. 3.9A] coincides with the one given above (use (14) to
check this). By part (iv) of Lemma 3.4, the flag curvature can also be obtained
with any of the distinguished A-anisotropic connections ∇̂ defined in (51),
replacing in the above formula R by R̂.

Proposition 3.6. Given a pseudo-Finsler manifold (M,L) on A, the torsion-
free A-anisotropic connection ∇̂ satisfying (51) determines the same flag cur-
vature, the same Jacobi operator and the same Jacobi equation (20) and its
vertical derivative satisfies (19) as the Levi-Civita–Chern connection. More-
over, the vertical derivative P̂ of ∇̂ satisfies also that

gv(P̂v(v, u, w), v) = 0, (56)

for every v ∈ A and u,w ∈ Tπ(v)M .

Proof. By Lemma 3.5, the vertical derivative of the Levi-Civita–Chern con-
nection satisfies (19). Then we can apply parts (ii) and (iii) of Prop. 2.18 and
part (iii) of Lemma 3.4, which concludes all the claims except (56). To prove
(56), observe that using (55), one gets

P̂v(z, u, w) = Bv(z, u, w) + (∂νL�)v(z, u, w) + (∂νQ�)v(z, u, w).

Applying part (i) of Prop. 2.18 to L� and Q� and using (52) and (54), one
easily concludes (56) from the last identity. �

Remark 3.7. Let us observe that the four classical connections provide A-
anisotropic connections which are distinguished. More precisely,

(i) to define the A-anisotropic connection ∇v
XY using a classical linear con-

nection ∇c on the vertical fiber bundle, one has to make the derivative
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with respect to the horizontal lift XH of X, where the horizontal sub-
bundle is the classical one for a Finsler metric (see [1, Pag. 35]), namely
∇v

XY = ∇c
XHY . Here we consider Y ∈ X(M) ⊂ T 1

0 (M,A) or Y ≡ Y V ,
being Y V the vertical lift of Y .

(ii) It turns out that the Chern and Cartan connections induce the Levi-
Civita–Chern A-anisotropic connections, while the Hashiguchi and Ber-
wald connections give the A-anisotropic Berwald connection. In the case
of the Chern and Berwald connections, this relation is stronger as the
classical linear connections are semi-basic, namely , the derivatives with
respect to vectors tangent to the vertical subbundle are zero. As a con-
sequence, the non-null Christoffel symbols of the classical connections
and its A-anisotropic versions coincide. For more details about the re-
lations between derivatives and curvatures see [4, Sect. 4.4] and for a
detailed study of classical linear connections, see [7,8].

(iii) It is very easy to generate a large amount of distinguished A-anisotropic
connections from the Levi-Civita–Chern connection taking as a tensor
Q combinations of the Landsberg and Cartan tensors fL + hC, with
arbitrary f, h ∈ F(A). Observe that if f and h are not positively ho-
mogeneous of degree zero, then the A-anisotropic connection will not
be homogeneous of degree zero in v, but it is easy to see that its auto-
parallel curves are the geodesics of the pseudo-Finsler metric affinely
parametrized.

(iv) As we have seen above, this class of distinguished A-anisotropic con-
nections allows us to compute the flag curvature of a pseudo-Finsler
in a simple way. As we will see in the next section, they also provide
suitable formulas for the first and second variation and for Jacobi fields
(see Prop. 3.6). It remains to be investigated which of these connections
are more suitable to study certain classes of pseudo-Finsler manifolds.
For example, it seems that the Berwald connection has in some sense
better properties to study constant flag curvature manifolds than the
Chern one.

3.2. The Variations of the Energy Functional

Given a pseudo-Finsler manifold (M,L) on A, we will denote by CA(M, [a, b])
the space of A-admissible piecewise smooth curves and for any A-admissible
piecewise smooth curve γ : [a, b] ⊂ R → M , let us define the energy functional
as

E(γ) =
1
2

∫ b

a

L(γ̇)ds. (57)

Recall that if P is a submanifold of M , we say that a vector v with π(v) ∈ P is
orthogonal to P if gv(v, w) = 0 for all w ∈ Tπ(v)P. Then a vector field N along
P, namely a smooth map N : P → TM , such that π ◦ N is the identity, is
said to be orthogonal if Np is an orthogonal vector for every p ∈ P. We define
the second fundamental form of P in the direction of the orthogonal vector
field N computed with the A-anisotropic connection ∇̂ (whenever P is non-
degenerate with the metric gN ) as the tensor ŜP

N : X(P) × X(P) → X(P)⊥
N



MJOM Curvature Computations in Finsler Geometry... Page 19 of 21 123

given by ŜP
N (U,W ) = norN∇̂N

U W , where norN is computed with the metric
gN , and X(P)⊥

N is the space of gN -orthogonal vector fields to P.

Proposition 3.8. Let ∇̂ be any torsion-free A-anisotropic connection satisfy-
ing (51), D̂γ , its associated covariant derivative along a piecewise smooth
curve γ : [a, b] → M and Λ, an A-admissible piecewise smooth variation of
γ. Then we have the first variation formula

E′(0) :=
d(E(γs))

ds

∣∣∣∣
s=0

= −
∫ b

a

gγ̇(W, D̂γ̇
γ γ̇) dt + gγ̇(W, γ̇)|ba

+
h∑

i=1

(
LL(γ̇(t+i ))(W (ti)) − LL(γ̇(t−i ))(W (ti))

)
,

(58)

where γ̇(t+i ) (resp. γ̇(t−i )), i = 1, . . . , h, denotes the right (resp. left) veloc-
ity at the breaks a < t1 < · · · < th < b, and LL(v)(w) = gv(v, w) is the
Legendre transform. Moreover, if γ is a geodesic which is orthogonal to two
submanifolds P and P̃ at the endpoints and such that gγ̇(a)|P×P and gγ̇(b)|P̃×P̃
are nondegenerate, consider a smooth A-admissible (P, P̃)-variation (all the
curves in the variation start in P and end in P̃). Then

E′′(0) =
∫ b

a

(
−gγ̇(R̂γ̇(γ̇,W )W, γ̇) + gγ̇(D̂γ̇

γW, D̂γ̇
γW )

)
dt

+gγ̇(b)(ŜP
γ̇(b)(W,W ), γ̇(b)) − gγ̇(a)(ŜP̃

γ̇(a)(W,W ), γ̇(a)),

where W is the variational vector field of the variation along γ.

Proof. The formulas can be obtained for example as in [5, Prop. 3.1 and 3.2
and Cor. 3.8] with one exception, since in [5, Prop. 3.2], gγ̇(R̂γ̇(γ̇,W )W, γ̇) is
replaced with gγ̇(R̂γ(γ̇,W )W, γ̇). Observe that from (56), t follows that

gγ̇(R̂γ̇(γ̇,W )W, γ̇) = gγ̇(R̂γ(γ̇,W )W, γ̇),

(recall that R̂γ coincides with R̂Λ defined just before (17) without the P -
terms), which concludes. �

3.3. The Osculating Metric

If we fix a vector field V in an open subset Ω ⊂ M , then we can consider the
osculating metric gV and its Levi-Civita connection ∇. Let us compare now
both connections. In the particular case of the Chern connection, this can be
found for example in [12, Prop. 8.4.3].

Proposition 3.9. Given an A-admissible vector field V ∈ X(Ω), with Ω an
open subset of a manifold M , and a pseudo-Finsler metric L : A → R, let ∇
be the Levi-Civita connection of gV and ∇̂ satisfying (51). Then

gV (∇̂V
XY − ∇XY,Z) = −CV (Y,Z, ∇̂V

XV ) − CV (Z,X, ∇̂V
Y V )

+CV (X,Y, ∇̂V
Z V ) − 1

2
QV (X,Y,Z).
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In particular,

gV (∇̂V
XV − ∇XV,Z) = −CV (Z,X, ∇̂V

V V ),

gV (∇̂V
V X − ∇V X,Z) = −CV (X,Z, ∇̂V

V V ),

gV (∇̂V
XY − ∇XY, V ) = CV (X,Y, ∇̂V

V V ).

When V is a geodesic vector field, then ∇̂V
XV = ∇XV , ∇̂V

V X = ∇V X and

R̂V (V,X)V = R(V,X)V,

where R̂ and R are the curvature tensors associated with ∇̂ and ∇, respec-
tively.

Proof. The formulas for the difference between ∇̂ and ∇ are a consequence
of the Koszul formula (49). For the equality between the curvature tensors,
observe that as the vertical derivative of ∇̂ satisfies (19), then using that V

is a geodesic vector field and the relations between ∇̂ and ∇, it follows that

R̂V (V,X)V = ∇̂V
V ∇̂V

XV − ∇̂V
[X,V ]V = R̄(V,X)V.

�
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