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Certain Conditions on the Potential Vector
Field
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Abstract. In this paper we study Riemannian manifolds (Mn, g) admit-
ting an m-quasi-Einstein metric with V as its potential vector field. We
derive an integral formula for compact m-quasi-Einstein manifolds and
prove that the vector field V vanishes under certain integral inequality.
Next, we prove that if the metrically equivalent 1-form V � associated
with the potential vector field is a harmonic 1-form, then V is an in-
finitesimal harmonic transformation. Moreover, if M is compact then it
is Einstein. Some more results were obtained when (i) V generates an
infinitesimal harmonic transformation, (ii) V is a conformal vector field.
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1. Introduction

In the recent years, Einstein metrics and several of their generalizations
[1] have received a lot of importance in geometry and physics. These are
Ricci solitons, Ricci almost solitons, m-quasi-Einstein metrics and general-
ized quasi-Einstein metrics. Ricci solitons have been extensively studied, also
because of their connection with the study of the Ricci flow. A Ricci soliton is
a Riemannian manifold (Mn, g) together with a vector field V that satisfies

£V g + 2S = 2λg,

where £V denotes the Lie-derivative operator along a vector field V , and S
the Ricci tensor of g and λ a constant. It is said to be trivial (Einstein) if
either V = 0, or V is Killing. This is said to be a gradient Ricci soliton if
V = Df , for some smooth function f on M , where D is the gradient operator.
For details about Ricci soliton, we refer to [2].

Generalizing the notion of gradient Ricci soliton, Case et al. [3] intro-
duced the notion quasi-Einstein metric. This is closely related to the warped
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product spaces (see [1]) and appears from the m-Bakry-Emery Ricci tensor
Sm

f , defined by (see [4])

Sm
f = S + ∇2f − 1

m
df ⊗ df.

A Riemannian manifold M together with a Riemannian metric g is said to
quasi-Einstein respect to the function f and the constant m if Sm

f = λg, i.e.,
if its Ricci tensor S satisfies

S + ∇2f − 1
m

df ⊗ df = λg, (1.1)

where λ is a constant, 0 < m ≤ ∞ and ∇2f denotes the Hessian tensor of the
smooth function f on M . This also appears from the warped product of the
base of an (n + m)-dimensional Einstein manifold (see [5]). If λ is a smooth
function in the defining condition (1.1), then it is known as generalized m-
quasi-Einstein. For more details we refer to [6–8]). Equation (1.1) reduces to
the usual Einstein condition when f is constant. Moreover, when m = ∞
it reduces to exactly the gradient Ricci soliton [2]. Thus, Eq. (1.1) can be
regarded as a generalization of gradient Ricci soliton. In [3], several results
were proved extending rigidity results for gradient Ricci solitons presented
by Petersen–Wylie [9].

Recently, Nurowski and Randall [10] extended the notion of Ricci soliton
by introducing a class of overdetermined system of equations

£V g = 2αS − 2βV � ⊗ V � + 2λg.

on pseudo-Riemannian manifolds (Mn, g) for some vector field V and some
real constants α, β and λ, where V � is a 1-form associated with V . In this
paper, we consider a particular type of generalized Ricci soliton, called m-
quasi-Einstein metric, studied first by Limoncu [11] (see also [12]). This also
arises as a generalization of the quasi-Einstein metric [3], by taking the 1-form
V � instead of df in the defining Eq. (1.1). Explicitly, this can be presented
as

S +
1
2
£V g − 1

m
V � ⊗ V � = λg, (1.2)

where £V denotes the Lie-derivative operator along a vector field V , known
as potential vector field. A Riemannian manifold M satisfying Eq. (1.2) is
said to be a m-quasi-Einstein manifold and along the manuscript is denoted
by (Mn, V, g). Using the terminology of Ricci soliton, an m-quasi-Einstein
metric is said to be expanding, steady or shrinking, respectively, if λ < 0,
λ = 0, or λ > 0. If V = 0, Eq. (1.2) simply reduces to the Einstein condition
and in this case, we say that the m-quasi-Einstein metric is trivial. It is also
interesting to remark that if the potential vector field V is the gradient of
a smooth function f , then Eq. (1.2) reduces to the quasi-Einstein condition,
as defined by Eq. (1.1). It may be also mentioned that the study of Eq.
(1.1) depends mostly on the behavior of the potential function f , whereas
the study of (1.2) only depends on the potential vector field V . Moreover, we
remark that if V is Killing (or conformal Killing [12]), the m-quasi-Einstein
metric is not trivial like Ricci soliton. Further, it is interesting to note that
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Eq. (1.2) reduces to the so called Ricci soliton when m = ∞. For this reason,
one may consider that a Riemannian manifold M with an m-quasi-Einstein
metric g is a direct generalization of the Ricci soliton and as well as gradient
Ricci soliton. In [11], Limoncu first studied Eq. (1.2) to generalize Qian’s [13]
results, which were the natural generalization of Myers’ compactness theorem
on Riemannian manifolds [14]. Recently, the author studies m-quasi-Einstein
metrics within the framework of contact metric manifolds [15]. In the present
paper, we study Eq. (1.2) under some conditions on the potential vector field
V and the scalar curvature.

The organization of this paper is as follows. In Sect. 2, we recall basic
definitions of rough Laplacian, infinitesimal harmonic transformations and
harmonic vector fields. Section 3 has been devoted to derive several non
trivial examples of m-quasi-Einstein metric. In Sect. 4, we have proved an
integral formula for compact m-quasi-Einstein Riemannian manifolds and we
extend a result of Barros–Gomes [16]. In Sect. 5, we have studied m-quasi-
Einstein metric when the 1-form V � is harmonic. In this case, V generates an
infinitesimal harmonic transformation. Next, we prove that if the potential
vector field V generates an infinitesimal harmonic transformation on a com-
pact m-quasi-Einstein manifold M , then V is Killing and the Ricci tensor S
is a Killing tensor, i.e., cyclic parallel. Finally, we consider m-quasi-Einstein
metric when the potential vector field is conformal Killing and the scalar
curvature is constant.

2. Preliminaries

Let (Mn, g) be a Riemannian manifold and consider a diffeomorphism f :
M → M . Let ∇′

be the pull-back connection of the Levi–Civita connection
∇ of (Mn, g) by f . If we have traceg(∇′ − ∇) = 0, then f is said to be
harmonic (see for instance [17].

Next, consider a vector field V and let {ft} be any local 1-parameter
group of transformations of V . Using each ft as previously we can define a
connection ∇t from ∇. Thus, we arrive to the Lie-derivative ∇ with respect
to V , £V ∇. We say that V is an infinitesimal harmonic transformation if
traceg(£V ∇) = 0 (see [17,18]). An interesting characterization of such vector
field was given by Stepanov–Shandra in [17]. They proved that

“A vector field V generates an infinitesimal harmonic transformation
on a Riemannian manifold (Mn, g) if and only if ΔV = 2QV ”.

The operator Δ is known as the Laplacian and it is determined by the
Weitzenböck formula

ΔV = ∇∗∇V + QV,

where ∇∗ is the formal adjoint of ∇, given by Δ̄V = ∇∗∇V and Q is the Ricci
operator associated with the Ricci tensor S. The operator Δ̄ is known as the
rough Laplacian of vector field V , and is defined by Δ̄V = −traceg∇2V. Ex-
plicitly, if {ei} be any local orthonormal frame field, then the rough Laplacian
of the vector field is defined by
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Δ̄V =
∑

i

{∇∇ei
ei

− ∇ei
∇ei

}V. (2.1)

The following examples are well-known for infinitesimal harmonic transfor-
mations:

• Any Killing vector field on a Riemannian manifold generates an infini-
tesimal harmonic transformation (see [17]).

• The potential vector field V of the Ricci soliton is necessarily an infini-
tesimal harmonic transformation (see [19]).

• Since the Reeb vector field ξ of a K-contact manifold is Killing, it gen-
erates an infinitesimal harmonic transformation (see [20]).

• Let (M, g, J) be a nearly Kaehlerian manifold, where J2 = −I, g(J, J) =
g and (∇XJ)Y +∇Y J)X = 0 for any vector field X,Y on M and let V
be a vector field on M such that £V J = 0 (i.e., holomorphic). Then V
is necessarily an infinitesimal harmonic transformation (see [17]).

• Any vector field V on a contact metric manifold M2n+1(ϕ, ξ, η, g) that
leaves the tensor ϕ invariant (i.e., £V ϕ = 0) is necessarily an infinitesi-
mal harmonic transformation (see [21]).

To end this section, recall that a vector field V , on a Riemannian manifold
(Mn, g) it is said to be harmonic if the associated 1-form V � is closed and
co-closed, i.e., dV � = 0 and δV � = 0, respectively (see for instance [22]).
Thus, a harmonic vector field V satisfies ΔV = 0, and the converse is true
for compact case. We denote the divergence of a along the manuscript as div
and define the divergence of a vector field V as div V =

∑n
i=1 g(∇ei

V, ei).

3. Some Examples

Example 3.1. We consider the hyperbolic space H
n given by R × R

n−1 with
the warped product metric g = dt2 + e2tg0, where g0 is the standard metric
of Rn−1. Let us define a function f : Hn → R given by f(t) = mt, where m is
a positive integer. Then it is easy to verify that (Hn, g,Df, λ = −m − n + 1)
is an expanding gradient m-quasi-Einstein manifold [23].

Example 3.2. Let us consider the Berger sphere (S3, gk,σ), where
S
3 = {(z, w) ∈ C

2 : |z|2 + |w|2 = 1} and gk,σ = 4
k{g0 + (4σ2

k − 1)U � ⊗ U �},
g0 stands for the usual Riemannian metric on S

3, k > 0, σ �= 0 are con-
stants and U is the Killing vector on S

3. For each (z, w) ∈ S
3 given by

U(z, w) = (iz, iw). Set E3 = k
4σ U , which is also Killing. Then we can deduce

(S3, V =
√

m(4σ2 − k)E3, λ = k − 2σ2) is a non gradient m-quasi-Einstein
manifold. For details we refer to [16,24].

Some more non gradient examples can be found in [15]. In our next
examples, we prove that there exists an m-quasi-Einstein metric on certain
product manifolds whose potential vector field is parallel but not vanishes
anywhere.

Example 3.3. Let M2n+1(ϕ, ξ, η, g) be an almost contact metric manifold and
consider the product manifold M2n+1 × R. Let J be the almost complex
structure on M2n+1 × R defined by
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J

(
X, f

d
dt

)
=

(
ϕX − fξ, η(X)

d
dt

)
,

where X is tangent to M2n+1, f a smooth function on M2n+1 ×R and t the
coordinate on R. Then (J,G) induces an Hermitian structure on the product
manifold M2n+1 × R with the product metric G = g + dt2. If one assumes
that this structure is Kaehler, then M2n+1(ϕ, ξ, η, g) becomes a cosymplectic
manifold [25].

One may also construct such structure through the product of a Kaehler
manifold N2n(J,G) and the real line R. If t denotes the coordinate of R and
X be any vector field of N , then any vector field of M = N ×R can be written
as (X, f d

dt ). Define a tensor field ϕ of type (1, 1) by ϕ(X, f d
dt ) =: (JX, 0), a

1-form η =: dt, a vector field ξ =: d
dt and a Riemannian metric g = G + dt2.

Then it follows that (ϕ, ξ, η, g) defines a cosymplectic structure on M2n+1

[26,27].
A cosymplectic manifold M whose ϕ-sectional curvature does not de-

pend on the point is called cosymplectic space form and we denote it by
M(c). A straight forward computation shows that a cosymplectic manifold
has constant ϕ-sectional curvature c at a point if and only if the curvature
tensor R is given by [25].

R(X,Y )Z =
c

4
{g(Y,Z)X − g(X,Z)Y + η(X)η(Z)Y

−η(Y )η(Z)X + η(Y )g(X,Z)ξ − η(X)g(Y,Z)ξ
−g(ϕX,Z)ϕY + g(ϕY,Z)ϕX + 2g(X,ϕY )ϕZ} (3.1)

From this we can compute the Ricci tensor as

S(X,Y ) =
(n + 1)c

2
[g(X,Y ) − η(X)η(Y )]. (3.2)

Comparing previous formula with (1.2) it follows that M2n+1 admits an m-
quasi-Einstein metric with λ = (n+1)c

2 and the potential vector field V =√
−m(n+1)c

2 ξ, where c < 0. Since the Reeb vector field ξ is parallel, V is also
parallel. This shows that there exists non trivial m-quasi-Einstein metric with
non vanishing parallel potential vector field.

Example 3.4. Let N(c) be a Kaehlerian manifold with constant holomorphic
sectional curvature c. Then the Riemannian product N(c)×R (where R is the
real line) becomes a cosymplectic space form. Particularly, if we take N(c)
as a complex hyperbolic space CH

n of constant holomorphic sectional curva-
ture −4, then the product CH

n(−4) ×R is a cosymplectic space form M(c).
Consequently, M(c)(ϕ, ξ, η, g) admits m-quasi-Einstein metric with V = ±ξ,
m = 1

2(n+1) and λ = 2(n + 1).

Example 3.5. Consider the warped product M = R ×f CH
n(−4), where

(CHn(−4), ḡ, J) is a Kaehler manifold, f(t) = et is the warping function
on the line R with the metric

g = dt2 + f2(t)ḡ
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We define a (1, 1) tensor field ϕ on M by ϕX = JX, for any vector field
X on N and ϕX = 0 for any vector field X tangent to R. We also define a
unit vector field ξ = ∂

∂t , a 1-form η = dt. Then in [28] it was proved that
(ϕ, ξ, η, g) defines an almost contact metric structure on M , which satisfies

∇Xξ = X − η(X)ξ. (3.3)

Clearly the Ricci tensor of M satisfies S = −2ng (see [28]). Thus, if we take
V = −kξ, where k > 0, then we see that M(ϕ, ξ, η, g) admits an m-quasi-
Einstein structure with m = k

2 and λ = −2(n + k).

4. Triviality of m-Quasi-Einstein Metrics

In [29], Perelman proved that any compact Ricci soliton is necessarily a gra-
dient soliton; by Hamilton [30] and Ivey [31] that any compact gradient non
shrinking Ricci soliton is Einstein. Hence, any compact non-shrinking Ricci
soliton must be Einstein. On the other hand, Barros–Gomes [16] proved that
a compact m-quasi-Einstein manifold (Mn, g, V ) has vanishing potential vec-
tor field (i.e., V = 0) if M is Einstein. Here we extend all these results for
compact m-quasi-Einstein manifold (Mn, g, V ) satisfying certain integral in-
equalities. First, we establish the following

Theorem 4.1. Let (Mn, V, g) be a compact m-quasi-Einstein manifold. Then
the following integral formula is valid

∫

M

[
1
2
V r − |Q|2 +

1
m

S(V, V ) + λr

]
dvg = 0, (4.1)

where dvg denotes the volume form of M .

Proof. Using Koszul formula [1], one can write the following

2(∇Y V,Z) = (£V g)(Y,Z) + dV �(Y,Z), (4.2)

for any vector field V on M (where V � is the 1-form dual to V , that is
V �(Y ) = g(Y, V ). We now define a skew symmetric tensor field ψ of type
(1, 1) on M by

dV �(Y,Z) = 2g(ψY,Z), (4.3)

for all Y,Z ∈ χ(M). Therefore, using Eqs. (4.2) and (4.3) in (1.2), we imme-
diately obtain

∇Y V = −QY +
1
m

g(Y, V )V + λY + ψY, (4.4)

where Q as previously denotes the Ricci operator. Taking covariant derivative
of (4.4) along an arbitrary vector field X yields

∇X∇Y V = −(∇XQ)Y − Q(∇XY ) +
1
m

{g(Y, V )∇XV + g(∇XV, Y )V

+g(∇XY, V )V } + λ∇XY + (∇Xψ)Y + ψ(∇XY ). (4.5)
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Making use of this and (4.4) and (4.5) we obtain that the curvature tensor
of (M, g) satisfies

R(X,Y )Z = (∇Y Q)X − (∇XQ)Y +
1
m

{g(Y, V )∇XV + g(∇XV, Y )V

−g(X,V )∇Y V − g(∇Y V,X)V } + (∇Xψ)Y − (∇Y ψ)X.

(4.6)

Contracting Eq. (4.6) over X with respect to an orthonormal frame shows
that

S(Y, V ) =
1
2
Y r +

1
m

{(divV )g(Y, V ) + g(∇V V, Y ) − 2g(∇Y V, V )}

+
n∑

i=1

g(∇ei
ψ)Y, ei),

where r = tracegS is the scalarcurvature of g. Since ∇Y |V |2 = 2g(∇Y V, V ),
the foregoing equation can be exhibited as

QV =
1
2
Dr +

1
m

{(divV )V + ∇V V − D|V |2} + δψ, (4.7)

for all vector field Y on M and g(δψ, Y ) = −∑n
i=1 g(∇ei

ψ)ei, Y ). Differ-
entiating (4.7) along an arbitrary vector field X and making use of (4.4)
implies

(∇XQ)V − Q2X +
1
m

g(X,V )QV + λQX + ψQX =
1
2
∇XDr

+
1
m

{(divV )∇XV + (XdivV )V + ∇X∇V V − ∇XD|V |2} + ∇Xδψ.

Tracing this over X with respect to an orthonormal frame {ei : i = 1, 2, . . . , n}
we find

n∑

i=1

g((∇ei
Q)V, ei) − |Q|2 +

1
m

S(V, V ) + λr +
n∑

i=1

g(ψQei, ei) =
1
2
Δr

+
1
m

{(divV )2 + V (divV ) + div∇V V − Δ|V |2} + divδψ, (4.8)

where D is the gradient operator and Δ = divD. From the contraction of
second Bianchi identity it follows that 1

2V r =
∑n

i=1 g((∇ei
Q)V, ei). Next, we

note that ∇X((divV )V ) = X(divV )V + (divV )∇XV, for any vector field X
on M . Contracting the last equation over X yields

div((divV )V ) = V (divV ) + (divV )2. (4.9)

On the other hand, choosing an orthonormal frame (e1, e2, . . . , en) such that
Qei = λiei at an arbitrary fixed point of M we get

n∑

i=1

g(ψQei, ei) =
n∑

i=1

λig(ψei, ei) = 0. (4.10)
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In view of Eqs. (4.9) and (4.10), Eq. (4.8) reduces to

1
2
V r − |Q|2 +

1
m

S(V, V ) + λr =
1
2
Δr

+
1
m

{div((divV )V ) + div∇V V − Δ|V |2} + divδψ. (4.11)

By hypothesis M is compact, so integrating (4.11) and using divergence The-
orem, we see that the integral on the left hand side vanishes on M . This
concludes the proof. �

For an Einstein manifold of negative scalar curvature, we have 1
mS(V, V ) =

r
n |V |2 ≤ 0. On the other hand, Petersen–Wylie [9] proved that a shrink-
ing compact gradient soliton is rigid with trivial potential function f if∫

M
S(Df,Df)dM ≤ 0. So, extending this here we prove

Corollary 4.1. Let (Mn, V, g) be a compact steady or shrinking m-quasi-
Einstein manifold such that

∫
M

[ 1
mS(V, V ) + 1

2V r]dM ≤ 0. Then V is iden-
tically zero and M is Einstein.

Proof. Taking trace of (1.2) yields

divV = nλ − r +
1
m

|V |2. (4.12)

Note that |Q − λI|2 = |Q|2 − 2λr + nλ2. So, we may rewrite (4.1) as
∫

M

[
1
m

S(V, V ) +
1
2
g(Dr, V )

]
dM =

∫

M

|Q − λI|2 + λ(r − nλ)

=
∫

M

[|Q − λI|2 − λdivV +
λ

m
|V |2]dM

=
∫

M

[|Q − λI|2 +
λ

m
|V |2]dM.

By our assumption on the integral inequality we have
∫

M

[|Q − λI|2 +
λ

m
|V |2]dM ≤ 0. (4.13)

Now, if M is steady, then λ = 0. Hence from Eq. (4.13) it follows that M is
Einstein. Thus using the result of Barros–Gomes [16] we can conclude that
V = 0. On the other hand, if λ > 0, then the conclusion follows from (4.13).
This completes the proof. �

Applying the Einstein condition on the potential vector field V , the
equality S(V, V ) − r

ng(V, V ) = 0 holds trivially on M . So, replacing the
equality with an inequality we prove

Corollary 4.2. Let (Mn, V, g) be a compact m-quasi-Einstein manifold with
constant scalar curvature. If it satisfies
1
m

∫
M

[S(V, V ) − r
ng(V, V )]dM ≤ 0, then M is Einstein.
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Proof. Since |Q − r
nI|2 = |Q|2 − r2

n and the scalar curvature r is constant, it
follows from the integral formula (4.1)

∫

M

[
1
m

S(V, V ) +
r

n
(nλ − r)

]
dM =

∫

M

|Q − r

n
I|2dM.

Thus using (4.12) and since the scalar curvature r is constant, we obtain.

1
m

∫

M

[S(V, V ) − r

n
g(V, V )]dM =

∫

M

|Q − r

n
I|2dM.

By our assumption on the integral inequality we complete the proof. �

Next, we present another extension of the result of Barros–Gomes [16].
For this we recall the following two well known results on a Riemannian
manifold

Lemma 4.1. [32] For any vector field V on a Riemannian manifold (Mn, g),
we have
div(∇V V ) − div((divV )V ) = S(V, V ) + 1

2 |£V g|2 − |∇V |2 − (divV )2.

Lemma 4.2. [12] For any m-quasi-Einstein manifold (M,V, g) we have
1
2Δ|V |2 = |∇V |2 − S(V, V ) + 2

m |V |2divV.

For quasi-Einstein metrics (i.e. satisfying (1.1)) it is known that a com-
pact quasi-Einstein metric with constant scalar curvature is trivial (see [3]).
Here we extend this result and prove

Theorem 4.2. Let (M,V, g) be a compact m-quasi-Einstein metric. If its scalar
curvature is constant, then V is Killing.

Proof. From the above two lemmas, we deduce

div(∇V V ) − div((divV )V ) +
1
2
Δ|V |2 =

1
2
|£V g|2

−(divV )2 +
2
m

|V |2divV.

Since M is compact we may integrate the foregoing equation over M to
achieve ∫

M

[
1
2
|£V g|2 − (divV )2 +

2
m

|V |2divV ]dM = 0. (4.14)

By virtue of (4.12), Eq. (4.14) can be written as
∫

M

[
1
2
|£V g|2 − (divV )2 + 2divV (divV + r − nλ]dM

=
∫

M

[
1
2
|£V g|2 + (divV )2 + 2(r − nλ)divV ]dM = 0. (4.15)

Since the scalar curvature is constant, the foregoing equation yields
∫

M

[
1
2
|£V g|2 + (divV )2]dM = 0.

From which it follows that £V g = 0 (and divV = 0). �
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Remark 4.1. By virtue of this result we can easily prove the result of Barros–
Gomes [16] “Any compact m-quasi-Einstein manifold M of dimension ≥ 3
has vanishing potential vector field provided M is Einstein.” Hence from the
Theorem 4.2 the potential vector field V is Killing. Therefore from (1.2) the
Ricci tensor satisfies

S(X,Y ) =
1
m

g(X,V )g(Y, V ) + λg(X,Y ). (4.16)

Tracing this the scalar curvature r fulfills r−nλ = 1
m |V |2. On the other hand,

using S = r
ng in (4.16) yields ( r

n − λ)g(X,Y ) = 1
mg(X,V )g(Y, V ). Setting

X = Y = V and making use of r − nλ = 1
m |V |2 shows that V = 0.

Theorem 4.3. Let (Mn, V, g) be a compact steady or shrinking m-quasi-
Einstein manifold. If the Ricci tensor S is Codazzi, then V is identically
zero.

Proof. Since S is Codazzi, the scalar curvature is constant. Hence by the
Theorem 4.2 V is Killing and therefore divV = 0. Consequently, from (4.12)
|V | is constant, i.e., g(∇XV, V ) = 0, for any vector field X. On the other
hand, using the hypothesis (∇XS)(Y,Z) = (∇Y S)(X,Z) in (4.16) gives

g(∇XV, Y )g(V,Z) − g(∇Y V,X)g(V,Z)
+g(Y, V )g(∇XV,Z) − g(X,V )g(∇Y V,Z) = 0. (4.17)

Contracting (4.17) over Y and Z and noting that V is constant we see that
∇V V = 0. Next, setting Y = V in (4.17) shows that |V |∇XV = 0. If V = 0,
then the conclusion follows. So, we suppose that |V | �= 0. Then V is parallel
and hence QV = 0. Using this in (4.16) we have (λ + 1

m |V |2)|V |2 = 0. Since
λ ≥ 0, we must have V = 0. This concludes the proof. �

5. Infinitesimal Harmonic Transformations

In [19], the authors established that the condition that a vector field be infin-
itesimal harmonic transformation is related to the existence of Ricci soliton
by proving that “the potential vector field V of a Ricci soliton on a Rie-
mannian manifold (M, g) is an infinitesimal harmonic transformation on
M”. This result suggests to find conditions on the potential vector field of
the m-quasi-Einstein metric that also generates an infinitesimal harmonic
transformation. First, we prove

Theorem 5.1. Let (Mn, g, V ) be an m-quasi-Einstein manifold. If V � is a har-
monic 1-form, then V is an infinitesimal harmonic transformation. Moreover,
if M is compact then V is parallel.

Before entering into the proof we prove our key result

Lemma 5.1. For any m-quasi-Einstein manifold (Mn, g, V ) we have

g(QV,Z) − g(Δ̄V,Z) =
2
m

{(divV )g(Z, V )

+g(∇V V,Z) − g(∇ZV, V )}. (5.1)
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Proof. Differentiating (1.2) along an arbitrary vector field X gives

(∇X£V g)(Y,Z) + 2(∇XS)(Y,Z) =
2
m

{g(Y,∇XV )g(Z, V )

+g(Y, V )g(Z,∇XV )}. (5.2)

Making use of this in the commutation formula (see Yano [22])

(£V ∇Xg − ∇X£V g − ∇[V,X]g)(Y,Z) =
−g((£V ∇)(X,Y ), Z) − g((£V ∇)(X,Z), Y )

we deduce

g((£V ∇)(X,Y ), Z) + g((£V ∇)(X,Z), Y ) = −2(∇XS)(Y,Z)

+
2
m

{g(∇XV, Y )g(Z, V ) + g(Y, V )g(∇XV,Z)}.

By a straightforward combinatorial computation and using the symmetric
property of £V ∇ the foregoing equation yields

g((£V ∇)(X,Y ), Z) = (∇ZS)(X,Y ) − (∇Y S)(Z,X) − (∇XS)(Y,Z)

+
1
m

[g(Z, V ){g(∇XV, Y ) + g(∇Y V,X)}
+g(Y, V ){g(∇XV,Z) − g(∇ZV,X)}
+g(X,V ){g(∇Y V,Z) − g(∇ZV, Y )}]. (5.3)

Now applying the well-known formula (see Yano [22])

g((£V ∇)(X,Y ), Z) = g(∇X∇Y V − ∇∇XY V + R(V,X)Y,Z)

in (5.3) and then setting X = Y = ei, where e1, e2, . . . , en is a local orthonor-
mal frame field, implies

g

(
n∑

i=1

(∇ei
∇ei

V − ∇∇ei
ei

V + R(V, ei)ei), Z

)
=

2
m

{(divV )g(Z, V )

+g(∇V V,Z) − g(∇ZV, V )}.

By virtue of (2.1) the first two terms of the left hand side of the forego-
ing equation give −Δ̄V , while the last term gives the Ricci operator in the
direction of V . This completes the proof. �

Proof of Theorem 5.1. As V � is a harmonic 1-form, we have divV = 0 and
V � is closed, i.e., dV � = 0. Therefore, Eq. (5.1) transforms to

− Δ̄V + QV = 0. (5.4)

Making use of (5.4) in the Weitzenböck formula:

ΔV = Δ̄V + QV (5.5)

provides ΔV = 2QV. This shows that V is an infinitesimal harmonic trans-
formation and we complete the proof of the first part. We now prove the
second part. Since V � is closed, Eq. (1.2) reduces to

∇Y V + QY = λY +
1
m

V �(Y )V. (5.6)
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By virtue of (5.6) one can easily deduce

∇X∇Y V − ∇∇XY V =
1
m

{g(Y, V )∇XV + g(∇XV, Y )V } − (∇XQ)Y.(5.7)

Making use of (5.6) and (5.7) we can easily deduce

R(X,Y )V =
1
m

{g(Y, V )∇XV − g(X,V )∇Y V }
−(∇XQ)Y + (∇Y Q)X. (5.8)

Contracting (5.8) over X we get

S(Y, V ) =
1
m

{g(Y, V )divV − g(∇Y V, V )} +
1
2
(Y r). (5.9)

On the other hand, tracing (5.6) and taking into account divV = 0, we
obtain r = nλ + 1

m |V |2. From which we find that Y r = 2
mg(∇Y V, V ). From

the last formula and (5.9), it follows S(Y, V ) = 0, for all Y . Since the 1-form
V � associated with the vector field V is harmonic, we integrate the Bochner
formula:

∫

M

{|∇V |2 + S(V, V )}dM =
∫

M

1
2
Δ|V |2dM = 0,

to deduce that ∇V = 0. This finishes the proof. �

Any Killing vector field on a Riemannian manifold is clearly an infinites-
imal harmonic transformation (i.e., ΔV + 2QV = 0) and satisfies divV = 0.
The converse is true in the compact case [33]. Here we prove the later for the
case in which the potential vector field of an m-quasi-Einstein manifold is an
infinitesimal harmonic transformation. Precisely we prove

Theorem 5.2. Let (Mn, g, V ) be an m-quasi-Einstein manifold whose poten-
tial vector field is an infinitesimal harmonic transformation. Then V is Killing
and the Ricci tensor S is a Killing tensor (i.e. cyclic parallel) if it satisfies
any one of the following conditions

(i) the scalar curvature r is constant,
(ii) the norm of the potential vector field V is constant.

Proof. (i) By hypothesis we have ΔV = 2QV . Using this in the well known
formula (Weitzenböck) ΔV = Δ̄V + QV implies that Δ̄V = QV . By virtue
of this Eq. (5.1) provides

(divV )g(Z, V ) + g(∇V V,Z) − g(∇ZV, V ) = 0. (5.10)

Taking Z = V the foregoing equation yields |V |2(divV ) = 0. Since the m-
quasi-Einstein metric is non-trivial (i.e., not Einstein), we assume that |V |2 �=
0 on an open set O of M . Thus, on O we have divV = 0. As a consequence,
(5.10) can be written as

∇V V − 1
2
D|V |2 = 0, (5.11)
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where we have used X|V |2 = 2g(∇XV, V ) and D is the gradient operator.
Taking covariant derivative of the foregoing equation along an arbitrary vec-
tor field X, and then contracting the resulting equation over X yields

div∇V V − 1
2
Δ|V |2 = 0. (5.12)

On the other hand, tracing (1.2) we have

divV + r − 1
m

|V |2 = nλ. (5.13)

Using divV = 0 (5.13) gives r + 1
m |V |2 = nλ. Since the scalar curvature is

constant, |V |2 is also constant on O and hence |V |2 �= 0 on M . Consequently,
(5.12) provides div∇V V = 0. By virtue of this and divV = 0, Lemma 4.1
shows that

S(V, V ) +
1
2
|£V g|2 − |∇V |2 = 0. (5.14)

Moreover, from Lemma 4.2, we have S(V, V ) − |∇V |2 = 0. Using this in
(5.14), we can conclude that V is Killing. Hence (1.2) reduces to

S(Y,Z) = λg(Y,Z) +
1
m

g(Y, V )g(X,V ). (5.15)

Next, we take covariant differentiation of (5.15) in the direction of X to get

(∇XS)(Y,Z) =
1
m

[g(Y, V )g(∇XV,Z) + g(Z, V )g(∇XV, Y )]. (5.16)

Taking cyclic permutation of (5.16) over {X,Y,Z} and making use of the
fact that V is Killing, we deduce S is cyclically parallel, i.e.

⊕

X,Y,Z

(∇XS)(Y,Z) = 0.

This finishes the proof of item (i).
By assumption |V | is constant. Since g represents a non trivial m-quasi-

Einstein metric we have |V | �= 0 on M . Hence from |V |2divV = 0 it follows
that divV = 0. Thus, by virtue of (5.13) we can conclude that the scalar cur-
vature r is constant. Hence the rest of the proof follows from item (i). �

It is known that if the Ricci tensorof a Riemannian metric is of Codazzi
type then the scalar curvature is constant. Thus, as a consequence of Theorem
5.2, we have

Corollary 5.1. Let (M,V, g) be an m-quasi-Einstein manifold of dimension n
such that the Ricci tensor S is Codazzi. If V is an infinitesimal harmonic
transformation, then either M is Einstein, or V is parallel.

Proof. Since the scalar curvature r is constant, from Theorem 5.2, the vector
field V is Killing, and hence divV = 0. Consequently, Eq. (5.10) implies
that g(∇V V,Z) = g(∇ZV, V ) = 0. This shows that |V | is constant. On the
other hand, since the Ricci tensor is cyclically parallel and Codazzi, we must
have S is parallel. Thus, it follows from (5.16) that g(Y, V )g(∇XV,Z) +
g(Z, V )g(∇XV, Y ) = 0. Taking V instead of Z in the foregoing equation and
since |V | is constant, we see that |V |2g(∇XV, Y ) = 0. Thus, we have either
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|V | = 0 or, |V | �= 0. The former shows that M is Einstein and the latter
implies that V is parallel. �

It is known [16] that if the potential vector field of a compact m-quasi-
Einstein manifold is conformal Killing, then it must be Killing. Waiving the
compactness assumption here we prove

Theorem 5.3. Let (Mn, g, V ) be an m-quasi-Einstein manifold with constant
scalar curvature. If V is conformal, then either V is Killing or (Mn, g) is
Einstein.

Proof. By hypothesis V is conformal. Thus, there exists a smooth function ρ
such that (£V g)(X,Y ) = g(∇XV, Y ) + g(∇Y V,X) = 2ρg(X,Y ). Therefore,
Eq. (1.2) reduces to

S(X,Y ) = (λ − ρ)g(X,Y ) +
1
m

V �(X)V �(Y ). (5.17)

Differentiating this along an arbitrary vector field Z we get

(∇ZS)(X,Y ) = −(Zρ)g(X,Y ) +
1
m

{V �(X)(∇ZV �)Y + V �(Y )(∇ZV �)X}.

Taking the cyclic sum over {X,Y,Z} and remembering that V is conformal
the preceding equation yields

⊕

X,Y,Z

[(∇ZS)(X,Y ) + (Zρ)g(X,Y ) − 2ρ

m
V �(X)g(Y,Z)] = 0, (5.18)

where
⊕

X,Y,Z denotes one more time the cyclic permutation sum over
{X,Y,Z}. Contracting (5.18) over Y , Z provides

2
n + 2

(Xr) + (Xρ) − 2ρ

m
V �(X) = 0. (5.19)

By virtue of this, Eq. (5.18) transforms into
⊕

X,Y,Z

[(∇ZS)(X,Y ) − 2
n + 2

(Xr)] = 0.

Moreover, the scalar curvature being constant, the foregoing equation entails
that the Ricci tensor is cyclically parallel. At this point, we rewrite Eq. (5.17)
as

S(X,Y ) = αg(X,Y ) + βω(X)ω(Y ), (5.20)

where α = λ − ρ, β = |V |2
m and ω is a 1-form associated with the unit vector

field ω�. Now, the covariant differentiation of (5.20) along an arbitrary vector
field gives

(∇ZS)(X,Y ) = (Zα)g(X,Y ) + (Zβ)ω(X)ω(Y )
+β{ω(Y )(∇Zω)X + ω(X)(∇Zω)Y }. (5.21)

Since the Ricci tensor is cyclically parallel Eq. (5.21) entails
⊕

X,Y,Z

[(Xα)g(Y,Z) + (Xβ)ω(Y )ω(Z)

+β{ω(Y )(∇Xω)Z + ω(Z)(∇Xω)Y }] = 0. (5.22)
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Setting Y = Z = ω�, where ω� is the vector field defined by g(ω�,X) = ω(X),
for all X, in (5.22) we find

(Xα) + (Xβ) + 2{(ω�α) + (ω�β)}ω(X) + 2β(∇ω�ω)X = 0. (5.23)

On the other hand, contracting (5.21) and remembering that the scalar cur-
vature is constant we obtain

Xα + (ω�β)ω(X) + β[(∇ω�ω)X − δωω(X)] = 0. (5.24)

Tracing (5.20) and then differentiating yields

n(Xα) + (Xβ) = 0. (5.25)

Replacing X by ω� in (5.23) shows (ω�α) + (ω�β) = 0. Using this in (5.25)
provides ω�α = ω�β = 0. By virtue of this and taking X = ω� in (5.24) one
easily verifies βδω = 0. Making use of this and (ω�β) = 0 in (5.24) provides
Xα + β(∇ω�ω)X = 0. Using all these consequences it follows from (5.23)
that Xα − Xβ = 0. Combining this with (5.25) implies Xα = Xβ = 0. This
shows that the functions α and β are constant. In other words, ρ and |V |2 are
constant on M . As V is conformal ρ|V |2 = 0. Thus, either ρ = 0 or V = 0.
The former shows that V is Killing and the latter implies that M is Einstein.
This establishes the proof. �

Waving the condition on the scalar curvature and assuming that the
potential vector field V is homothetic, i.e., £V g = ρg with ρ a constant, we
prove

Corollary 5.2. Let (Mn, g, V ) be an m-quasi-Einstein manifold. If V is a
homothetic vector field, then either V is Killing or, (Mn, g) is Einstein.

Proof. As V is homothetic, we have

g(∇XV, Y ) + g(∇Y V,X) = 2ρg(X,Y ), (5.26)

where ρ is a constant. Therefore, from (5.19) it follows that

2
n + 2

(Xr) − 2ρ

m
V �(X) = 0. (5.27)

Writing this as: 1
n+2dr = ρ

mV �, and applying d (operator of exterior
differentiation) to this, we achieve ρdV � = 0. If ρ = 0, then V is Killing and
if ρ �= 0, then V � is closed. The last condition together with (5.26)implies
∇XV = ρX. Making use of this we deduce R(X,Y )V = 0. From which it
follows that S(Y, V ) = 0. Use of this in (5.17) gives {(λ−ρ)− 1

m |V |2}|V |2 = 0.
If V = 0, then M is Einstein. So, we assume that |V |2 �= 0 in some open set N
of M . Then on N , we have (λ−ρ)− 1

m |V |2 = 0. Now, the trace of (5.17) gives
r = n(λ − ρ) − 1

m |V |2. The last two equations imply that r = (n − 1)(λ − ρ)
and clearly this is constant. Hence, from (5.27) we obtain V = 0. Thus we
arrive at a contradiction. This completes the proof. �
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