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Abstract. In this paper we study Riemannian manifolds (M", g) admit-
ting an m-quasi-Einstein metric with V' as its potential vector field. We
derive an integral formula for compact m-quasi-Einstein manifolds and
prove that the vector field V' vanishes under certain integral inequality.
Next, we prove that if the metrically equivalent 1-form V'’ associated
with the potential vector field is a harmonic 1-form, then V is an in-
finitesimal harmonic transformation. Moreover, if M is compact then it
is Einstein. Some more results were obtained when (i) V' generates an
infinitesimal harmonic transformation, (ii) V' is a conformal vector field.

Mathematics Subject Classification. 53C25, 53C20, 53D10.

Keywords. Ricci soliton, m-quasi-Einstein metric , infinitesimal har-
monic transformation , conformal vector field.

1. Introduction

In the recent years, Einstein metrics and several of their generalizations
[1] have received a lot of importance in geometry and physics. These are
Ricci solitons, Ricci almost solitons, m-quasi-Einstein metrics and general-
ized quasi-Einstein metrics. Ricci solitons have been extensively studied, also
because of their connection with the study of the Ricci flow. A Ricci soliton is
a Riemannian manifold (M™, g) together with a vector field V' that satisfies

Lyvg+2S =2)\g,

where £y denotes the Lie-derivative operator along a vector field V, and S
the Ricci tensor of g and A a constant. It is said to be trivial (Einstein) if
either V' = 0, or V is Killing. This is said to be a gradient Ricci soliton if
V = Df, for some smooth function f on M, where D is the gradient operator.
For details about Ricci soliton, we refer to [2].

Generalizing the notion of gradient Ricci soliton, Case et al. [3] intro-
duced the notion quasi-FEinstein metric. This is closely related to the warped
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product spaces (see [1]) and appears from the m-Bakry-Emery Ricci tensor
S, defined by (see [4])

S}”:S+V2ffidf®df.
m

A Riemannian manifold M together with a Riemannian metric g is said to
quasi-Einstein respect to the function f and the constant m if S7* = Ag, i.e.,
if its Ricci tensor S satisfies

S+V2f—%df®df:)\g, (1.1)

where A is a constant, 0 < m < oo and V2f denotes the Hessian tensor of the
smooth function f on M. This also appears from the warped product of the
base of an (n + m)-dimensional Einstein manifold (see [5]). If A is a smooth
function in the defining condition (1.1), then it is known as generalized m-
quasi-Einstein. For more details we refer to [6-8]). Equation (1.1) reduces to
the usual Einstein condition when f is constant. Moreover, when m = oo
it reduces to exactly the gradient Ricci soliton [2]. Thus, Eq. (1.1) can be
regarded as a generalization of gradient Ricci soliton. In [3], several results
were proved extending rigidity results for gradient Ricci solitons presented
by Petersen-Wylie [9].

Recently, Nurowski and Randall [10] extended the notion of Ricci soliton
by introducing a class of overdetermined system of equations

Lvg=2aS —28V° @V’ + 2\g.

on pseudo-Riemannian manifolds (M", g) for some vector field V' and some
real constants a, 3 and A, where V” is a 1-form associated with V. In this
paper, we consider a particular type of generalized Ricci soliton, called m-
quasi-Einstein metric, studied first by Limoncu [11] (see also [12]). This also
arises as a generalization of the quasi-Einstein metric [3], by taking the 1-form
V? instead of df in the defining Eq. (1.1). Explicitly, this can be presented
as

1 1
S+ -Lyg— —V’ @V’ =g, (1.2)
2 m

where £ denotes the Lie-derivative operator along a vector field V', known
as potential vector field. A Riemannian manifold M satisfying Eq. (1.2) is
said to be a m-quasi-Einstein manifold and along the manuscript is denoted
by (M™,V,g). Using the terminology of Ricci soliton, an m-quasi-Einstein
metric is said to be expanding, steady or shrinking, respectively, if A < 0,
A=0,0r A>0.If V =0, Eq. (1.2) simply reduces to the Einstein condition
and in this case, we say that the m-quasi-Einstein metric is trivial. It is also
interesting to remark that if the potential vector field V' is the gradient of
a smooth function f, then Eq. (1.2) reduces to the quasi-Einstein condition,
as defined by Eq. (1.1). It may be also mentioned that the study of Eq.
(1.1) depends mostly on the behavior of the potential function f, whereas
the study of (1.2) only depends on the potential vector field V. Moreover, we
remark that if V' is Killing (or conformal Killing [12]), the m-quasi-Einstein
metric is not trivial like Ricci soliton. Further, it is interesting to note that
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Eq. (1.2) reduces to the so called Ricci soliton when m = co. For this reason,
one may consider that a Riemannian manifold M with an m-quasi-Einstein
metric g is a direct generalization of the Ricci soliton and as well as gradient
Ricei soliton. In [11], Limoncu first studied Eq. (1.2) to generalize Qian’s [13]
results, which were the natural generalization of Myers’ compactness theorem
on Riemannian manifolds [14]. Recently, the author studies m-quasi-Einstein
metrics within the framework of contact metric manifolds [15]. In the present
paper, we study Eq. (1.2) under some conditions on the potential vector field
V and the scalar curvature.

The organization of this paper is as follows. In Sect. 2, we recall basic
definitions of rough Laplacian, infinitesimal harmonic transformations and
harmonic vector fields. Section 3 has been devoted to derive several non
trivial examples of m-quasi-Einstein metric. In Sect. 4, we have proved an
integral formula for compact m-quasi-Einstein Riemannian manifolds and we
extend a result of Barros—Gomes [16]. In Sect. 5, we have studied m-quasi-
Einstein metric when the 1-form V? is harmonic. In this case, V generates an
infinitesimal harmonic transformation. Next, we prove that if the potential
vector field V' generates an infinitesimal harmonic transformation on a com-
pact m-quasi-Einstein manifold M, then V is Killing and the Ricci tensor S
is a Killing tensor, i.e., cyclic parallel. Finally, we consider m-quasi-Einstein
metric when the potential vector field is conformal Killing and the scalar
curvature is constant.

2. Preliminaries

Let (M™,g) be a Riemannian manifold and consider a diffeomorphism f :
M — M. Let V' be the pull-back connection of the Levi-Civita connection
V of (M",g) by f. If we have traceg(vl — V) = 0, then f is said to be
harmonic (see for instance [17].

Next, consider a vector field V' and let {f;} be any local 1-parameter
group of transformations of V. Using each f; as previously we can define a
connection V! from V. Thus, we arrive to the Lie-derivative V with respect
to V, £y V. We say that V is an infinitesimal harmonic transformation if
tracey(£vV) = 0 (see [17,18]). An interesting characterization of such vector
field was given by Stepanov—Shandra in [17]. They proved that

“A wvector field V' generates an infinitesimal harmonic transformation
on a Riemannian manifold (M™,g) if and only if AV =2QV”.

The operator A is known as the Laplacian and it is determined by the
Weitzenbock formula

AV =V*'VV +QV,

where V* is the formal adjoint of V, given by AV = V*VV and (@ is the Ricci
operator associated with the Ricci tensor S. The operator A is known as the
rough Laplacian of vector field V, and is defined by AV = —trace, V2V. Ex-
plicitly, if {e;} be any local orthonormal frame field, then the rough Laplacian
of the vector field is defined by
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AV =) {Vv. e, = Ve, Ve, V. (2.1)

The following examples are well-known for infinitesimal harmonic transfor-
mations:
e Any Killing vector field on a Riemannian manifold generates an infini-
tesimal harmonic transformation (see [17]).
e The potential vector field V' of the Ricci soliton is necessarily an infini-
tesimal harmonic transformation (see [19]).
e Since the Reeb vector field £ of a K-contact manifold is Killing, it gen-
erates an infinitesimal harmonic transformation (see [20]).
e Let (M, g,J) be a nearly Kaehlerian manifold, where J? = —1I, g(J,J) =
g and (VxJ)Y +VyJ)X = 0 for any vector field X,Y on M and let V
be a vector field on M such that £y J = 0 (i.e., holomorphic). Then V'
is necessarily an infinitesimal harmonic transformation (see [17]).
e Any vector field V on a contact metric manifold M2+ (p, &, n,g) that
leaves the tensor ¢ invariant (i.e., £y¢ = 0) is necessarily an infinitesi-
mal harmonic transformation (see [21]).

To end this section, recall that a vector field V', on a Riemannian manifold
(M™,g) it is said to be harmonic if the associated 1-form V? is closed and
co-closed, i.e., dV” = 0 and 6V’ = 0, respectively (see for instance [22]).
Thus, a harmonic vector field V satisfies AV = 0, and the converse is true
for compact case. We denote the divergence of a along the manuscript as div
and define the divergence of a vector field V as div V =>"" | g(V,V,¢;).

3. Some Examples

Example 3.1. We consider the hyperbolic space H" given by R x R*~! with
the warped product metric g = dt? + e?*gg, where gg is the standard metric
of R"~L. Let us define a function f : H" — R given by f(t) = mt, where m is
a positive integer. Then it is easy to verify that (H", g, Df,A = —m —n+1)
is an expanding gradient m-quasi-Einstein manifold [23].

Ezample 5.2. Let us consider the Berger sphere (S? gk,), where
3 ={(z,w) € C* : 2>+ |w|* = 1} and gk, = £{g0 + (% - NHU* U},
go stands for the usual Riemannian metric on S%, k > 0, ¢ # 0 are con-
stants and U is the Killing vector on S3. For each (z,w) € S* given by
U(z,w) = (iz,iw). Set B3 = U, which is also Killing. Then we can deduce
(S3,V = \/m(402? — k)E3, A = k — 20?) is a non gradient m-quasi-Einstein
manlfold For detalls we refer to [16,24].

Some more non gradient examples can be found in [15]. In our next
examples, we prove that there exists an m-quasi-Einstein metric on certain
product manifolds whose potential vector field is parallel but not vanishes
anywhere.

Ezample 3.3. Let M*>"1(p, & 1, g) be an almost contact metric manifold and
consider the product manifold M?"+! x R. Let J be the almost complex
structure on M?"*! x R defined by
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d d
where X is tangent to M2+, f a smooth function on M?*+! x R and ¢ the
coordinate on R. Then (J, G) induces an Hermitian structure on the product
manifold M?"*! x R with the product metric G = g + dt. If one assumes
that this structure is Kaehler, then M?"*1 (¢, £, 1, g) becomes a cosymplectic
manifold [25].

One may also construct such structure through the product of a Kaehler
manifold N?"(J,G) and the real line R. If ¢ denotes the coordinate of R and
X be any vector field of N, then any vector field of M = N xR can be written
as (X,f%). Define a tensor field ¢ of type (1,1) by @(X,f%) =:(JX,0), a
1-form n =: dt, a vector field £ =: % and a Riemannian metric g = G + dt2.
Then it follows that (p,&,n,g) defines a cosymplectic structure on M?27+!
[26,27).

A cosymplectic manifold M whose @-sectional curvature does not de-
pend on the point is called cosymplectic space form and we denote it by
M(c). A straight forward computation shows that a cosymplectic manifold
has constant @-sectional curvature ¢ at a point if and only if the curvature
tensor R is given by [25].

¢
—n(Y)n(Z2)X +n(Y)g(X, Z2)§ —n(X)g(Y, Z)¢
—9(pX, Z)Y + g(9Y, Z)pX + 29(X, oY)pZ}  (3.1)
From this we can compute the Ricci tensor as

(n+1)c

SX.Y) = ———[g(X,Y) = n(X)n(Y)]. (32)
Comparing previous formula with (1.2) it follows that M?"*! admits an m-
quasi-Einstein metric with A = ("';71)0 and the potential vector field V =

W§ , where ¢ < 0. Since the Reeb vector field ¢ is parallel, V' is also

parallel. This shows that there exists non trivial m-quasi-Einstein metric with
non vanishing parallel potential vector field.

Ezample 3.4. Let N(c) be a Kaehlerian manifold with constant holomorphic
sectional curvature c. Then the Riemannian product N(c¢) xR (where R is the
real line) becomes a cosymplectic space form. Particularly, if we take N(c)
as a complex hyperbolic space CH" of constant holomorphic sectional curva-
ture —4, then the product CH"(—4) x R is a cosymplectic space form M (c).
Consequently, M (c)(p,&,n, g) admits m-quasi-Einstein metric with V' = £¢,
m= m and A =2(n + 1).

Ezample 3.5. Consider the warped product M = R x; CH"(—4), where
(CH"(—4),g,J) is a Kaehler manifold, f(t) = e’ is the warping function
on the line R with the metric

g=dt* + f*(t)g
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We define a (1,1) tensor field ¢ on M by X = JX, for any vector field
X on N and pX = 0 for any vector field X tangent to R. We also define a
unit vector field & = %, a 1-form n = dt. Then in [28] it was proved that
(p,&,1,9) defines an almost contact metric structure on M, which satisfies

Vx§=X-n(X)§. (3.3)

Clearly the Ricci tensor of M satisfies S = —2ng (see [28]). Thus, if we take
V = —k&, where k > 0, then we see that M (p,&,n,g) admits an m-quasi-
Einstein structure with m = % and A = —2(n + k).

4. Triviality of m-Quasi-Einstein Metrics

In [29], Perelman proved that any compact Ricci soliton is necessarily a gra-
dient soliton; by Hamilton [30] and Ivey [31] that any compact gradient non
shrinking Ricci soliton is Einstein. Hence, any compact non-shrinking Ricci
soliton must be Einstein. On the other hand, Barros—-Gomes [16] proved that
a compact m-quasi-Einstein manifold (M™, g, V') has vanishing potential vec-
tor field (i.e., V = 0) if M is Einstein. Here we extend all these results for
compact m-quasi-Einstein manifold (M™, g, V) satisfying certain integral in-
equalities. First, we establish the following

Theorem 4.1. Let (M™,V,g) be a compact m-quasi-Einstein manifold. Then
the following integral formula is valid

M 2 m

where dvy denotes the volume form of M.
Proof. Using Koszul formula [1], one can write the following
2(VyV,Z) = (Lvg)(Y, Z) +dV*(Y, Z), (4.2)

for any vector field V on M (where V"’ is the 1-form dual to V, that is
VP(Y) = ¢g(Y,V). We now define a skew symmetric tensor field 9 of type
(1,1) on M by

Av*(Y, 2) = 29(vY, 2), (4.3)
for all Y, Z € x(M). Therefore, using Eqgs. (4.2) and (4.3) in (1.2), we imme-
diately obtain

1
VyV =-QY + %g(Y, VIV + Y + Y, (4.4)

where @) as previously denotes the Ricci operator. Taking covariant derivative
of (4.4) along an arbitrary vector field X yields

VATyV = ~(VxQ)Y = Q(VxY) + —{g(¥; V)TV +g(VxV, V)V
+9(VxY, V)V +AVxY + (Vx¥)Y +9(VxY). (4.5)
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Making use of this and (4.4) and (4.5) we obtain that the curvature tensor
of (M, g) satisfies
1
R(X,Y)Z = (Vy@)X = (VxQ)Y + —{g(Y,V)VxV + g(VxV.Y)V
—g9(X,V)VyV —g(Vy V. X)V} + (Vx¢)Y — (Vyh) X
(4.6)

Contracting Eq. (4.6) over X with respect to an orthonormal frame shows
that

S(Y,V) = %Yr + %{(divV)g(Y, V) + g(VyV,Y) — 29(VyV,V)}

+ Z Q(Veﬂz’)y’ 671)7

i=1

where r = trace,S is the scalarcurvature of g. Since Vy|V|? = 2¢(Vy V, V),
the foregoing equation can be exhibited as

1 1
QV = §Dr+E{(divV)V+VvV—D\V\2}+6w, (4.7)
for all vector field Y on M and ¢(6¢,Y) = —> 1" | g(Ve,¥)e;, Y). Differ-

entiating (4.7) along an arbitrary vector field X and makmg use of (4.4)
implies

1 1
(VxQ)V — Q*X + %g(X, VIQV + \QX + QX = §VXDT
1
J%{(divvwxv + (XdivV)V + VxVyV — VxD|V|*} 4+ Vx 1.

Tracing this over X with respect to an orthonormal frame {e; : i =1,2,...,n}
we find

n 1 n 1
2 9((VeQVie) ~ QP + ZS(V.V) +Ar + ;gw@e% ei) = 5Ar
1
+E{(divx/)2 + V(divV) + divVy V — AV[?} + dive, (4.8)
where D is the gradient operator and A = divD. From the contraction of
second Bianchi identity it follows that Vr = Y"" | g((V.,Q)V, ;). Next, we

note that Vx ((divV)V) = X(divV)V + (divV)VxV, for any vector field X
on M. Contracting the last equation over X yields

div((divV)V) = V(divV) + (divV)2. (4.9)

On the other hand, choosing an orthonormal frame (eq, e, ..., e,) such that
Qe; = \;e; at an arbitrary fixed point of M we get

i wQezaez Z)\zg wezaez =0. (410)
=1



115 Page 8 of 17 A. Ghosh MJOM

In view of Egs. (4.9) and (4.10), Eq. (4.8) reduces to
Ly QI + iS(v V) + M= 1A
27" m Tt
1
+—{div((divV)V) + divVy V — AV ?} + divéy. (4.11)

By hypothesis M is compact, so integrating (4.11) and using divergence The-
orem, we see that the integral on the left hand side vanishes on M. This
concludes the proof. O

For an Einstein manifold of negative scalar curvature, we have %S (V,V) =
ZIV|> < 0. On the other hand, Petersen-Wylie [9] proved that a shrink-
ing compact gradient soliton is rigid with trivial potential function f if
fM (Df,Df)dM < 0. So, extending this here we prove

Corollary 4.1. Let (M™,V,g) be a compact steady or shrinking m-quasi-
Einstein manifold such that [, [--S(V,V)+ $Vr|dM < 0. Then V is iden-
tically zero and M is Einstein.

Proof. Taking trace of (1.2) yields
1
divV:n/\—r+E|V|2. (4.12)

Note that |Q — M|? = |Q|* — 2\ + nA2. So, we may rewrite (4.1) as

/M [1S(V’ v)+ %g(Dr, V)} dM = /M |Q — M2+ A\(r — n))

m

A
= / [1Q — |2 — AdivV + = |V[2]dM
M m
A
= [ Q- MP+ 2 vPlan
M m
By our assumption on the integral inequality we have
A
/ 1Q — M2+ Z|V|?)JdM < 0. (4.13)
M m

Now, if M is steady, then A = 0. Hence from Eq. (4.13) it follows that M is
Einstein. Thus using the result of Barros—Gomes [16] we can conclude that
V' = 0. On the other hand, if A > 0, then the conclusion follows from (4.13).
This completes the proof. O

Applying the Einstein condition on the potential vector field V', the
equality S(V,V) — Zg(V,V) = 0 holds trivially on M. So, replacing the
equality with an inequality we prove

Corollary 4.2. Let (M™,V,g) be a compact m-quasi-Einstein manifold with
constant scalar curvature. If it satisfies
L [ LISV, V) = Zg(V,V)]dM <0, then M is Einstein.
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Proof. Since |Q — Z1|? = |Q|* — % and the scalar curvature r is constant, it
follows from the integral formula (4.1)

/M [15(1/, V) + D(na— r)] dM = /M Q- Lram

m n

Thus using (4.12) and since the scalar curvature r is constant, we obtain.

1 _r — B o
[ 15wy = Lgvovan = [ Q- Lrpaw.

By our assumption on the integral inequality we complete the proof. O

Next, we present another extension of the result of Barros—-Gomes [16].
For this we recall the following two well known results on a Riemannian
manifold

Lemma 4.1. [32] For any vector field V on a Riemannian manifold (M™, g),
we have
div(VyV) = div((divV)V) = S(V, V) + 2| £Lvg|* = [VV|> = (divV)2.

Lemma 4.2. [12] For any m-quasi-Einstein manifold (M,V, g) we have
AV = |VV2 =5V, V) + 2|V [2divV.

For quasi-Einstein metrics (i.e. satisfying (1.1)) it is known that a com-
pact quasi-Einstein metric with constant scalar curvature is trivial (see [3]).
Here we extend this result and prove

Theorem 4.2. Let (M,V, g) be a compact m-quasi-Einstein metric. If its scalar
curvature is constant, then V is Killing.

Proof. From the above two lemmas, we deduce
1 1
div(VyV) = div((divV)V) + S AV = 2| £vgl
2
—(divV)? + =|V|*divV.
m

Since M is compact we may integrate the foregoing equation over M to
achieve

1 2
/ L1 £y g2 = (divV)? + 2 [V2divV]dM =0, (4.14)
M 2 m
By virtue of (4.12), Eq. (4.14) can be written as
1
[ [G1£vaP = @V 4 2wV @iV 4~ nldM
M
1
= / [51€val® + (divV)* + 2(r = nA)divV]dM = 0. (4.15)
M
Since the scalar curvature is constant, the foregoing equation yields
1
/ S1£vgl? + (divV)2dM = 0.
M 2

From which it follows that £y g =0 (and divV = 0). O
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Remark 4.1. By virtue of this result we can easily prove the result of Barros—
Gomes [16] “Any compact m-quasi-Einstein manifold M of dimension > 3
has vanishing potential vector field provided M is Einstein.” Hence from the
Theorem 4.2 the potential vector field V' is Killing. Therefore from (1.2) the
Ricci tensor satisfies

S(X,Y) = %g(X, V)g(Y,V) + Ag(X,Y). (4.16)

Tracing this the scalar curvature r fulfills r —nA = %|V|2. On the other hand,
using S = Zg in (4.16) yields (£ — N)g(X,Y) = Lg(X,V)g(Y,V). Setting
X =Y =V and making use of 7 — nA = L |V|? shows that V = 0.

Theorem 4.3. Let (M™,V,g) be a compact steady or shrinking m-quasi-
FEinstein manifold. If the Ricci tensor S is Codazzi, then V is identically
zero.

Proof. Since S is Codazzi, the scalar curvature is constant. Hence by the
Theorem 4.2 V is Killing and therefore divV” = 0. Consequently, from (4.12)
|V| is constant, i.e., g(VxV,V) = 0, for any vector field X. On the other
hand, using the hypothesis (VxS)(Y,Z) = (VyS)(X, Z) in (4.16) gives
g(VxV.Y)g(V.Z) — g(VyV. X)g(V. 2)

+9(Y,V)g(VxV, Z) = g(X,V)g(VyV, Z) = 0. (4.17)
Contracting (4.17) over Y and Z and noting that V' is constant we see that
ViV = 0. Next, setting Y = V in (4.17) shows that |[V|VxV =0.If V =0,
then the conclusion follows. So, we suppose that [V| # 0. Then V is parallel
and hence QV = 0. Using this in (4.16) we have (A + L|V[?)[V|? = 0. Since
A >0, we must have V = 0. This concludes the proof. O

5. Infinitesimal Harmonic Transformations

In [19], the authors established that the condition that a vector field be infin-
itesimal harmonic transformation is related to the existence of Ricci soliton
by proving that “the potential vector field V of a Ricci soliton on a Rie-
mannian manifold (M,g) is an infinitesimal harmonic transformation on
M?”. This result suggests to find conditions on the potential vector field of
the m-quasi-Einstein metric that also generates an infinitesimal harmonic
transformation. First, we prove

Theorem 5.1. Let (M™, g, V) be an m-quasi- Binstein manifold. If V° is a har-
monic 1-form, then V is an infinitesimal harmonic transformation. Moreover,
if M is compact then V is parallel.

Before entering into the proof we prove our key result
Lemma 5.1. For any m-quasi-Finstein manifold (M™, g, V) we have
_ 2
+9(VvV,Z) = g(VzV,V)} (5.1)
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Proof. Differentiating (1.2) along an arbitrary vector field X gives

(VxL£vg)(¥, 2) + AT 8)(Y, 2) = ~{g(¥, VxV)g(Z,V)
+9(Y,V)g9(Z,VxV)}. (5.2)
Making use of this in the commutation formula (see Yano [22])
(£vVxg—VxLyvg—Vyxg)Y,Z) =
—9((£vV)(X,Y), Z) = g((£vV)(X, 2),Y)
we deduce
g(LvV)(X,Y), Z) + g((£vV)(X, 2),Y) = =2(Vx 5)(Y, Z)
F 2 g(TXV,Y)g(Z,V) + g(¥,V)g(TxV 2)},
By a straightforward combinatorial computation and using the symmetric
property of £V the foregoing equation yields
9(£vV)(X,Y), Z) = (Vz9)(X,Y) = (VyS)(Z, X) — (Vx9)(Y, Z)
g2, V) {9(VxV,Y) + 6(VyV, X))
+9(V, V){9(VxV. Z) — g(VZV. X)}
+9(X, V{g(Vy V. Z) — g(VZV.Y)}]. (5.3)
Now applying the well-known formula (see Yano [22])
g(LvV)(X,Y),Z) = g(VxVyV = VvV + R(V, X)Y, Z)

in (5.3) and then setting X =Y = ¢;, where €1, es, ..., e, is a local orthonor-
mal frame field, implies

n 2 )
g (Z(Veiveiv — Vv,V RV, een) z) = 2 {(@vV)g(2,V)
i=1
By virtue of (2.1) the first two terms of the left hand side of the forego-
ing equation give —AV', while the last term gives the Ricci operator in the
direction of V. This completes the proof. O

Proof of Theorem 5.1. As V” is a harmonic 1-form, we have divV = 0 and
V? is closed, i.e., dV°* = 0. Therefore, Eq. (5.1) transforms to

— AV +QV =0. (5.4)
Making use of (5.4) in the Weitzenbdck formula:
AV = AV +QV (5.5)

provides AV = 2QV. This shows that V is an infinitesimal harmonic trans-
formation and we complete the proof of the first part. We now prove the
second part. Since V” is closed, Eq. (1.2) reduces to

1
VyV 4+ QY = \Y + EV"(Y)V. (5.6)
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By virtue of (5.6) one can easily deduce
1
VxVyV = VooV = —Ag(Y,V)VxV +g(VxV.Y)V} = (VxQ)Y(5.7)
Making use of (5.6) and (5.7) we can easily deduce

RIXY)V = {g(V,V)VxV — (X, V)93 V)
—(VxQ)Y + (VyQ)X. (5.8)

Contracting (5.8) over X we get
1 1
S V)= —{g(¥,V)divV — g(VyV.V)} + 5 (¥'7). (5.9)

On the other hand, tracing (5.6) and taking into account divV = 0, we
obtain 7 = nA + =|V|?. From which we find that Yr = 2¢(VyV,V). From
the last formula and (5.9), it follows S(Y, V) = 0, for all Y. Since the 1-form
V? associated with the vector field V is harmonic, we integrate the Bochner
formula:

1
/{|VV\2+S(V,V)}dM:/ Lawpam o,
M M 2

to deduce that VV = 0. This finishes the proof. O

Any Killing vector field on a Riemannian manifold is clearly an infinites-
imal harmonic transformation (i.e., AV + 2QV = 0) and satisfies divV = 0.
The converse is true in the compact case [33]. Here we prove the later for the
case in which the potential vector field of an m-quasi-Einstein manifold is an
infinitesimal harmonic transformation. Precisely we prove

Theorem 5.2. Let (M™,q,V) be an m-quasi-Einstein manifold whose poten-
tial vector field is an infinitesimal harmonic transformation. Then 'V is Killing
and the Ricci tensor S is a Killing tensor (i.e. cyclic parallel) if it satisfies
any one of the following conditions

(i) the scalar curvature r is constant,
(ii) the norm of the potential vector field V' is constant.

Proof. (i) By hypothesis we have AV = 2QV". Using this in the well known
formula (Weitzenbock) AV = AV + QV implies that AV = QV. By virtue
of this Eq. (5.1) provides

(div)g(Z, V) + (Vv V, Z) — g(V 2V, V) = 0. (5.10)

Taking Z = V the foregoing equation yields |V|?(divV) = 0. Since the m-
quasi-Einstein metric is non-trivial (i.e., not Einstein), we assume that |V|? #
0 on an open set O of M. Thus, on O we have divV = 0. As a consequence,
(5.10) can be written as

1
VVV—aD\V\Q =0, (5.11)
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where we have used X|V|? = 2g(VxV,V) and D is the gradient operator.
Taking covariant derivative of the foregoing equation along an arbitrary vec-
tor field X, and then contracting the resulting equation over X yields

1
divVyV — 5A|V|2 =0. (5.12)
On the other hand, tracing (1.2) we have
1
divV 47 — E|V|2 =nA\. (5.13)

Using divV = 0 (5.13) gives r + =|V|?> = nA. Since the scalar curvature is
constant, |V |? is also constant on O and hence |V|? # 0 on M. Consequently,
(5.12) provides divVyV = 0. By virtue of this and divV = 0, Lemma 4.1
shows that

1
SWV.V) + leval — [V =0, (5.14)
Moreover, from Lemma 4.2, we have S(V,V) — |[VV|? = 0. Using this in
(5.14), we can conclude that V is Killing. Hence (1.2) reduces to

SY,Z)=x(Y,2Z) + !

—g(Y.V)g(X, V). (515)

Next, we take covariant differentiation of (5.15) in the direction of X to get

1
(Vx8) (¥, 2) = —1g(Y,V)g(VxV, 2) +9(2,V)g(VxV.Y)].  (5.16)
Taking cyclic permutation of (5.16) over {X,Y, Z} and making use of the

fact that V is Killing, we deduce S is cyclically parallel, i.e.

P (Vx9)(Y.2)=0.
XY,z
This finishes the proof of item (i).

By assumption |V| is constant. Since g represents a non trivial m-quasi-
Einstein metric we have |V| # 0 on M. Hence from |V|?divV = 0 it follows
that divlV” = 0. Thus, by virtue of (5.13) we can conclude that the scalar cur-
vature r is constant. Hence the rest of the proof follows from item (7). O

It is known that if the Ricci tensorof a Riemannian metric is of Codazzi
type then the scalar curvature is constant. Thus, as a consequence of Theorem
5.2, we have

Corollary 5.1. Let (M,V,g) be an m-quasi-Einstein manifold of dimension n
such that the Ricci tensor S is Codazzi. If V is an infinitesimal harmonic
transformation, then either M is Finstein, or V is parallel.

Proof. Since the scalar curvature r is constant, from Theorem 5.2, the vector
field V' is Killing, and hence divV = 0. Consequently, Eq. (5.10) implies
that g(VyV,Z) = g(VzV,V) = 0. This shows that |V] is constant. On the
other hand, since the Ricci tensor is cyclically parallel and Codazzi, we must
have S is parallel. Thus, it follows from (5.16) that ¢(Y,V)g(VxV,Z) +
9(Z,V)g(VxV,Y) = 0. Taking V instead of Z in the foregoing equation and
since |V| is constant, we see that |V[?2g(VxV,Y) = 0. Thus, we have either
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|[V| = 0 or, |V] # 0. The former shows that M is Einstein and the latter
implies that V is parallel. g

It is known [16] that if the potential vector field of a compact m-quasi-
Einstein manifold is conformal Killing, then it must be Killing. Waiving the
compactness assumption here we prove

Theorem 5.3. Let (M"™,g,V) be an m-quasi-FEinstein manifold with constant
scalar curvature. If V' is conformal, then either V is Killing or (M™,g) is
Einstein.

Proof. By hypothesis V' is conformal. Thus, there exists a smooth function p
such that (£v¢)(X,Y) = g(VxVY) + g(VyV,X) = 2pg(X,Y). Therefore,
Eq. (1.2) reduces to
1
S(X,Y) = (A= p)g(X,Y) + —V’(X)V’(Y). (5.17)
Differentiating this along an arbitrary vector field Z we get

(V28)(X,Y) = ~(Zp)g(X.¥) + - (V' (X)(V2V)Y + V' (V)(V,V) X},

Taking the cyclic sum over {X,Y, Z} and remembering that V is conformal
the preceding equation yields

D [(V28)(X.Y) + (Zo)g(X,Y) ~ LV (X)g(¥, 2)] =0, (518)
X,Y,Z

where @@y , denotes one more time the cyclic permutation sum over
{X,Y, Z}. Contracting (5.18) over Y, Z provides

20+ b
X Xp)— =V’ (X)=0. .1
2 (X0 + (Xp) - L (x) =0 (519)
By virtue of this, Eq. (5.18) transforms into
D (V28)(X.¥) - 2 (xn] =0,

XY, Z
Moreover, the scalar curvature being constant, the foregoing equation entails
that the Ricci tensor is cyclically parallel. At this point, we rewrite Eq. (5.17)
as

S(X,Y) =ag(X,Y) + Bw(X)w(Y), (5.20)

2
where a = A\ —p, = % and w is a 1-form associated with the unit vector

field w*. Now, the covariant differentiation of (5.20) along an arbitrary vector
field gives

(Vz9)(X)Y) = (Za)g(X,Y) + (ZB)w(X)w(Y)
+0{w(Y)(Vzw)X + w(X)(Vzw)Y}. (5.21)
Since the Ricci tensor is cyclically parallel Eq. (5.21) entails
D (Xa)g(Y, 2) + (X B)w (Y )w(Z)

X,Y,Z
+{w(Y)(Vxw)Z +w(Z)(Vxw)Y}] = 0. (5.22)
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Setting Y = Z = w¥, where w* is the vector field defined by g(w#, X) = w(X),
for all X, in (5.22) we find

(Xa) + (XB) + 2{(w*a) + (W' B)}w(X) + 26(V:w)X =0.  (5.23)

On the other hand, contracting (5.21) and remembering that the scalar cur-
vature is constant we obtain

Xa+ (W B)w(X) + B[(Veiw) X — dww(X)] = 0. (5.24)
Tracing (5.20) and then differentiating yields
n(Xa)+ (X06) =0. (5.25)

Replacing X by wf in (5.23) shows (w'a) + (w#3) = 0. Using this in (5.25)
provides wfa = w!3 = 0. By virtue of this and taking X = w® in (5.24) one
easily verifies 30w = 0. Making use of this and (w#3) = 0 in (5.24) provides
Xa+ B(V,:w)X = 0. Using all these consequences it follows from (5.23)
that Xa — X = 0. Combining this with (5.25) implies Xa = X8 = 0. This
shows that the functions a and 3 are constant. In other words, p and |V'|? are
constant on M. As V is conformal p|V|? = 0. Thus, either p = 0 or V = 0.
The former shows that V' is Killing and the latter implies that M is Einstein.
This establishes the proof. O

Waving the condition on the scalar curvature and assuming that the
potential vector field V' is homothetic, i.e., £y g = pg with p a constant, we
prove

Corollary 5.2. Let (M™,g,V) be an m-quasi-Einstein manifold. If V is a
homothetic vector field, then either V is Killing or, (M",g) is Finstein.

Proof. As V' is homothetic, we have

9(VxV.Y) +g(VyV, X) = 2pg(X.Y), (5.26)
where p is a constant. Therefore, from (5.19) it follows that
2 20
Xr)— —V’(X)=0. 5.27
2 (xn) - 2y (x) (521)

Writing this as: %ﬁdr = %Vb, and applying d (operator of exterior
differentiation) to this, we achieve pdV” = 0. If p = 0, then V is Killing and
if p # 0, then V® is closed. The last condition together with (5.26)implies
VxV = pX. Making use of this we deduce R(X,Y)V = 0. From which it
follows that S(Y, V) = 0. Use of this in (5.17) gives {(A—p)— L[V [*}[V]* = 0.
If V = 0, then M is Einstein. So, we assume that |V|? # 0 in some open set N
of M. Then on N, we have (A—p) — = |V|? = 0. Now, the trace of (5.17) gives
r=n(A—p) — L|V|% The last two equations imply that r = (n — 1)(A — p)
and clearly this is constant. Hence, from (5.27) we obtain V' = 0. Thus we
arrive at a contradiction. This completes the proof. O
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