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Abstract. In this paper, we investigate the existence of solutions to a
nonlinear parabolic system, which couples a non-homogeneous reaction-
diffusion-type equation and a non-homogeneous viscous Hamilton–
Jacobi one. The initial data and right-hand sides satisfy suitable inte-
grability conditions and non-negative. To simplify the presentation of
our results, we will consider separately two simplified models : first,
vanishing initial data, and then, vanishing right-hand sides.
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1. Introduction

The main goal of this paper is to study the existence of solutions to the
following non-linear system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − Δu = vq + f in ΩT = Ω × (0, T ),
vt − Δv = |∇u|p + g in ΩT = Ω × (0, T ),
u = v = 0 on ΓT = ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,
v(x, 0) = v0(x) in Ω,
u, v ≥ 0 in Ω × (0, T ),

. (1.1)

where Ω is a bounded domain of IRN , N ≥ 1 and p, q ≥ 1. Here (f, g)
and (u0, v0) are non-negative data and satisfy some suitable integrability
conditions that we will specify later. Our objective is to find “natural” relation
between p, q and the regularity of the data to get the existence of a solution
to system (1.1).
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Systems with gradient term appear for instance when considering electro-
chemical models in engineering and some other models in fluid dynamics. We
refer to [23] and [28] for more details and more applications of this class of
systems.

Before stating our main results, let us begin by recalling some previous
results related to our system.

Stationary case Concerning existence of solutions, it is well known in some
particular cases. For this, we refer to [8,19,20] and [1] where some general
existence results were established.

Parabolic case In the case of a single equation and under the presence of
gradient term, many results of global existence are known. We refer to [2,18]
and the references therein. On the other hand, there is an extensive literature
devoted to the study and solvability and properties of solutions to the so-
called viscous Hamilton–Jacobi equation (HJ).

More precisely, let us consider the following Dirichlet and Cauchy prob-
lems:

(HJD)

⎧
⎨

⎩

ut − Δu = a|∇u|p + h(x, t) in ΩT ,
u(x, t) = 0 on ΓT ,
u(x, 0) = u0(x) in Ω ;

and

(HJC)
{

ut − Δu = a|∇u|p + h(x, t) in R
N × (0, T ),

u(x, 0) = u0(x) in R
N ,

where a ∈ IR∗, p ≥ 0.

First case If h ≡ 0. In bounded domains, existence and uniqueness results
of (HJD) may be found for example in [4,10,24,47,48] and the references
therein. A considerable literature has also been devoted to the analogous
whole-space Cauchy problem (HJC) ; we refer to [7,12–14,35,49] and the
references therein.

Needless to say, the references mentioned above do not exhaust the rich
literature on the subject.

Second case If h �≡ 0. As far as we know, Problems (HJD) and (HJC)
have been considered in [50,51]. We recall also the result of [2] where, in
the case p = 2, sharp regularity results are proved for positive solution to
problem (HJD) and, as a consequence, a complete classification of the set
of nonnegative solutions is obtained in relation with the classical parabolic
capacity.

In the case of parabolic systems, we refer to [36,37], [29,32,40,44] and
the references therein. Let us briefly recall some related results. The case
where the gradient term appears as an absorption term was treated in [40].
A particular case with natural growth in the gradient was considered in [29].
We also mention the paper [16] where applications of a such parabolic systems
are given in the context of stochastic differential games.
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Systems with potential nonlinearities was studied in depth in [32], where
the authors proved the existence of a Fujita-type exponents. An interesting
contribution for this class of systems was recently made in [44, section 32].

Our main contribution in this work is to get the existence of solution
to (1.1) for all p, q ≥ 1 under “natural” conditions on the data (u0, v0) and
(f, g). By solution, we mean either energy solution or entropy solution (for
more specifics, see Definition 2.2 and Definition 2.5).

To simplify the presentation, we will mostly discuss two simplified mod-
els (we refer to the proof of Theorem 3.3 for the relation between the two
cases).

(1) The first one is obtained by taking (u0, v0) = (0, 0) in (1.1), namely

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = Δu + vq + f in ΩT ,
vt = Δv + |∇u|p + g in ΩT ,
u = v = 0 on ΓT ,
u(x, 0) = 0 in Ω,
v(x, 0) = 0 in Ω,
u, v ≥ 0 in ΩT .

(1.2)

Using regularity arguments and a suitable fixed-point Theorem, we get
the existence of a solution to (1.2) in a suitable parabolic-Sobolev space.

(2) The second simplified model corresponds to (f, g) = (0, 0), i.e:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = Δu + vq in ΩT ,
vt = Δv + |∇u|p in ΩT ,
u = v = 0 on ΓT ,
u(x, 0) = u0(x) in Ω,
v(x, 0) = v0(x) in Ω,
u, v ≥ 0 in ΩT .

(1.3)

Taking advantage from the study of the first model, and using a change
of function, we will prove that system (1.3) has a solution under suitable
hypotheses on initial data (u0, v0).

In a forthcoming work, we shall investigate questions of global existence
and Fujita-type blow-up for the whole-space Cauchy problem.

The paper is composed of four sections. In Sect. 2, we give some useful
tools like the notion of parabolic-Sobolev spaces and some of their properties.
We also specify the sense in which solutions are considered, as well as some
optimal regularity results. The first part of Sect. 3 is devoted to get existence
results, and is split into two parts: Sect. 3.1 is devoted to the first simplified
model (1.2) and Sect. 3.2 for the second one (1.3). In Sect. 3.3, we analyze
the question of blow-up in finite time, in a suitable norm of the solution and
under additional condition on p, q. The last section is devoted to treating
variants of the previous model, where the gradient term appears in both
evolution equations.
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2. Preliminary Results and Functional Setting

In this section, we give some useful tools that will be used many times in this
paper.

2.1. Functional Setting

Let r ≥ 1. In the sequel, we denote by Lr(0, T ;W 1,r
0 (Ω)) the set of functions

u such that u ∈ Lr(ΩT ) and u(., t) ∈ W 1,r
0 (Ω). The space Lr(0, T ;W 1,r

0 (Ω))
is equipped with the norm

||u||Lr(0,T ;W 1,r
0 (Ω)) :=

(∫ T

0

∫

Ω

|∇u(x, t)|r dx dt

) 1
r

is a Banach space. We shall often refer to this space by the shorthand
Er(ΩT ) := Lr(0, T ;W 1,r

0 (Ω)).
For s, r ≥ 1, the space V s,r

0 (ΩT ) := L∞(0, T ;Ls(Ω)) ∩ Er(ΩT ) endowed
with the norm

||ϕ||V s,r
0 (ΩT ) := ess sup

0≤t≤T
||ϕ(., t)||Ls(Ω) + ||ϕ||Er(ΩT )

is also a Banach space. If s = 1, we have,

V 1,r
0 (ΩT ) = L∞(0, T ;L1(Ω)) ∩ Er(ΩT ).

The next proposition will be useful to show a priori estimates, and it
will be used throughout this work. We refer to [31, Proposition 3.1] for more
details.

Proposition 2.1. Let s, r ≥ 1 and ν = r
N + s

N
, then there exists a positive

constant C depending only on N, ν, s such that for all v ∈ V s,r
0 (ΩT ),

∫ ∫

ΩT

|v(x, t)|νdx dt ≤ Cν
( ∫ ∫

ΩT

|∇v(x, t)|rdx dt
)

×
(
ess sup

0≤t≤T

∫

Ω

|v(x, t)|sdx dt
) r

N

; (2.1)

moreover,

||v||Lν(ΩT ) ≤ C||v||V s,r
0 (ΩT ). (2.2)

The multiplicative inequality (2.1) and the embedding inequality (2.2) con-
tinue to hold for functions v ∈ V s,r(ΩT ) such that

∫

Ω

v(x, t) dx = 0, for all a.e t ∈ (0, T ).

• Notions of solution : Now, we define the two notions of solution that we
will systematically use throughout this paper: energy solution and entropy
solution.

The starting point is to treat each equation in system (1.1) separately.
To this end, let us consider the problem

⎧
⎨

⎩

wt − Δw = h in ΩT ,
w = 0 on ΓT ,
w(x, 0) = w0(x) in Ω.

(2.3)
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Definition 2.2. Assume that (h,w0) ∈ L2(0, T ;H−1(Ω)) × L2(Ω). We say
that w is an energy solution to problem (2.3) if w ∈ L2(0, T ;H1

0 (Ω)) ∩
C(0, T ;L2(Ω)), wt ∈ L2(0, T ;H−1(Ω)), w(x, t) → w0 strongly in L2(Ω) as
t → 0 and for all v ∈ L2(0, T ;H1

0 (Ω)) we have
∫ T

0

〈wt, v〉dt +
∫∫

ΩT

∇w · ∇v dx dt =
∫ T

0

〈h(x, t), v〉dt.

Related to nonlinear system (1.1), we have the following definition of
energy solution.

Definition 2.3. (Energy solution) Assume that (f, u0), (g, v0) ∈ L2(0, T ;
H−1(Ω)) × L2(Ω). Let (u, v) ∈ (L2(0, T ;H1

0 (Ω)) ∩ C(0, T ;L2(Ω)))2 be non-
negative functions such that (ut, vt) ∈ (L2(0, T ;H−1(Ω)))2. Define F (x, t) :=
vq + f,G(x, t) := |∇u|p + g.

We say that (u, v) is an energy solution to the system (1.1) if F,G ∈
L2(0, T ;H−1(Ω)), u(·, t) → w0, v(·, t) → v0 strongly in L2(Ω) as t → 0 and
for all (ψ, θ) ∈ (L2(0, T ;H1

0 (Ω)))2, we have
∫ T

0

〈ut, ψ〉dt +
∫∫

ΩT

∇u · ∇ψ dx dt =
∫ T

0

〈F (x, t), ψ〉dt,

∫ T

0

〈vt, θ〉dt +
∫∫

ΩT

∇v · ∇θ dx dt =
∫ T

0

〈G(x, t), θ〉dt.

In the case of L1 data, we need to use the concept of entropy solution
introduced in [42] (which is equivalent, in this case, to the concept of renor-
malized solution defined in [17]). We note that the concept of entropy solution
was introduced for the first time in [15] to treat nonlinear elliptic problem
with general data.

Let us first recall the following definition:

Definition 2.4. Let p ≥ 1 and let w be a measurable function. We say that
w ∈ T 1,p

0 (ΩT ) if Tk(w) ∈ Lp(0, T ;W 1,p
0 (Ω)) for all k > 0 where

Tk(s) :=

{
s if |s| ≤ k ;

k
s

|s| if |s| > k. (2.4)

We begin by stating the defining of the entropy solution in the case of
scalar equation.

Definition 2.5. Assume that (h,w0) ∈ L1(ΩT ) × L1(Ω). We say that w ∈
C(0, T ;L1(Ω)) is an entropy solution to problem (2.3) if w ∈ T 1,2

0 (ΩT ) and
for all v ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(ΩT ) ∩ C(0, T ;L1(Ω)) and for all k > 0,
∫

Ω

Θk(w − v)(T ) dx +
∫∫

ΩT

vtTk(w − v) dx dt +
∫∫

ΩT

∇w∇Θk(w − v) dx dt

=
∫

Ω

Θk(w0 − v(0, .)) dx +
∫∫

ΩT

h Tk(w − v) dx dt,

where

Θk(s) :=
∫ s

0

Tk(t) dt.
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Notice that,
∫

Ω

wtTk(w) dx =
d

dt

(∫

Ω

Θk(w) dx
)
,

where
∫

Ω

Θk(w(x, t)) dx −
∫

Ω

Θk(w(x, 0)) dx =
∫ t

0

∫

Ω

wsΘk(w) dx ds.

If w is an entropy solution to problem (2.3), then w is a distributional
solution.

In a similar way, we define the entropy solution for system (1.1).

Definition 2.6. (Entropy solution) Assume that (f, u0), (g, v0) ∈ L1(ΩT ) ×
L1(Ω). Let (u, v) ∈ (C(0, T ;L1(Ω)))2 be nonnegative functions. We say that
(u, v) is an entropy solution to system (1.1) if (u, v) ∈ (T 1,2

0 (ΩT ))2, F,G ∈
L1(ΩT ) (where F,G are defined as in Definition 2.3), and for all (ψ, θ) ∈
(L2(0, T ;H1

0 (Ω)) ∩ L∞(ΩT ) ∩ C(0, T ;L1(Ω)))2 and for all k > 0,
∫

Ω

Θk(u − ψ)(T ) dx +
∫∫

ΩT

ψtTk(u − ψ) dx dt +
∫∫

ΩT

∇u∇Θk(u − ψ) dx dt

=
∫

Ω

Θk(u0 − ψ(0, .)) dx +
∫∫

ΩT

F Tk(u − ψ) dx dt,

∫

Ω

Θk(v − θ)(T ) dx +
∫∫

ΩT

θtTk(v − θ) dx dt +
∫∫

ΩT

∇v∇Θk(u − θ) dx dt

=
∫

Ω

Θk(u0 − θ(0, .)) dx +
∫∫

ΩT

GTk(v − θ) dx dt.

The next existence and compactness result is proved in [42] and [17].

Theorem 2.7. Let (h,w0) ∈ L1(ΩT )×L1(Ω). Then problem (2.3) has a unique
entropy solution w ∈ C(0, T ;L1(Ω)) such that w ∈ Ls(0, T ;W 1,s

0 (Ω)) for all
s < N+2

N+1 . Moreover, there exists a positive constant C = C(Ω, N, s) such
that

||w||C(0,T ;L1(Ω)) + ||w||Ls(0,T ;W 1,s
0 (Ω)) ≤ C(||w0||L1(Ω) + ||h||L1(ΩT )).

(2.5)

As a consequence of Proposition 2.1, it holds that, for all ν < N+2
N and for

all r < N+2
N+1 ,

∫ ∫

ΩT

|w(x, t)|νdx dt ≤ Cν
( ∫ ∫

ΩT

|∇w(x, t)|rdx dt
)

×
(
ess sup

0≤t≤T

∫

Ω

|w(x, t)|dx dt
) r

N

. (2.6)

Furthermore, for s < N+2
N+1 fixed, the operator L : (h,w0) �→ u is compact

from L1(ΩT ) × L1(Ω) to Ls(0, T ;W 1,s
0 (Ω)).

Now, let us recall some regularity results that will allow us to establish
some a priori estimates when dealing with approximating problems. We refer
to [14,18,44] for a complete proof.
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Theorem 2.8. Let w be the unique solution (in sense of Definition 2.5) to
problem (2.3) with (h,w0) ∈ Lκ(ΩT ) × Lτ (Ω). Then we have

The case w0 ≡ 0 :

• If 1 < κ < N+2
2 , then w ∈ Lδ(ΩT ) where δ = (N+2)κ

N+2−2κ , w ∈ Eκ(ΩT )

where κ = (N+2)κ
N+2−κ and w ∈ L∞(0, T ;La(Ω)) where a = κN

N+2−2κ .
Moreover, there exists C = C(Ω, N, κ) > 0 such that

||w||L∞(0,T ;La(Ω)) + ||w||Eκ(ΩT ) + ||w||Lδ(ΩT ) ≤ C||h||Lκ(ΩT ). (2.7)

• If κ = N+2
2 , then there exists α > 0 depending only on Ω and N such

that eαw ∈ L∞(0, T ;L2(Ω)) and there exists C ≡ C(Ω, N, κ) > 0 such
that

||eαw||L∞(0,T ;L2(Ω)) ≤ C||h||Lκ(ΩT ). (2.8)

• If κ > N+2
2 , then w ∈ L∞(ΩT ) and there exists C ≡ C(Ω, N, κ) such

that

||w||L∞(ΩT ) ≤ C||h||Lκ(ΩT ). (2.9)

The case h ≡ 0:
Let w0 ∈ Lτ (Ω), τ ∈ [1,∞[, then there exist C1, C2 > 0 depending only

on γ, τ, s,N,Ω such that

||w(., t)||Lγ(Ω) ≤ C1

||w0||Lτ (Ω)

t
N
2 ( 1

τ − 1
γ )

, τ ≤ γ ≤ +∞ , (2.10)

and

||∇w(., t)||Ls(Ω) ≤ C2

||w0||Lτ (Ω)

t
N
2 ( 1

τ − 1
s )+ 1

2
, τ ≤ s ≤ +∞. (2.11)

Moreover, w ∈ Lθ(ΩT ) for all θ < ( 2
N + 1)τ and |∇w| ∈ Ls(ΩT ) for all

s < (N+2)τ
N+τ . Furthermore, we have

||w||Lθ(ΩT ) + ||w||Es(ΩT ) ≤ C(Ω, N, τ)||w0||Lτ (Ω).

Remark 1. The regularity results of Theorem 2.7 and Theorem 2.8 are sharp,
in the sense that if the algebraic conditions are violated, one can construct
data h or w0 such that the above estimates are invalidated and no local
solution to the associate equation exists.

Finally, let us recall the famous Schauder fixed-point theorem.

Theorem 2.9. (Schauder fixed-point theorem) Assume that E is a closed con-
vex set of a Banach space X. Let L be a continuous and compact mapping
from E into itself. Then L has a fixed point in E.
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3. Existence Results

As already mentioned in Sect. 1, to simplify the presentation of our results,
we will consider separately two cases : the case (f, g) �= (0, 0) with (u0, v0) ≡
(0, 0) and the case (u0, v0) �= (0, 0) with (f, g) ≡ (0, 0).

Henceforth, we denote by C any positive constant that depends only on
the data of the problem, and can change from one line to next.

3.1. First Case:

(u0, v0) �= (0, 0)
The main system is:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut − Δu = vq + f in ΩT ,
vt − Δv = |∇u|p + g in ΩT ,
u = v = 0 on ΓT ,
u(x, 0) = v(x, 0) = 0 in Ω,
u, v ≥ 0 in ΩT ,

(3.1)

where Ω is a bounded domain of IRN and p, q ≥ 1. Here f and g are nonneg-
ative measurable functions with additional assumptions.

The main existence result in this case is the following:

Theorem 3.1. Let T > 0 and p, q ≥ 1 with pq > 1. Assume that (f, g) ∈
Lm(ΩT ) × Lσ(ΩT ), where (m,σ) ∈ [1,+∞)2 satisfies one of the following
conditions:

m,σ ∈ [1, N + 2) with pσ < m =
m(N + 2)
N + 2 − m

and

qm <
(N + 1)σ

N
=

(N + 1)(N + 2)σ
N(N + 2 − σ)

; (3.2)

or, σ ≤ N + 2 ≤ m, with (3.3)

(a) either q ≤ σ(N + 1)
N(N + 2 − σ)

and p ∈ [1,+∞),

(b) or
σ(N + 1)

N(N + 2 − σ)
< q <

(N + 1)σ
N

and

p
[
q − σ(N + 1)

N(N + 2 − σ)

]
<

N + 1
N

;

or, m ≤ N + 2 ≤ σ, with (3.4)
(a) either pσ < m and q ∈ [1,+∞),

(b) or pσ ≥ m and q <
(N + 1)(N + 2)

N
(
p[N + 2 − m] − m

)

+

;

or, m, σ ≥ N + 2, with q ∈ [1,+∞) and p ∈ [1,+∞). (3.5)



MJOM Existence Results to a Class of Nonlinear Parabolic Systems Page 9 of 30 119

Then there exists T ∗ ≤ T such that the system (3.1) has a nonnegative solu-
tion (u, v). Moreover, (u, v) ∈ V 1,α

0 (ΩT ∗) × V 1,β
0 (ΩT ∗) for all α < (N+2)m

(N+2−m)+

and β < (N+2)σ
(N+2−σ)+

.

Remark 2. To give some light on the hypotheses (3.2)-(3.5), let us make
explicit the size conditions on (p, q) for a given (m,σ).

• If m = σ = 1, condition (3.2) holds for all p < N+2
N+1 and q < N+2

N , which
are the maximal regularity results of the potential term and gradient
term, respectively, for the solution of parabolic problem with L1 data.
(See Remark 4).

• If m = σ = 2, condition (3.2) is satisfied for all p < N+2
N and q <

(N+1)(N+2)
N2 .

• If m > N + 2, σ = N , condition (3.3) is satisfied for all p < ∞ and for

all q <
N + 1

2
.

• If m = N,σ = N + 2, condition (3.4) is satisfied for all p < N
2 and

q < ∞.
• If m = σ ≥ N + 2, condition (3.5) holds for all (p, q) ∈ [1,+∞)2.

Remark 3. The above restrictions on the parameters are natural to get exis-
tence of solution if we consider elliptic or parabolic systems (or equations)
with gradient term. As an example, let us consider a single elliptic equation
with gradient term:

−Δw = |∇w|p + f in Ω, w = 0 on ∂Ω,

with f ∈ Lm(Ω) and p > 1. As proved in [38], existence holds under the
optimal condition m > N

p′ which means that p < N
(N−m)+

. In particular, if
m = 2, the condition p < N

N−2 needs to be satisfied. The parabolic case is
treated in [27] and [2]. If p = 2, we can prove that for all ε > 0, setting
f(x) = 1

|x|N/2+ε /∈ L
N
2 (B1(0)), then the corresponding parabolic problem

with quadratic gradient term as non-local solution.

Proof of Theorem 3.1. We will give the proof under condition (3.2) i.e

m, σ ∈ (1, N), pσ <
m(N + 2)
N + 2 − m

and qm <
(N + 1)(N + 2)σ
N(N + 2 − σ)

.

The other cases follow in a similar way.
The proof will be achieved in several steps. �
• First step : Is A priori estimates and the construction of the main operator

Let r ≥ 1, recall that E1(ΩT ) := L1(0, T ;W 1,1
0 (Ω)) and V 1,r

0 (ΩT ) =
L∞(0, T ;L1(Ω)) ∩ Er(ΩT ) and define the set

Fr(ΩT ) :=

{

ϕ ∈ E1(ΩT ) ; ϕ ∈ Er(ΩT ) ∩ L∞(0, T ; L1(Ω)) with ||ϕ||
V

1,r
0 (ΩT )

≤ M

}

,

where

||ϕ||V 1,r
0 (ΩT ) :=

(∫ T

0

||∇ϕ||rLr(Ω)dt

) 1
r

+ ||ϕ||L∞(0,T ;L1(Ω)),
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and M is a positive constant that will be chosen later. It is clear that Fr(ΩT )
is a closed convex subset of E1(ΩT ).

By taking into consideration that qm <
(N + 1)σ

N
=

(N + 1)(N + 2)σ
N(N + 2 − σ)

, we

can choose r > 1 such that
qm N

N + 1
< r ≤ σ. (3.6)

Now, let ϕ ∈ Fr(ΩT ), according to Proposition 2.1, we have |ϕ|r N+1
N ∈

L1(ΩT ). Moreover, q < r N+1
N , then |ϕ|q ∈ L1(ΩT ). Thus, we can define

u to be the unique weak solution to the problem
⎧
⎨

⎩

ut − Δu = (ϕ+)q + f in ΩT ,
u = 0 on ΓT ,
u(x, 0) = 0 in Ω,

and u ∈ V 1,s
0 (ΩT ) for all s < N+2

N+1 .
Furthermore, (3.6) implies that qm < r N+1

N . Therefore, ϕq
+ ∈ Lm(ΩT ).

Hence, applying the estimate (2.7) (Theorem 2.8) and Proposition 2.1 to
obtain

||∇u||Lm(ΩT ) ≤ C

(

||ϕ||q
Lqm(ΩT )

+ ||f ||Lm(ΩT )

)

≤ C

(

||ϕ||q
V

1,r
0 (ΩT )

+ ||f ||Lm(ΩT )

)

,

(3.7)

with m =
(N + 2)m
N + 2 − m

.

In addition, p ≤ pσ < m, then |∇u|p ∈ Lσ(ΩT ) ⊂ L1(ΩT ). Thus we can
define v to be the unique weak solution to the problem

⎧
⎨

⎩

vt − Δv = |∇u|p + g in ΩT ,
v = 0 on ΓT ,

v(x, 0) = 0 in Ω,

and v ∈ V 1,s
0 (ΩT ) for all s < N+2

N+1 . Applying again estimate (2.7) (Proposition
2.8) gives

||∇v||Lσ(ΩT ) ≤ C

(

||∇u||pLpσ(ΩT ) + ||g||Lσ(ΩT )

)

, (3.8)

with σ = (N+2)σ
N+2−σ . Since pσ < m =

m(N + 2)
N + 2 − m

, using (3.7), we get

||∇v||Lσ(ΩT ) ≤ C
[
||ϕ||pq

Lqm(ΩT ) + ||f ||pLm(ΩT ) + ||g||Lσ(ΩT )

]
. (3.9)

Now, using the fact that qm ≤ r N+1
N and r ≤ σ = σ(N+2)

N+2−σ , then according to
Proposition 2.1, we have

||∇v||Lr(ΩT ) ≤ C
[
||ϕ||pq

V 1,r
0 (ΩT )

+ ||f ||pLm(ΩT ) + ||g||Lσ(ΩT )

]
.
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We estimate now ||v||L∞(0,T ;L1(Ω)). Using the estimate (2.5) (Theorem 2.7),
estimate (3.7) and by Hölder’s inequality, we get

||v||L∞(0,T ;L1(Ω)) ≤ C

∥
∥
∥
∥|∇u|p + g

∥
∥
∥
∥

L1(ΩT )

= C(||∇u||pLp(ΩT ) + ||g||L1(ΩT ))

≤ C

(

||∇u||pLm(ΩT ) + ||g||Lσ(ΩT )

)

≤ C

(

||ϕ||pq
Lqm(ΩT ) + ||g||Lσ(ΩT ) + ||f ||pLm(ΩT )

)

≤ C
[
||ϕ||pq

V 1,r
0 (ΩT )

+ ||f ||pLm(ΩT ) + ||g||Lσ(ΩT )

]
.

Thus, combining the above estimates leads to

||v||V 1,r
0 (ΩT ) ≤ C

[
||ϕ||pq

V 1,r
0 (ΩT )

+ ||g||Lσ(ΩT ) + ||f ||pLm(ΩT )

]
. (3.10)

So, the operator

L : Fr(ΩT ) �−→ E1(ΩT )
ϕ �−→ L(ϕ) = v,

is well defined. In addition, if v is a fixed point of L in Fr(ΩT ), then (u, v)
solves System (3.1). Thus we just have to show that L has a fixed point in
Fr(ΩT ).

• Second step: L is continuous and compact operator.
We begin by proving the continuity of L. Let {ϕn}n ⊂ Fr(ΩT ), ϕ ∈

Fr(ΩT ) such that ϕn → ϕ strongly in E1(ΩT ). Define vn := L(ϕn) and v :=
L(ϕ). So (un, vn) and (u, v) satisfy

⎧
⎨

⎩

∂tun − Δun = (ϕ+
n )q + f in ΩT ,

∂tu − Δu = (ϕ+)q + f in ΩT ,
un = u = 0 on ΓT ,

(3.11)

and
⎧
⎨

⎩

∂tvn − Δvn = |∇un|p + g in ΩT ,
∂tv − Δv = |∇u|p + g in ΩT ,
vn = v = 0 on ΓT .

(3.12)

Since {ϕn}n ⊂ Fr(ΩT ), then

||ϕn||Er(ΩT ) + ||ϕn||L∞(0,T ;L1(Ω)) ≤ M.

Taking into consideration that ϕn → ϕ strongly in E1(ΩT ), by Proposition
2.1 and using Vitali’s lemma we conclude that ϕn → ϕ strongly in Lγ(ΩT )
for all γ < r N+1

N . Since qm < r N+1
N , then ϕn → ϕ strongly in Lqm(ΩT ).

Going back to (3.11) and using estimate (2.7) (Theorem 2.8) to obtain
for all μ ≤ m

||∇un − ∇u||Lμ(ΩT ) ≤ C||(ϕ+
n )q − (ϕ+)q||Lm(ΩT ) → 0 as n → ∞.
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Now, thanks to Theorem 2.7 vn → v strongly in Es(ΩT ) for all s <
N + 2
N + 1

which implies the continuity of L.
It remains to prove that L is compact. Let {ϕn}n ⊂ Fr(ΩT ) be such that
||ϕn||V 1,r

0 (ΩT ) ≤ C. Define vn = L(ϕn). Since {ϕn}n ⊂ Fr(ΩT ), it follows
that

||ϕn||Er(ΩT ) + ||ϕn||L∞(0,T ;L1(Ω)) ≤ M.

Therefore, as in the proof of the continuity of L, it holds that the sequence
{ϕn}n is bounded in Lqm+ε(ΩT ) for some ε > 0. Define hn := (ϕ+

n )q + f ,
then ||hn||L1(ΩT ) ≤ C for all n. Thus, by the compactness result in Theorem
2.7, we obtain that, up to a subsequence, un → u strongly in Es(ΩT ) for all
s < N+2

N+1 . Taking into consideration that {un}n is bounded in Eμ(ΩT ) for all
μ ≤ m and by Vitali’s lemma, we conclude that vn → v strongly in Es(ΩT )

for all s <
N + 2
N + 1

, in particular for s = 1. Hence the result follows.

• Third step : To finish our proof, we will choose M and T ∗ such that
L(Fr(ΩT ∗)) ⊂ Fr(ΩT ∗).

For s ≥ 0, we consider the concave function

Υ(s) := s
1

pq − C̃s, (3.13)

where C̃ is a universal positive constant (depending only on data) that will
specified later.

Using the fact that pq > 1, then there exists s0 > 0 such that Υ(s0) = 0,
Υ(s) > 0 for all s ∈ (0, s0), Υ(s) < 0 for all s ∈ (s0,+∞). Thus, we get the
existence of positive constants � and Λ∗ such that

max
s≥0

Υ(s) = Υ(�) = Λ∗.

Moreover,

�
1

pq = C̃(� +
Λ∗

C̃
). (3.14)

Let � > 0 satisfying (3.14), then we can fix T ∗ ≤ T such that

||f ||pLm(ΩT ∗ ) + ||g||Lσ(ΩT ∗ ) ≤ Λ∗

C̃
. (3.15)

Setting M = �
1

pq , then thanks to (3.14) and (3.15), we have

C̃

(

Mpq + ||f ||pLm(ΩT ∗ ) + ||g||Lσ(ΩT ∗ )

)

≤ M. (3.16)

Now, from (3.10), we deduce that

||v||V 1,r
0 (ΩT ∗ ) ≤ C

[
Mpq + ||g||Lσ(ΩT ∗ ) + ||f ||pLm(ΩT ∗ )

]
≤ M.

Hence L(Fr(ΩT ∗)) ⊂ Fr(ΩT ∗).

Fourth step : Since L is a continuous compact operator with L(Fr(ΩT ∗)) ⊂
Fr(ΩT ∗), using the Schauder fixed-point Theorem we get the existence of
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v ∈ Fr(ΩT ∗) such that L(v) = v. By the maximum principle it holds that
u, v > 0. Thus, (u, v) solves system (3.1). �

Remark 4. Notice that, if m = σ = 1, assumptions p < N+2
N+1 and q < N+2

N are
optimal in the sense that if p ≥ N+2

N+1 or q ≥ N+2
N , we can show the existence of

a suitable data (f, g) ∈ L1(ΩT )×L1(ΩT ) such that system (3.1) has no local
solution. Assume for example that p ≥ N+2

N+1 and suppose by contradiction
that system (3.1) has a local solution for all data (f, g) ∈ L1(ΩT ) × L1(ΩT ).
It is clear that u is a supersolution to the problem

⎧
⎨

⎩

wt − Δw = f(x, t) in ΩT ,
w(x, t) = 0 on ΓT ,
w(x, 0) = u0(x) in Ω.

(3.17)

Denoting w the unique local entropy solution to problem (3.17), then w ≤ u.
Let us fix f ∈ L1(ΩT ) such that if ν0 > N+2

N , then
∫ ∫

ΩT
wν0(x, t)dx dt = ∞.

(This follows by taking into consideration the optimality of the regularity
result in Theorem 2.7, see also [14,18,44]).

Now, as |∇u|p ∈ L1(ΩT ), we deduce from Proposition 2.1 that

∫ ∫

ΩT

uν(x, t)dx dt ≤ Cν
( ∫ ∫

ΩT

|∇u(x, t)|rdx dt
)(

ess sup
0≤t≤T

∫

Ω
u(x, t)dx dt

) r
N

< ∞

with ν = pN+1
N . Since u ≥ w, then

∫ ∫

ΩT
wν(x, t)dx dt < ∞. Hence, ν ≤

ν0 < N+2
N and then p < N+2

N+1 , a contradiction with the hypothesis. Hence we
conclude.

In the case where p = q = 1, we have the next existence result, which
improves the existence result obtained in [8] for the elliptic case.

Theorem 3.2. Let T > 0. Assume that (f, g) ∈ L1(ΩT )×L1(ΩT ) with f, g � 0
in ΩT . Then the following system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − Δu = v + f in ΩT ,
vt − Δv = |∇u| + g in ΩT ,
u = v = 0 on ΓT ,
u(x, 0) = 0 in Ω,
v(x, 0) = 0 in Ω,
u, v ≥ 0 in ΩT

(3.18)

has a solution (u, v) ∈ (V 1,θ
0 (ΩT ))2 for all θ < N+2

N+1 .

Proof. Notice that, in this case we lose the concavity of the real function
defined in (3.13). Therefore, we proceed by approximation. By [39], we get
the existence of a sequence {(un, vn)}n ⊂ (V 1,θ

0 (ΩT ))2, for all θ < N+2
N+1 such
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that (un, vn) solves the system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tun − Δun =
vn

1 + 1
nvn

+
f

1 + 1
nf

in ΩT ,

∂tvn − Δvn =
|∇un|

1 + 1
n |∇un|

+
g

1 + 1
ng

in ΩT ,

un = vn = 0 on ΓT ,
un(x, 0) = vn(x, 0) = 0 in Ω,
un, vn ≥ 0 in ΩT .

(3.19)

For s ≥ 0, we consider the function k(s) = 1 − 1
(1 + s)a

with a > 0. Let

K̂(s) =
∫ s

0

k(τ)dτ , then K̂(s) ≥ C1s − C2 for all s ≥ 0.

Using k(vn) as a test function in the equation of vn, it follows that

∫

Ω

K̂(vn)(x, t)dx + a

∫ t

0

∫

Ω

|∇vn|2
(1 + vn)1+a

dx dτ ≤
∫ t

0

∫

Ω

|∇un|dx dτ +

∫ t

0

∫

Ω

g dx dτ.

(3.20)

Thanks to Theorem 2.7, we have for all r < N+2
N+1 and for all t ≤ T ,

(∫ t

0

∫

Ω

|∇un|rdx dτ

) 1
r

≤ C

( ∫ t

0

∫

Ω

vndx dτ +
∫ t

0

∫

Ω

fdx dτ

)

.

Thus, for r = 1, we get
∫ t

0

∫

Ω

|∇un|dx dτ ≤ C

( ∫ t

0

∫

Ω

vn dx dτ + ||f ||L1(ΩT )

)

.

Going back to (3.20), we obtain
∫

Ω

K̂(vn)(x, t)dx ≤
(∫ t

0

∫

Ω

vndx dτ + ||f ||L1(ΩT ) + ||g||L1(ΩT )

)

.

Recall that K̂(vn) ≥ C1vn − C2, then using Gronwall’s Lemma we conclude
that

||vn||L1(ΩT ) ≤ C ≡ C(ΩT , ||f ||L1(ΩT ), ||g||L1(ΩT )).

Thus, by Theorem 2.7 , we have for all s1, s2 < N+2
N+1 ,

||un||C(0,T ;L1(Ω)) + ||un||Es1 (ΩT ) ≤ C,

||vn||C(0,T ;L1(Ω)) + ||vn||Es2 (ΩT ) ≤ C.

Hence the existence result follows using the compactness result in Theorem
2.7. �
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3.2. The Case (f, g) = (0, 0) and (u0, v0) �= (0, 0)
In this subsection, we suppose that f ≡ g ≡ 0 and (u0, v0) ∈ Lm1(Ω)×Lσ1(Ω)
where m1, σ1 ≥ 1. Then, the system (1.1) is reduced to the following one:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − Δu = vq in ΩT ,
vt − Δv = |∇u|p in ΩT ,
u = v = 0 on ΓT ,
u(x, 0) = u0(x) in Ω,
v(x, 0) = v0(x) in Ω,
u, v ≥ 0 in ΩT .

(3.21)

The main existence result in this case is the following.

Theorem 3.3. Assume that (u0, v0) ∈ Lm1(Ω) × Lσ1(Ω), where m1, σ1 ≥ 1.
Let p, q > 1 be such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q < σ1(
2
N

+
1

m1
),

p <
m1(N + σ1 + 1)

σ1(N + m1)
.

(3.22)

Then, for all T > 0, there exists a positive constant S depending only on T
and the data such that if

||u0||Lm1 (Ω) + ||v0||Lσ1 (Ω) ≤ S,

System (3.21) has a nonnegative solution (u, v) such that (u, v) ∈ V 1,α
0 (ΩT )×

V 1,β
0 (ΩT ) for all α <

m1(N + 2)
N + m1

and for all β <
σ1(N + 2)

N + 1
.

Remark 5. The upper bound for q obtained in the previous Theorem is the
same as in the case of nonlinear system with potential nonlinearities. We refer
to [32] and [44, Theorem 32.1], for more details about this class of systems.

Proof of Theorem 3.3. To prove the main existence result, we will take advan-
tage of the argument used in the proof of Theorem 3.1 obtained in the first
part of the paper. Using a suitable change of variable, we will show a rela-
tionship between the system (3.21) and the system (3.1) with suitable data
(f1, g1). �

Let ψ and η to be the unique solutions to the following problems:
⎧
⎨

⎩

ψt − Δψ = 0 in ΩT ,
ψ(x, t) = 0 on ΓT ,
ψ(x, 0) = u0(x) in Ω,

and

⎧
⎨

⎩

ηt − Δη = 0 in ΩT ,
η(x, t) = 0 on ΓT ,
η(x, 0) = v0(x) in Ω.

Thanks to Theorem 2.8, we have

η ∈ Lγ(ΩT ) for all γ <

(
2

N
+ 1

)

σ1 and |∇ψ| ∈ Ls(ΩT ) for all s <
(N + 2)m1

N + m1
.

(3.23)

Notice that, if (u, v) solves System (3.21), then ψ ≤ u and η ≤ v.
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We set u1 = u − ψ and v1 = v − η, then (u1, v1) solves
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu1 − Δu1 = (v1 + η)q in ΩT ,
∂tv1 − Δv1 = |∇u1 + ∇ψ|p in ΩT ,
u1 = v1 = 0 on ΓT ,
u1(x, 0) = 0 in Ω,
v1(x, 0) = 0 in Ω.

(3.24)

Hence, to show the main existence result, we have just to show that system
(3.24) has a non-negative solution.

As above, we fix 1 < r < (N+2)σ1
N+σ1

very close to (N+2)σ1
N+σ1

, then we consider
the set

Fr(ΩT ) :=

{

ϕ ∈ E1(ΩT ) ; ϕ ∈ Er(ΩT ) ∩ L∞(0, T ; L1(Ω)) with ||ϕ||
V

1,r
0 (ΩT )

≤ �
1

pq

}

,

where

||ϕ||V 1,r
0 (ΩT ) :=

(∫ T

0

||∇ϕ||rLr(Ω)dt

) 1
r

+ ||ϕ||L∞(0,T ;L1(Ω)).

We define now the operator L : Fr(ΩT ) −→ E1(ΩT ) by setting L(ϕ) = v1,
where v1 is the unique solution to problem

⎧
⎨

⎩

∂tv1 − Δv1 = |∇u1 + ∇ψ|p in ΩT ,
v1 = 0 on ΓT ,
v1(x, 0) = 0 in Ω

with u1 being the unique solution to the problem
⎧
⎨

⎩

∂tu1 − Δu1 = (η + ϕ+)q in ΩT ,
u1 = 0 on ΓT .

u1(x, 0) = 0 in Ω

It is clear that if v1 is a fixed point of L in Fr(ΩT ), then (u1, v1) solves System
(3.24).

Notice that, for a universal constant C > 0, we have

(η + ϕ+)q � C(ϕq
+ + ηq),

and

|∇u1 + ∇ψ|p ≤ C(|∇u1|p + |∇ψ|p).

We set f1 = Cηq and g1 = C|∇ψ|p. Then thanks to the regularity of (u0, v0)
and by (3.23), we conclude that f1 ∈ Lm(ΩT ) for all m < ( 2

N + 1)σ1
q and

g1 ∈ Lσ(ΩT ) for all σ < (N+2)m1
p(N+m1)

.
Since (3.22) holds, then by a direct computations, we verify that (m,σ)

satisfies condition (3.2).
Thus, Theorem 3.1 implies that system (3.24) has a solution (u1, v1) ∈

V 1,θ1
0 (Ω) × V 1,θ2

0 (Ω) for all θ1 < m(N+2)
N+2−m and θ2 < (N+2)σ

N+2−σ .
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Recall that u = u1+ψ, thus |∇u| ∈ Lθ(ΩT ) with θ = min{θ1,
m1(N+2)

N+m1
}.

Since m can be chosen very close to ( 2
N + 1)σ1

q , it holds that

θ1 � m(N + 2)
N + 2 − m

� σ1(N + 2)
Nq − σ1

,

which means that for all ε > 0, we have

θ1 <
σ1(N + 2)
Nq − σ1

< θ1 + ε.

Now using the fact that q < σ1(
2
N

+
1

m1
) to conclude that θ1 > m1(N+2)

N+m1
.

Thus θ � m1(N+2)
N+m1

.

In the same way, we obtain that |∇v| ∈ Lr(ΩT ) for all r � σ1(N+2)
N+1 .

To finish, we have just to show, in this case, that the smallness condition
(3.15) can be imposed on ||u0||Lm1 (Ω) and ||v0||Lσ1 (Ω). Recall that from (3.15),
we need that

||f1||pLm(ΩT ) + ||g1||Lσ(ΩT ) ≤ Λ∗

C̃
. (3.25)

Since f1 = Cηq and g1 = C|∇ψ|p, using estimates (2.10) and (2.11) (Theorem
2.8) yields to

||f1||pLm(ΩT ) = C||η||pq
Lqm(ΩT ) ≤ C̃||v0||pq

Lσ1 (Ω)

(∫ T

0

t−qm N
2 ( 1

σ1
− 1

qm )dt

) p
m

,

where C̃ depends only on p, q,m1, σ1 and |Ω|. Since qm < σ1( 2
N + 1), then

qmN
2 ( 1

σ1
− 1

qm ) < 1. Thus,

||f1||pLm(ΩT ) ≤ C̃||v0||pq
Lσ1 (Ω)T

p
m (1−qm N

2 ( 1
σ1

− 1
qm )).

In the same way, we obtain

||g1||Lσ(ΩT ) = C̃

( ∫ T

0

∫

Ω

|∇ψ|pσdx dt

) 1
σ

≤ C̃||u0||pLm1 (Ω)T
1
σ (1−pσ N

2 ( 1
m1

− 1
pσ )),

which follows using the fact that pσ < (N+2)m1
N+m1

. Combining the above esti-
mates, it hods that

||f1||pLm(ΩT ) + ||g1||Lσ(ΩT )

≤ C̃

(

||v0||pq
Lσ1 (Ω)T

p
m (1−qm N

2 ( 1
σ1

− 1
qm )) + ||u0||pLm1 (Ω)T

1
σ (1−pσ N

2 ( 1
m1

− 1
pσ ))

)

.

Hence, for T fixed, we can choose S > 0 such that if

||u0||Lm1 (Ω) + ||v0||Lσ1 (Ω) ≤ S,

then

||f1||pLm(ΩT ) + ||g1||Lσ(ΩT ) ≤ Λ∗

C̃
,

given in (3.25). Thus, we conclude. �
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Remark 6. As in Remark 4, if m1 = σ1 = 1, we deduce from (3.2) that
p < N+2

N+1 and q < N+2
N , the natural entropy regularity for the potential and

the gradient term respectively when dealing with L1 data.

3.3. Blow-Up Result

In this subsection, we analyze the question of blow-up in the time of the
solution to system (3.21) in a suitable norm.

In the potential case, the blow up is based on a suitable convexity argu-
ment and Jensen inequality. In our case, and to get a control of the gradient
term, we need to use a specifically weighted Hardy-type inequality. More
precisely we have the next universal inequality proved in [45, Theorem 1.6].

Theorem 3.4. Assume that Ω ⊂ IRN , N ≥ 2, be a bounded regular domain.
Let a > 1 and suppose that 0 < σ < a − 1. Setting d(x) := dist(x, ∂Ω), then
there exists a positive constant C(Ω, a, σ) such that for all v ∈ C∞

0 (Ω), we
have

∫

Ω

dσ−a(x)|v(x)|adx ≤ C

∫

Ω

dσ(x)|∇v(x)|adx . (3.26)

Notice that the above result is not valid in general if σ ≥ a − 1. As a
consequence we get the next blow-up result.

Theorem 3.5. Let λ1 the fist eigenvalue of the Laplacian operator with Dirich-
let condition and denote ϕ1, the associated positive eigenfunction normalized
in L1(Ω). Suppose that q > 1 and p > 2, then there exists a positive constant
C(p, q,Ω) such that if

∫

Ω

(up
0 + vq

0)ϕ1dx > C(p, q,Ω),

then any solution to system (3.1) blow up in a finite time in the sense that,
for some T ∗(p, q,Ω) < ∞, we have

lim
t→T ∗

∫

Ω

(up(x, t) + vq(x, t))ϕ1(x)dx = ∞.

Proof. Using ϕ1 as a test function in booth equations of u, v, it holds that

d

dt

∫

Ω

u(x, t)ϕ1(x)dx + λ1

∫

Ω

u(x, t)ϕ1(x)dx ≥
∫

Ω

vq(x, t)ϕ1(x)dx, (3.27)

and
d

dt

∫

Ω

v(x, t)ϕ1(x)dx + λ1

∫

Ω

v(x, t)ϕ1(x)dx ≥
∫

Ω

|∇u(x, t)|pϕ1(x)dx. (3.28)

By Jensen inequality we conclude that

d

dt

∫

Ω

u(x, t)ϕ1(x)dx + λ1

∫

Ω

u(x, t)ϕ1(x)dx ≥
(∫

Ω

v(x, t)ϕ1(x)dx

)q

.
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Since ϕ1 � dist(x, ∂Ω), then
∫

Ω

|∇u(x, t)|pϕ1(x)dx ≥ C

∫

Ω

|∇u(x, t)|pdist(x, ∂Ω)dx.

Recall that p > 2, using the weighted Hardy inequality in Theorem 3.4 and
by Jensen inequality, there results that

∫

Ω

|∇u(x, t)|pdist(x, ∂Ω)dx ≥ C(Ω)

∫

Ω

up(dist(x, ∂Ω))1−pdx ≥ C

∫

Ω

up(x, t)ϕ1(x)dx

≥ C

( ∫

Ω

u(x, t)ϕ1(x)dx

)p

.

Denoting by Y (t) =
∫

Ω

u(x, t)ϕ1(x)dx and Z(t) =
∫

Ω

v(x, t)ϕ1(x)dx, it

holds that
{

Y ′(t) + λ1Y (t) ≥ CZq(t),
Z ′(t) + λ1Z(t) ≥ CY p(t).

Setting l = min{p, q} > 1, we get

(Y + Z)′(t) + λ1(Y + Z)(t) ≥ C(Zq(t) + Y p(t)) ≥ C(Y (t) + Z(t))l − C(Y (t) + Z(t)).

Denoting by W (t) = Y (t) + Z(t), then

W ′(t) + CW (t) ≥ W l(t).

Since l > 1, then we get the existence of positive constant C0 such that if
W (0) > C0, then there exists T ∗ > 0, depending only on the data, such that

lim
t→T ∗

W (t) = ∞.

Hence we conclude. �

Remark 7. (1) The above argument is based on a suitable Hardy (or
Poincaré) type inequality. In the case where p ∈ (1, 2), inequality like
(3.26) does not holds in general and another approach is needed to treat
this case.

(2) Notice that from [1], we know that the associate elliptic system has a
solution. Hence, we hope that, under suitable conditions of the initial
data, existence of a global solution holds. However, the main difficulty is
to get a suitable comparison principle (to use monotony arguments). In
the case of single equation with gradient term, the comparison principle
was proved in [3] under natural condition on the exponent of the gradient
and following the ideas of [5]. The argument in [3] does not work for
system and it seems to be very interesting to find another way to prove
the associate comparison principle.
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4. Some Extensions

Following closely the arguments developed in the previous section, we shall
also treat the following nonlinear system, where the gradient terms |∇u|p and
|∇v|q act as a source term.

4.1. First Model

Let us consider the system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − Δu = |∇v|q + f in ΩT ,
vt − Δv = |∇u|p + g in ΩT ,
u = v = 0 on ΓT ,
u(x, 0) = 0 in Ω,
v(x, 0) = 0 in Ω,
u, v ≥ 0 in ΩT

(4.1)

where (f, g) ∈ Lm(ΩT ) × Lσ(ΩT ).
Notice that the case where f = g = 0 with non-trivial initial conditions

and p, q ≤ 2 was treated in [6]. In that paper, the authors showed the exis-
tence of global solutions of the associated Cauchy problem under additional
assumptions on p, q and the initial data.
Without the condition p, q ≤ 2, and under some natural conditions on f and
g, we are able to prove the next existence result.

Theorem 4.1. Suppose that m,σ ∈ [1, N + 2) and let p, q be such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pσ < m =
m(N + 2)
N + 2 − m

,

qm < σ =
σ(N + 2)
N + 2 − σ

.

(4.2)

Then there exists T ∗ ≤ T such that system (4.1) has a nonnegative solution
(u, v) ∈ V 1,α

0 (ΩT ∗) × V 1,β
0 (ΩT ∗) for all α < m and β < σ.

Proof. The proof follows closely the arguments of Sect. 3, and uses the same
fixed-point arguments. However, for the reader’s convenience we include here
some details.

According to (4.2), let us fix r > 1 such that qm N
N+1 < r < σ and define

the set

Fr(ΩT )

:=

{

ϕ ∈ E1(ΩT ) ; ϕ ∈ Er(ΩT ) ∩ L∞(0, T ; L1(Ω)) with ||ϕ||V 1,r
0 (ΩT ) ≤ �

1
pq

}

Then Fr(ΩT ) is a closed convex subset of E1(ΩT ).

Now, define the operator

L : Fr(ΩT ) �−→ E1(ΩT )
ϕ �−→ L(ϕ) = v
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where v is the unique solution to problem
⎧
⎨

⎩

vt − Δv = |∇u|p + g in ΩT ,
v = 0 on ΓT ,
v(x, 0) = 0 in Ω

with u being the unique solution of the problem
⎧
⎨

⎩

ut − Δu = |∇ϕ|q + f in ΩT ,
u = 0 on ΓT ,
u(x, 0) = 0 in Ω.

It is clear that if v is a fixed point of L in Fr(ΩT ), then (u, v) solves the
system (4.1).

Since qm < r, then |∇ϕ|q ∈ L1(ΩT ). Thus u is well defined and u ∈
V 1,α

0 (ΩT ) for all α <
N + 2
N + 1

. By Theorem 2.8, we get

||∇u||Lm(ΩT ) ≤ C

∥
∥
∥
∥|∇ϕ|q + f

∥
∥
∥
∥

Lm(ΩT )

≤ C

(

||∇ϕ||qLqm(ΩT ) + ||f ||Lm(ΩT )

)

,

(4.3)

Now, since p ≤ m then |∇u|p + g ∈ L1(ΩT ). Thus v is well defined and, at

least v ∈ V 1,α
0 (ΩT ) for all α <

N + 2
N + 1

. Thus, L is well defined. In the same

way, it holds that

||∇v||Lσ(ΩT ) ≤ C
[
||∇u||pLpσ(ΩT ) + ||g||Lσ(ΩT )

]
, (4.4)

with σ =
σ(N + 2)
N + 2 − σ

. Since pσ < m, and using inequality (4.3), we obtain

||∇v||Lσ(ΩT ) ≤ C
[
||∇ϕ||pq

Lqm(ΩT ) + ||f ||pLm(ΩT ) + ||g||Lσ(ΩT )

]
.

Since qm < r < σ, using Hölder’s inequality and Proposition 2.1 we obtain

||∇v||Lr(ΩT ) ≤ C
[
||ϕ||pq

V 1,r
0 (ΩT )

+ ||f ||pLm(ΩT ) + ||g||Lσ(ΩT )

]
.

Now, by Theorem 2.7, we reach that

||v||L∞(0,T ;L1(Ω)) ≤ C
[
||ϕ||pq

V 1,r
0 (ΩT )

+ ||g||Lσ(ΩT ) + ||f ||pLm(ΩT )

]
.

Thus,

||v||V 1,r
0 (ΩT ) ≤ C

[
||ϕ||pq

V 1,r
0 (ΩT )

+ ||f ||pLm(ΩT ) + ||g||Lσ(ΩT )

]
.

It is clear that the above estimate holds in ΩT ∗ for all T ∗ ≤ T . Hence, by
choosing T ∗ < T such that

C
[
� + ||f ||pLm(ΩT ∗ ) + ||g||Lσ(ΩT ∗ )

]
≤ �

1
pq ,

we have L(Fr(ΩT ∗)) ⊂ Fr(ΩT ∗).
Now the continuity and the compactness property of L follow as in the proof
of Theorem 3.1. Hence, we conclude. �
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4.2. Second Model

We deal now with the system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − Δu = |∇v|q in ΩT ,
vt − Δv = |∇u|p in ΩT ,
u = v = 0 on ΓT ,
u(x, 0) = u0(x) in Ω,
v(x, 0) = v0(x) in Ω,
u, v ≥ 0 in ΩT ,

(4.5)

where (u0, v0) ∈ Lm1(ΩT ) × Lσ1(ΩT ). We have the next existence result.

Theorem 4.2. Assume that (u0, v0) ∈ Lm1(Ω) × Lσ1(Ω) where m1, σ1 ≥ 1.
Let p, q > 1 be such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q <
σ1(N + 2m1)
m1(N + σ1)

,

p <
m1(N + 2σ1)
σ1(N + m1)

.

(4.6)

Then for all T > 0, there exists a positive constant S depending on T and the
data such that if

||u0||Lm1 (Ω) + ||v0||Lσ1 (Ω) ≤ S,

System (4.5) has a nonnegative solution (u, v) such that (u, v) ∈ V 1,α
0 (ΩT ) ×

V 1,β
0 (ΩT ) for all α <

m1(N + 2)
N + m1

and for all β <
σ1(N + 2)
N + σ1

.

Proof. We follow closely the change of variables used in the proof of Theorem
3.3. Let ψ and η to be the unique solutions to the following problems:

⎧
⎨

⎩

ψt − Δψ = 0 in ΩT ,
ψ(x, t) = 0 on ΓT ,
ψ(x, 0) = u0(x) in Ω,

and

⎧
⎨

⎩

ηt − Δη = 0 in ΩT ,
η(x, t) = 0 on ΓT ,
η(x, 0) = v0(x) in Ω.

Thanks to Theorem 2.8, we have

|∇η| ∈ Lγ(ΩT ) for all γ <
(N + 2)σ1

N + σ1
and |∇ψ| ∈ Ls(ΩT ) for all s <

(N + 2)m1

N + m1
.

(4.7)

We set u1 = u − ψ and v1 = v − η, then (u1, v1) solves
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu1 − Δu1 = |∇v1 + ∇η|q in ΩT ,
∂tv1 − Δv1 = |∇u1 + ∇ψ|p in ΩT ,
u1 = v1 = 0 on ΓT ,
u1(x, 0) = 0 in Ω,
v1(x, 0) = 0 in Ω.

(4.8)

Hence, to show the main existence result, we have just to show that system
(4.8) has a non-negative solution.
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For r close to (N+2)σ1
N+σ1

, we consider the set

Fr(ΩT ) :=

{

ϕ ∈ E1(ΩT ) ; ϕ ∈ Er(ΩT ) ∩ L∞(0, T ; L1(Ω)) with ||ϕ||
V

1,r
0 (ΩT )

≤ �
1

pq

}

.

We define now the operator L : Fr(ΩT ) −→ E1(ΩT ) by setting L(ϕ) = v1

where v1 is the unique solution to problem
⎧
⎨

⎩

∂tv1 − Δv1 = |∇u1 + ∇ψ|p in ΩT ,
v1 = 0 on ΓT ,
v1(x, 0) = 0 in Ω,

with u1 being the unique solution to the problem
⎧
⎨

⎩

∂tu1 − Δu1 = |∇η + ∇ϕ|q in ΩT ,
u1 = 0 on ΓT ,
u1(x, 0) = 0 in Ω.

It is clear that if v1 is a fixed point of L in Fr(ΩT ), then (u1, v1) solves the
system (4.8).
Following the same approach as in the proof of Theorem 3.3, we reach to the
desired result. �

4.3. Third Model

Finally, let us analyze the following system:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − Δu = u|∇v|q + f in ΩT ,
vt − Δv = v|∇u|p + g in ΩT ,
u = v = 0 on ΓT ,
u(x, 0) = 0 in Ω,
v(x, 0) = 0 in ΩT ,
u, v ≥ 0 in ΩT ,

(4.9)

which is more involved due to the presence of an interaction term in both
equations (the dependence on u and v appears in the two equations).
Notice that, in the case of one equation and in the particular case p = 2, the
problem

⎧
⎨

⎩

ut − Δu = u|∇u|2 + f in ΩT ,
u = 0 on ΓT ,
u(x, 0) = 0 in Ω

(4.10)

was studied deeply in [27]. The authors proved the existence of a solution to
(4.10) if f ∈ Lm(ΩT ) with m > N+2

2 . See also [26] for some extensions.
In the sprit of the results obtained in [27] and [26] and keeping free the values
of p, q > 1, we have the next existence result for System (4.9).

Theorem 4.3. Suppose that (f, g) ∈ Lm(ΩT )×Lσ(ΩT ) with 1 < m,σ < N+2.
Let p, q > 1 be such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pσ <
m(N + 2 + Nσ)

(N + 2 − m)(N + 1)
,

qm <
σ(N + 2 + Nm)

(N + 2 − σ)(N + 1)
.

(4.11)
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Then System (4.9) has a nonnegative solution (u, v) ∈ V 1,α
0 (ΩT ) × V 1,β

0 (ΩT )

for all α <
(N + 2)m

(N + 2 − m)+
and β <

(N + 2)σ
(N + 2 − σ)+

.

Proof. We follow closely the argument used in the proof of Theorem 4.1. How-
ever, taking into consideration the structure of System (4.9), some technical
modifications are needed.

Define the function

Υ1(s) := s − C̃(s1+q + s1+p),

with C̃ being a universal positive constant depending only on the data. Since
q, p > 1, then we get the existence of a unique value � such that

max
s≥0

Υ1(s) = Υ1(�) = Λ∗.

Thus

� = C̃(�1+q + �1+p +
Λ∗

C̃
). (4.12)

By a continuity argument, we choose 0 < T ∗ < T such that

||f ||Lm(ΩT ∗ ) + ||g||Lσ(ΩT ∗ ) ≤ Λ∗

C̃
;

hence,

C̃

(

�1+q + �1+p + ||f ||Lm(ΩT ∗ ) + ||g||Lσ(ΩT ∗ )

)

≤ �. (4.13)

Now, we define the set

Fr,θ(ΩT ∗) =
{

(ϕ,ψ) ∈ E1(ΩT ∗) × E1(ΩT ∗),

(ϕ,ψ) ∈ V 1,r
0 (ΩT ∗) × V 1,θ

0 (ΩT ∗) and ||ϕ||V 1,r
0 (ΩT ∗ ) + ||ψ||V 1,θ

0 (ΩT ∗ ) ≤ �

}

,

where r and θ are chosen such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pσ(N + 1)
θ(N + 1) − Nσ

< r <
m(N + 2)
N + 2 − m

:= m,

qm(N + 1)
r(N + 1) − Nm

< θ <
σ(N + 2)
N + 2 − σ

:= σ.

(4.14)

Notice that, under the condition (4.11), we get the existence of (r, θ) closed
to (m,σ) such that the condition (4.14) holds.

It is clear that Fr,θ(ΩT ∗) is a closed convex subset of E1(ΩT ∗)×E1(ΩT ∗).
Now consider the operator

L : Fr,θ(ΩT ∗) �−→ E1(ΩT ∗) × E1(ΩT ∗)
ϕ = (ϕ,ψ) �−→ L(ϕ,ψ) = (u, v)

where u and v solve, respectively, the following problems:
⎧
⎨

⎩

ut − Δu = ϕ+|∇ψ|q + f in ΩT ∗ ,
u = 0 on ΓT ∗ ,
u(x, 0) = 0 in Ω
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and
⎧
⎨

⎩

vt − Δv = ψ+|∇ϕ|p + g in ΩT ∗ ,
v = 0 on ΓT ∗ ,
v(x, 0) = 0 in Ω.

Of course, if (u, v) is a fixed point of L in Fr,θ(ΩT ∗), then (u, v) solves system
(4.9).

We claim that if (ϕ,ψ) ∈ Fr(ΩT ∗), then
∥
∥
∥
∥ϕ+|∇ψ|q

∥
∥
∥
∥

Lm(ΩT ∗ )

≤ C||ϕ||V 1,r
0 (ΩT ∗ ) × ||ψ||q

V 1,r
0 (ΩT ∗ )

.

Indeed, we have
∥
∥
∥
∥ϕ+|∇ψ|q

∥
∥
∥
∥

m

Lm(ΩT ∗ )

=
∫∫

ΩT ∗
ϕm

+ |∇ψ|qmdx dt ≤
∫∫

ΩT ∗
|ϕ|m|∇ψ|qmdx dt.

Hence, using Hölder’s inequality gives

∥
∥
∥
∥ϕ+|∇ψ|q

∥
∥
∥
∥

m

Lm(ΩT ∗ )

≤ C

( ∫∫

ΩT ∗
|ϕ|νdxdt

) m
ν

( ∫∫

ΩT ∗
|∇ψ|qm ν

ν−m dx dt

) ν−m
ν

,

(4.15)

where ν = r N+1
N . Moreover, qm ν

ν−m = qm r(N+1)
r(N+1)−mN . Thus, by the defini-

tion of r and θ, it holds that qm ν
ν−m < θ.

Going back to (4.15) and applying Proposition 2.1 to obtain

∥
∥
∥
∥ϕ+|∇ψ|q

∥
∥
∥
∥

m

Lm(ΩT ∗ )

≤ C

( ∫∫

ΩT ∗
|ϕ|νdxdt

)m
ν

(∫∫

ΩT ∗
|∇ψ|θdx dt

) qm
θ

≤ C||ϕ||m
V 1,r
0 (ΩT ∗ )

× ||ψ||qm

V 1,θ
0 (ΩT ∗ )

,

and hence the claim follows.
In a symmetric way and since pσ θ(N+1)

θ(N+1)−σN < r, we obtain that

∥
∥
∥
∥ψ+|∇ϕ|p

∥
∥
∥
∥

Lσ(ΩT ∗ )

≤ C||ψ||V 1,θ
0 (ΩT ∗ ) × ||ϕ||p

V 1,r
0 (ΩT ∗ )

.

Thus u, v are well defined and (u, v) ∈ E1(ΩT ∗)×E1(ΩT ∗). Now, by Theorem
2.8, we get

||∇u||Lm(ΩT ∗ ) ≤ C(ΩT ∗)
(

||ϕ||V 1,r
0 (ΩT ∗ ) × ||ψ||q

V 1,θ
0 (ΩT ∗ )

+ ||f ||Lm(ΩT ∗ )

)

,

||∇v||Lσ(ΩT ∗ ) ≤ C(ΩT ∗)
(

||ψ||V 1,θ
0 (ΩT ∗ ) × ||ϕ||p

V 1,r
0 (ΩT ∗ )

+ ||g||Lσ(ΩT ∗ )

)

,
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where m =
m(N + 2)
N + 2 − m

and σ =
σ(N + 2)
N + 2 − σ

. Since r < m and θ < σ, then

(u, v) ∈ V 1,r
0 (ΩT ∗) × V 1,θ

0 (ΩT ∗) and

||u||V 1,r
0 (ΩT ∗ ) + ||v||V 1,r

0 (ΩT ∗ ) ≤ C(ΩT ∗)
(

||ϕ||V 1,r
0 (ΩT ∗ )||ψ||q

V 1,θ
0 (ΩT ∗ )

+||ψ||V 1,θ
0 (ΩT ∗ )||ϕ||p

V 1,r
0 (ΩT ∗ )

+ ||f ||Lm(ΩT ∗ ) + ||g||Lσ(ΩT ∗ )

)

≤ C(ΩT ∗)
(

�1+q + �1+p + ||f ||Lm(ΩT ∗ ) + ||g||Lσ(ΩT ∗ )

)

≤ �.

The last estimate follows by (4.13). Therefore, we conclude that L(Fr,θ(ΩT ∗))
⊂ Fr,θ(ΩT ∗).

The rest of the proof is the same as the proof of Theorem 4.1. �

Remark 8. To illustrate our previous result, let us give some examples of
p, q, m and σ.

• If m,σ > N + 2, the existence result holds for all p, q > 1.
• If p = q = 1 and m = σ, a sufficient condition on m that guarantees the

existence of a solution is m = σ > N(N+2)
2N+1 .

• If p = q = 2 and m = σ, condition (4.11) implies that m = σ >
(N+2)(2N+1)

3N+2 .
• If m = σ = 2, then the condition (4.11) implies that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p <
3N + 2

N(N + 1)
,

q <
3N + 2

N(N + 1)
,

Or 3N+2
N(N+1) > 1 if N ≤ 2. Hence for N ≥ 3, it seems that the condition

p, q < 1 is necessary as it will be shown in the next proposition.

Proposition 4.4. Assume that m = σ = 2. Then for all p, q > 1, there exist
f, g ∈ L2(ΩT ) such that System (4.9) has no solution at least for N large.

Proof. We consider the case where 0 ∈ Ω and f(x, t) = g(x, t) = 1
|x|α , where

2 < α < N
2 . If (u, v) is a solution to System (4.9), then using a suitable

comparison principle it holds that :

u(x, t), v(x, t) ≥ C

|x|α−2
in Br(0) × (t1, t2) ⊂⊂ ΩT .

Thus,
∫∫

ΩT

|x|−(α−2)|∇u|pdxdt +
∫∫

ΩT

|x|−(α−2)|∇v|qdxdt < ∞.

Hence, applying Caffarelli–Kohn–Nirenberg’s inequality (see [22]) to obtain
∫ T

0

( ∫

Ω

up∗

|x|
p∗
p (α−2)

dx

) p
p∗

dt +
∫ T

0

(∫

Ω

vq∗

|x|
q∗
q (α−2)

dx

) q
q∗

dt < ∞.
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Now, using the behavior of u, v at the origin, it holds that
∫

Br(0)

1

|x|p∗(α−2)+ p∗
p (α−2)

dx +
∫

Br(0)

1

|x|q∗(α−2)+ q∗
q (α−2)

dx ≤ C(T, Ω).

Thus

p∗(α − 2) +
p∗

p
(α − 2) < N and q∗(α − 2) +

q∗

q
(α − 2) < N.

Let p, q > 1 fixed, by choosing N > max{2p+4
p−1 , 2q+4

q−1 }, we get the existence
of α < N

2 such that

p∗(α − 2) +
p∗

p
(α − 2) ≥ N and q∗(α − 2) +

q∗

q
(α − 2) ≥ N,

which is a contradiction with the existence result. �

Remark 9. In a forthcoming work we will treat the case of the Cauchy prob-
lem, and analyze questions such global existence versus finite-time blow-up.
Notice that, for a semi-linear reaction-diffusion system with potential terms,
the existence of a Fujita-type exponent has been proved in [32], see also [44,
Theorem 32.7] for an alternative proof in the subcritical case.
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mesures. J. Appl. Anal. 18, 111–149 (1984)

[10] Benachour, S., Dabuleanu, S.: The mixed Cauchy-Dirichlet problem for a vis-
cous Hamilton–Jacobi equation. Adv. Differ. Equ. 8(12), 1409–1452 (2003)

[11] Benachour, S., Dabuleanu-Hapca, S., Laurençot, Ph: Decay estimates for a
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