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The Bochner–Schoenberg–Eberlein
Property for Vector-Valued �p-Spaces

Z. Kamali and F. Abtahi

Abstract. Let X be a non-empty set, A be a commutative Banach alge-
bra, and 1 ≤ p < ∞. In this paper, we establish some basic properties of
�p(X, A), inherited from A. In particular, we characterize the Gelfand
space of �p(X, A), denoted by Δ(�p(X, A)). Mainly, we investigate the
BSE property of the Banach algebra �p(X, A). In fact, we prove that
�p(X, A) is a BSE algebra if and only if X is finite and A is a BSE
algebra. Furthermore, in the case that A is unital, we show that for any
natural number n, all continuous bounded functions on Δ(�p(X, A)) are
n-BSE functions. However, through an example, we indicate that there
is some continuous bounded function on Δ(�p(X, A)) which is not BSE.
Finally, we prove that if �1(X, A) is a BSE-norm algebra, then A is so.
We also prove the converse of this statement, whenever A is a supremum
norm algebra.
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1. Introduction

The notion of BSE algebras and BSE functions was first introduced and stud-
ied by Takahashi and Hatori in 1990 [18] and subsequently by several authors
for various kinds of Banach algebras, such as Fourier and Fourier–Stieltjes
algebras, semigroup algebras, abstract Segal algebras, etc. The interested
reader is referred to [5,8,11–14,19,20]. Moreover, in a recent work, Dabhi
and Upadhyay proved that �1(Z2,max) is a BSE algebra [4]. Furthermore,
in [1], we investigated the BSE property for vector-valued Lipschitz alge-
bra Lipα(X,A), and proved that for unital commutative semisimple Banach
algebra A, Lipα(X,A) is a BSE algebra if and only if A is so.

The acronym BSE stands for Bochner–Shoenberg–Eberlein famous the-
orem which characterizes the Fourier–Stieltjes transforms of the bounded
Borel measures on locally compact abelian groups; that is, in fact, the BSE
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property of the group algebra L1(G) for a locally compact abelian group G;
see [2,7,17]. This has led the Japanese mathematicians to introduce the BSE
property for an arbitrary commutative Banach algebra as follows:

Let A be a commutative Banach algebra. Denote by Δ(A) to be the
Gelfand space of A; i.e., the space consisting of all nonzero multiplicative
linear functionals on A.

A bounded continuous function σ on Δ(A) is called a BSE function if
there exists a constant C > 0, such that for every finite number of ϕ1, . . . , ϕn

in Δ(A) and complex numbers c1, . . . , cn, the inequality:
∣
∣
∣
∣
∣
∣

n∑
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holds. The BSE norm of σ (‖σ‖BSE) is defined to be the infimum of all such
C. The set of all BSE functions is denoted by CBSE(Δ(A)). Takahasi and Ha-
tori [18] showed that under the norm ‖.‖BSE, CBSE(Δ(A)) is a commutative
semisimple Banach algebra, embedded in Cb(Δ(A)) as a subalgebra.

Here, we provide some preliminaries, which will be required throughout
the paper. See [15] for more information. A bounded linear operator on a com-
mutative Banach algebra A is called a multiplier if it satisfies xT (y) = T (xy),
for all x, y ∈. The set M(A) of all multipliers of A is a unital commutative
Banach algebra, called the multiplier algebra of A. Set:

M̂(A) = {T̂ : T ∈ M(A)}.

Remark 1.1. Let A be a commutative semisimple Banach algebra. Suppose
that Φ : Δ(A) → C be a continuous function, such that Φ.Â ⊆ Â. We call
Φ a multiplier of A. This is another definition of a multiplier of a Banach
algebra. In the presence of supersimplicity, this definition is equivalent to the
above definition, by considering Φ = T̂ ; see [16] for more details. Define:

M(A) = {Φ : Δ(A) → C : Φ is continuous and Φ.Â ⊆ Â}.

When A is semisimple, M̂(A) = M(A).

A commutative Banach algebra A is called without order if aA = {0}
implies a = 0 (a ∈ A). A commutative and without order Banach algebra A
is called a BSE algebra (or has the BSE property) if it satisfies the condition:

CBSE(Δ(A)) = M̂(A).

Furthermore, A is called a BSE algebra of type I if:

CBSE(Δ(A)) = M̂(A) = Cb(Δ(A)).

By Remark 1.1, in the case that A is a semisimple commutative Banach
algebra, the BSE property of A is equivalent to the following equality:

CBSE(Δ(A)) = M(A).

It is worthy to note that all semisimple Banach algebras are without order.
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Let X be an arbitrary non-empty set and consider the Banach algebra
�1(X) with pointwise multiplication. In [19], the authors proved that the
Banach algebra �1(X) is BSE if and only if X is finite.

Throughout the paper, let X be a non-empty set and A be a commuta-
tive Banach algebra. In this paper, at first, we investigate several properties
of the vector-valued Banach algebra �p(X,A) (1 ≤ p < ∞), inherited from A.
Moreover, we characterize the Gelfand space of the Banach algebra �p(X,A)
by the set X and the Gelfand space of A. Then, we present necessary and
sufficient conditions for �p(X,A) to be a BSE algebra. In fact, we prove that
�p(X,A) is a BSE algebra if and only if X is finite and A is a BSE algebra.
Furthermore, we show that for any n ∈ N and a unital Banach algebra A, the
Banach algebra CBSE(n)(Δ(lp(X,A))) = CBSE(n)(X × Δ(A)) is equal to the
Banach algebra Cb(X ×Δ(A)). However, with an example, we show that this
result is not true for CBSE(X ×Δ(A)), even for a unital Banach A. Moreover,
we investigate BSE-norm property for �1(X,A) and prove that if �1(X,A) is
a BSE-norm algebra, then A is so. We also prove that the converse of this
results is valid, whenever A is a supremum norm algebra.

Finally, we present a different proof, from abstract Segal algebras point
of view, to show that �p(X) is a BSE algebra if and only if X is finite.

2. Some Basic Properties �p(X,A) Inherited from A
Let X be a non-empty set, A be a commutative Banach algebra, and 1 ≤
p < ∞. Let:

�p(X,A) =

{

f : X → A :
∑

x∈X

‖f(x)‖p < +∞
}

.

It is easily verified that �p(X,A) is a commutative Banach algebra, endowed
with the norm:

‖f‖p =

(
∑

x∈X

‖f(x)‖p

)1/p

(f ∈ �p(X,A))

and pointwise product. In this section, we investigate some elementary and
basic properties about �p(X,A), which will be useful for further results. Let
us first introduce some noteworthy vector-valued functions on X, which play
an important role in our results. For any finite subset F of X and nonzero
element a ∈ A, we define the function δF

a as follows:

δF
a (t) =

{
a t ∈ F
0 t �∈ F.

These functions belong clearly to �p(X,A). In the case that F is a singleton,
namely F = {x}, then we simply rewrite δF

a as δx
a .

Proposition 2.1. Let X be a set, A be a commutative Banach algebra, and
1 ≤ p < ∞. Then, �p(X,A) is unital if and only if X is finite and A is
unital.
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Proof. At first, suppose that X is finite and A has an identity e. It is not
hard to see that the constant function:

I : X → A, x 	→ e

is the identity element of �p(X,A). Conversely, suppose that I ∈ �p(X,A) is
the identity element of �p(X,A). Then, for each f ∈ �p(X,A), we have:

f(x)I(x) = f(x) (x ∈ X).

Specially:

‖I(x)‖ = ‖I(x)I(x)‖ ≤ ‖I(x)‖ ‖I(x)‖ (x ∈ X).

Thus, for each x ∈ X, I(x) = 0 or ‖I(x)‖ ≥ 1. Note that since I ∈ �p(X,A),
I(x) = 0, except for finitely many x1, . . . , xn ∈ X. Now, we show that:

X = {x1, . . . , xn}.

Suppose on the contrary that there exists x ∈ X, such that x /∈ {x1, . . . , xn}.
Take a ∈ A to be nonzero and consider the function δx

a(t). Thus:

0 = I(x)δx
a(x) = δx

a(x) = a,

which is impossible. It follows that X = {x1, . . . , xn}. In the sequel, we show
that A is unital. For all x ∈ X and a ∈ A, we have:

I(t)δa
x(t) = δx

a(t) (t ∈ X).

Consequently:

I(x)a = a (x ∈ X, a ∈ A).

It follows that I is a constant function. Indeed, for all x, y ∈ X with x �= y:

I(x)I(y) = I(x) = I(y).

Therefore, I(x) is the identity element of A. �

Proposition 2.2. Let X be a set, A be a commutative Banach algebra, and
1 ≤ p < ∞. Then, �p(X,A) is without order if and only if A is without
order.

Proof. First, suppose that A is without order and 0 �= f ∈ �p(X,A). Then,
there exists x0 ∈ X, such that f(x0) = a �= 0. By the hypothesis, there exists
b ∈ A such that ab �= 0. It follows that:

f(x0)δx0
b (x0) = ab �= 0,

and so, f δx0
b �= 0. Consequently, �p(X,A) is without order. Conversely,

suppose that �p(X,A) is without order and 0 �= a ∈ A. For any x0 ∈ X, we
have:

δa
x0

(x0) = a �= 0.

By the hypothesis, there exists f ∈ �p(X,A), such that f δa
x0

�= 0. Thus:

f(x0)a = f(x0)δa
x0

(x0) �= 0.

Take b := f(x0). It follows that ba �= 0. Therefore, A is without order. �
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Theorem 2.3. Let X be a set, A be a commutative Banach algebra, and 1 ≤
p < ∞. Then, the Gelfand space of �p(X,A) is homeomorphic to X × Δ(A).

Proof. Define the function Θ as:

Θ : X × Δ(A) → Δ(�p(X,A))
(x, ϕ) 	→ Θ(x,ϕ),

where:

Θ(x,ϕ)(f) = ϕ(f(x)) (f ∈ �p(X,A)).

It is obvious that Θ(x,ϕ) ∈ Δ(�p(X,A)) and so Θ is well defined. Now, we
show that Θ is injective. Suppose that Θ(x,ϕ) = Θ(y,ψ), for some x, y ∈ X
and ϕ,ψ ∈ Δ(A). Then, for any f ∈ �p(X,A), we have ϕ(f(x)) = ψ(f(y)).
For each a ∈ A, consider the function δ

{x,y}
a . Thus:

ϕ(δ{x,y}
a (x)) = ψ

(

δ{x,y}
a (y)

)

.

It follows that:

ϕ(a) = ψ(a) (a ∈ A),

and we obtain ϕ = ψ. Moreover, the equality ϕ(f(x)) = ϕ(f(y)) (f ∈
�p(X,A)), which implies that ϕ(f(x) − f(y)) = 0 for each f ∈ �p(X,A).
If x �= y, then:

ϕ(δx
a(x) − δx

a(y)) = 0 (a ∈ A).

This implies that ϕ(a) = 0 for all a ∈ A and so ϕ = 0. This contradiction
implies that x = y. Consequently, Θ is injective. To prove the surjectivity,
let Φ ∈ Δ(�p(X,A)). Since Φ is nonzero, there exists f =

∑

t∈X δt
f(t), such

that Φ(f) �= 0. It follows that Φ(δx0
a ) �= 0, for some x0 ∈ X. Such x0 ∈ X is

unique. Indeed, let there exists x �= x0, such that Φ(δx
a) �= 0. Since δx0

a .δx
a = 0,

we have:

0 = Φ(δx0
a .δx

a) = Φ(δx0
a )Φ(δx

a) �= 0,

which is a contradiction. Now, define:

ϕ0 : A → C

ϕ0(a) = Φ(δx0
a ).

We show that Φ = Θ(x0,ϕ0). For f ∈ �p(X,A), we may rewrite f as:

f(x) =
∑

t∈X

δt
f(t)(x).

Thus, we obtain:

Θ(x0,ϕ0)(f) = ϕ0(f(x0)) = Φ
(

δx0
f(x0)

)

= Φ(f).

This implies that Θ is surjective. To prove the continuity of Θ, consider the
net {(xα, ϕα)}α∈Λ converges to (x, ϕ), in the topology of X × Δ(A). So that
there exists α0 ∈ Λ, such that for all α ≥ α0, xα = x. Moreover, for each
f ∈ �p(X,A), we have:

lim
α

Θ(x,ϕα)(f) = lim
α

ϕα(f(x)) = ϕ(f(x)) = Θ(x,ϕ)(f).
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Thus, Θ is continuous. For openness, let Θ(xα,ϕα) tends to Θ(x, ϕ), in the
Gelfand topology of Δ(�p(X,A)). It follows that for any f ∈ �p(X,A):

lim
α

Θ(xα,ϕα)
(f) = Θ(x,ϕ)(f),

and so:

lim
α

ϕα(f(xα)) = ϕ(f(x)).

In particular, for a ∈ A with ϕ(a) �= 0, we have:

lim
α

ϕα(δx
a(xα)) = ϕ(δx

a(x)) = ϕ(a).

Consequently, for ε =
|ϕ(a)|

2
, there exists α0 ∈ Λ, such that for all α ≥ α0:

|ϕα(δx
a(xα)) − ϕ(a)| <

|ϕ(a)|
2

.

We show that there exists α1 ∈ Λ, such that for any α ≥ α1, xα = x. Suppose
on the contrary that for any α ∈ Λ, there exists βα ≥ α such that xβα

�= x.
It follows that there exists βα0 ≥ α0, such that xβα0

�= x. Thus:
∣
∣ϕα(δx

a(xβα0
)) − ϕ(a)

∣
∣ <

|ϕ(a)|
2

.

Since δx
a(xβα0

) = 0, this implies that ϕ(a) = 0, which is a contradiction. So
that there exists α1 ∈ Λ, such that xα = x, for any α ≥ α1. This means that
the net {xα}α∈Λ tends to x, in the discrete topology of X. Furthermore, for
α ≥ α1, δx

a(xα) = a, which implies that limα ϕα(a) = ϕ(a). Consequently,
{ϕα}α∈Λ tends to ϕ, in the Gelfand topology of Δ(A). This completes the
proof. �

Proposition 2.4. Let X be a set, A be a commutative Banach algebra, and
1 ≤ p < ∞. Then, �p(X,A) is semisimple if and only if A is semisimple.

Proof. Let �p(X,A) be semisimple and 0 �= a ∈ A. Then, for any x ∈ X,
δa
x �= 0. Define:

Θ : X × Δ(A) → Δ(�p(X,A))
(x, ϕ) 	→ Θ(x,ϕ),

where

Θ(x,ϕ)(f) = ϕ(f(x)) (x ∈ X,ϕ ∈ Δ(A)).

Then, there exists ϕ ∈ Δ(A), such that Θ(x,ϕ)(δa
x) = ϕ(δa

x(x)) �= 0. This
follows that ϕ(a) �= 0 and A is semisimple. Conversely, suppose that A is
semisimple and 0 �= f ∈ �p(X,A). There exists x0 ∈ X, such that f(x0) �= 0.
Since A is semisimple, there exists ϕ ∈ A, such that ϕ(f(x0)) �= 0. This
means that Θ(x0,ϕ)(f) �= 0. �

A bounded net (eα)α∈I in a Banach algebra A, satisfying the condition:

lim
α

ϕ(xeα) = ϕ(x),

for every x ∈ A and ϕ ∈ Δ(A), is called Δ-weak bounded approximate
identity for A, in the sense of Jones-Lahr; see [6,9].
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Remark 2.5. Let X be a set. In [19, Theorem 5], it has been proved that
�1(X) has a Δ-weak bounded approximate identity if and only if X is finite.
One can follow the exact arguments to prove this result for �p(X), where
1 ≤ p < ∞.

In the following result, we generalize [19, Theorem 5], for the vector-
valued case.

Theorem 2.6. Let X be a set, A be a commutative Banach algebra and 1 ≤
p < ∞. Then, �p(X,A) has a Δ-weak bounded approximate identity if and
only if X is finite and A has a Δ-weak bounded approximate identity.

Proof. First suppose that X = {x1, . . . , xn} is finite and (eα)α∈I is a Δ-weak
bounded approximate identity for A with supα∈I ‖eα‖ ≤ β. For any α ∈ I,
define the constant function fα on X as:

fα(x) = eα (x ∈ X).

It is easily verified that fα ∈ �p(X,A), for all α ∈ I. Moreover, for all i =
1, . . . , n and ϕ ∈ Δ(A):

lim
α

(xi, ϕ)(fα) = lim
α

ϕ(fα(xi)) = lim
α

ϕ(eα) = 1.

It follows that (fα)α∈I is a bounded Δ-weak approximate identity for �p(X,A).
Conversely, suppose that (fα)α∈I is a bounded Δ-weak approximate identity
for �p(X,A) with supα∈I ‖fα‖p ≤ β. We first show that �p(X) has a bounded
Δ-weak bounded approximate identity. For a fixed element ψ ∈ Δ(A), define:

gα := ψ ◦ fα : X → C (α ∈ I).

Then, we have:
∑

x∈X

|gα(x)|p =
∑

x∈X

|ψ ◦ fα(x)|p

=
∑

x∈X

|ψ(fα(x))|p

≤ ‖ψ‖p
∑

x∈X

‖fα(x)‖p

≤ βp‖ψ‖p.

It means that gα ∈ �p(X), for all α ∈ I and:

sup
α

‖gα‖p ≤ β‖ψ‖.

Furthermore, for any x ∈ X, we have:

lim
α

ϕx(gα) = lim
α

gα(x) = lim
α

ψ(fα(x)) = Θ(x,ψ)(fα) = 1.

It follows that (gα)α∈I is a Δ-weak bounded approximate identity for �p(X).
Therefore, X is finite by Remark 2.5. Now, take x0 ∈ X to be fixed and for
any α ∈ Λ, and define eα := fα(x0) ∈ A. Thus, we have:

‖eα‖ = ‖fα(x0)‖ ≤ ‖fα‖p ≤ β.
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Moreover, for any ϕ ∈ Δ(A):

lim
α

ϕ(eα) = lim
α

ϕ(fα(x0)) = lim
α

Θ(x0,ϕ)(fα) = 1.

Therefore, (eα)α∈I is a Δ-weak bounded approximate identity for A. �

3. The BSE Property for �p(X,A)

In this section, we state the main result of the present paper. In fact, we
provide a necessary and sufficient condition for �p(X,A) to be a BSE algebra.

Theorem 3.1. Let X be a set and A be a commutative semisimple Banach
algebra. Then, �p(X,A) is a BSE algebra if and only if X is finite and A is
a BSE algebra.

Proof. First, suppose that �p(X,A) is a BSE algebra. Then, by [18, Corollary
5], �p(X,A) admits a Δ-weak bounded approximate identity. Proposition 2.6
implies that X is finite and A has a Δ-weak bounded identity. Again, by [18,
Corollary 5], we have:

M(A) ⊆ CBSE(Δ(A)). (3.1)

Now, we prove the reverse of inclusion (3.1). Suppose that σ ∈ CBSE(Δ(A)).
Then, there exists a bounded net (aλ)λ∈Λ ⊆ A, such that for each ϕ ∈ Δ(A),
limλ âλ(ϕ) = σ(ϕ). For any λ ∈ Λ, define the constant function fλ : X → A
by fλ(x) = aλ, (x ∈ X). Since X is finite, then fλ ∈ �p(X,A), for all λ ∈ Λ.
Moreover:

lim
λ

Θ(x,ϕ)(fλ) = lim
λ

ϕ(fλ(x)) = lim
λ

ϕ(aλ) = σ(ϕ) (x ∈ X,ϕ ∈ Δ(A)).

Define the function σ′ as follows:

σ′ : X × Δ(A) −→ C

σ′(x, ϕ) = σ(ϕ),

for all x ∈ X and ϕ ∈ Δ(A). Thus, we have:

σ′(x, ϕ) = σ(ϕ) = lim
λ

âλ(ϕ) = lim
λ

f̂λΘ(x,ϕ) (x ∈ X,ϕ ∈ Δ(A)).

This implies that σ′ ∈ CBSE(Δ(�p(X,A))). Since �p(X,A) is a BSE algebra,
it follows that σ′ ∈ M(�p(X,A)). Now, take a ∈ A and consider the constant
function f : X → A defined by f(x) = a (x ∈ X). Then, f ∈ �p(X,A), and
so there exists g ∈ �p(X,A), such that σ′f̂ = ĝ. Consequently for all x ∈ X
and ϕ ∈ Δ(A):

σ′(x, ϕ)f̂(x, ϕ) = ĝ(x, ϕ).

It follows that:
σ(ϕ)ϕ(f(x)) = σ(ϕ)ϕ(a) = ϕ(g(x)), (3.2)

and so:

ϕ(g(x)) = ϕ(g(y)) (x, y ∈ X,ϕ ∈ Δ(A)).
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Semisimplicity of A implies that g(x) = g(y), for all x, y ∈ X. So that g is
a constant function and thus g(x) = b (x ∈ X), for some b ∈ A. Now, the
equality (3.2) implies that:

σ(ϕ)â(ϕ) = σ(ϕ)ϕ(a) = ϕ(g(x)) = ϕ(b) = b̂(ϕ).

Therefore, σ â = b̂, and so, σ ∈ M(A), as claimed.
Conversely, suppose that X is finite and A is a BSE algebra. By [18,

Corollary 5], A has a Δ-weak bounded approximate identity. By proposition
2.6, �p(X,A) also has a Δ-weak bounded approximate identity. Again, by
[18, Corollary 5], we have:

M(�p(X,A)) ⊆ CBSE(Δ(�p(X,A))).

For the reverse of the above inclusion, suppose that σ ∈ CBSE(Δ(�p(X,A))).
We show that σ ∈ M(�p(X,A)). To that end, take h ∈ �p(X,A). We find
g ∈ �p(X,A), such that σ ĥ = ĝ. By [18, Theorem 4], there exists a bounded
net (fλ)λ∈Λ in �p(X,A), such that supλ ‖fλ‖p ≤ β, for some β > 0, and:

lim
λ

f̂λ(x, ϕ) = σ(x, ϕ) (x ∈ X,ϕ ∈ Δ(A)).

Thus:

lim
λ

ϕ(fλ(x)) = f̂λ(x)(ϕ) = σ(x, ϕ).

For each x ∈ X, we define the function σx as follows:

σx : Δ(A) −→ C

σx(ϕ) = σ(x, ϕ) = lim
λ

f̂λ(x)(ϕ).

This follows from [18, Theorem 4] that σx ∈ CBSE(Δ(A)). Since A is a BSE
algebra, σx ∈ M(A). Thus, for each x ∈ X, there exists ax ∈ A, such that
σxĥ(x) = âx. Now, define the function g on X as follows:

g : X −→ A

x 	→ ax.

For all x ∈ X and ϕ ∈ Δ(A), we have:

σ(x, ϕ)ĥ(x, ϕ) = σx(ϕ)ϕ(h(x))

= σx(ϕ)ĥ(x)(ϕ)
= âx(ϕ)

= ĝ(x)(ϕ)
= ĝ(x, ϕ).

Thus, σ ĥ = ĝ. So that �p(X,A) is a BSE algebra. �

Remark 3.2. In [19, Theorem 5], it is shown that for an arbitrary non-empty
set X:

�̂1(X) = CBSE(X) ⊂ M(�1(X)) = Cb(X).

Moreover, CBSE(X) and Cb(X) coincide if and only if X is finite. In fact,
�1(X) is a BSE algebra of type I if and only if X is finite. Note that, by some
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similar arguments as in the proof of [19, Theorem 5], we can deduce the same
results for �p(X) (1 < p < ∞), as well. Moreover, it is easily verified that if
X is finite and A is a unital BSE algebra, then:

̂�p(X,A) = M(�p(X,A)) = CBSE(X × Δ(A)) ⊆ Cb(X × Δ(A)).

However, these equalities are not valid in general. For instance, take X to be
a finite set and A to be a non-unital BSE algebra. Then:

̂�p(X,A) � M(�p(X,A)) = CBSE(X × Δ(A)) ⊆ Cb(X × Δ(A)).

It is worth to note that even in the case that X is finite, CBSE(X × Δ(A))
may not be equal to Cb(X × Δ(A)), as the following example shows.

Example 3.3. Let X be a finite set with card(X) = n > 1 and A = �∞(X).
Then, Δ(�∞(X)) = X and since �∞(X) is a unital BSE algebra, it follows
that �p(X, �∞(X)) is also a unital BSE algebra. Consequently:

̂�p(X, �∞(X)) = CBSE(X × X).

Suppose on the contrary that:

CBSE(X × X) = Cb(X × X). (3.3)

It follows that �p(X, �∞(X)) is a BSE algebra of type I, and so, by [18, Theo-
rem 3], �p(X, �∞(X)) is a C∗-algebra. Consider the function f ∈ �p(X, �∞(X)),
defined by f(x) = 1 (x ∈ X), where 1 ∈ �∞(X) is the constant function
1(x) = 1 (x ∈ X). Then:

‖f f̄‖p = ‖f2‖p = n1/p �= ‖f‖2
p = n2/p.

This contradiction indicates that the equality (3.3) is not satisfied and:

CBSE(X × X) � Cb(X × X).

In other words, there are continuous bounded functions on Δ(�p(X, �∞(X)))
which are not BSE.

For a natural number n, a function σ ∈ Cb(Δ(A)) is called a n-BSE
function, if there exists positive real numbers β (depending only on n), such
that for any choice of ϕ1, . . . , ϕn in Δ(A) and complex numbers c1, . . . , cn,
the inequality:

∣
∣
∣
∣
∣
∣

n∑

j=1

cjσ(ϕj)

∣
∣
∣
∣
∣
∣

≤ C

∥
∥
∥
∥
∥
∥

n∑

j=1

cjϕj

∥
∥
∥
∥
∥
∥

A∗

holds. The set of all n-BSE functions on Δ(A) will be denoted by
CBSE(n)(Δ(A)). We denote by ‖σ‖BSE(n), the infimum of such β. By [19,
Lemma 1]:

CBSE(n)(Δ(A)) = Cb(Δ(A))

if and only if there exists a positive real numbers βn (depending only on
n), such that for any choice of ϕ1, . . . , ϕn in Δ(A) and complex numbers
c1, . . . , cn in the closed unit disk C1, there exists x ∈ A, such that ‖x‖ ≤ βn

and x̂(ϕi) = ci.
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Let:

CBSE(∞) =
⋂

n∈N

CBSE(n)(Δ(A)).

Evidently, ‖σ‖BSE = supn∈N ‖σ‖BSE(n) and:

CBSE(Δ(A)) = {σ ∈ CBSE(∞) : ‖σ‖BSE < ∞}.

Moreover, we have the following inclusions:

Â ⊆ CBSE(Δ(A)) ⊆ CBSE(∞)(Δ(A)) ⊆ · · ·
⊆ CBSE(2)(Δ(A)) ⊆ CBSE(1)(Δ(A))
= Cb(Δ(A)).

See [19], for more information.
In Example 3.3, we observe that a continuous bounded function on the

Gelfand space �p(X,A) needs not be a BSE function. However, in the sequel,
we prove that for any unital commutative Banach algebra A and natural
number n:

CBSE(n)(Δ(�p(X,A))) = Cb(Δ(�p(X,A))) = Cb(X × Δ(A)).

In fact, all continuous bounded functions on Δ(�p(X,A)) are n-BSE func-
tions.

Proposition 3.4. Let X be a set and A be a commutative semisimple and
unital Banach algebra with unit e. Then, CBSE(n)(�p(X,A)) = Cb(X×Δ(A)),
for each n ∈ N.

Proof. To prove, we use [19, Lemma 1]. Take c1 . . . , cn ∈ Δ, x1, . . . xn ∈ X,
and ϕ1, . . . , ϕn ∈ Δ(A). Define the function f on X as:

f(x) =
{

cie x ∈ {x1, . . . , xn}
0 otherwise.

Then, for each i = 1, . . . , n we have:

f̂(xi, ϕi) = ϕi(f(xi)) = ϕi(cie) = ci.

Moreover:

‖f‖p =

(
n∑

i=1

‖f(xi)‖p

)1/p

=

(
n∑

i=1

|ci|p
)1/p

= n1/p.

Thus, it is sufficient to take βn = n1/p, and so, the proof is completed. �

It is known that in any commutative Banach algebra A, ‖x̂‖BSE ≤ ‖x‖,
for all x ∈ A. In [20], the authors were interested in a class of commutative
Banach algebras which satisfy the condition ‖x̂‖BSE = ‖x‖, for each x ∈ A.
These algebras are called BSE norm algebras. All function algebras on a
locally compact Hausdorff space, endowed with the supremum norm, and
also the algebra �1(X) belong to such a class. In the sequel, we show that
under some circumstances, �1(X,A) also belongs to this class. To that end,
we require the following elementary lemma.
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Lemma 3.5. Let X be a set and A be a commutative semisimple Banach
algebra. Suppose that c1, . . . cn and (x1, ϕ1), . . . , (xn, ϕn) are disjoint elements
of C and X × Δ(A), respectively, such that xk1 = · · · = xkm

, where 1 ≤
k1, . . . , km ≤ n. Then:

∥
∥
∥
∥
∥

m∑

i=1

cki
ϕki

∥
∥
∥
∥
∥

A∗

≤
∥
∥
∥
∥
∥

n∑

i=1

ci(xi, ϕi)

∥
∥
∥
∥
∥

�1(X,A)∗
.

Proof. Let xk1 = · · · = xkm
= x. Then, we have:

∥
∥
∥
∥
∥

m∑

i=1

cki
ϕki

∥
∥
∥
∥
∥

A∗

= sup

{∣
∣
∣
∣
∣

m∑

i=1

cki
ϕki

(a)

∣
∣
∣
∣
∣
: ‖a‖ ≤ 1

}

= sup

{∣
∣
∣
∣
∣

m∑

i=1

cki
ϕki

(δx
a(xki

))

∣
∣
∣
∣
∣
: ‖a‖ ≤ 1

}

= sup

{∣
∣
∣
∣
∣

n∑

i=1

ciϕi(δx
a(xi))

∣
∣
∣
∣
∣
: ‖δx

a‖1 ≤ 1

}

= sup

{∣
∣
∣
∣
∣

n∑

i=1

ci(xi, ϕi)(δx
a)

∣
∣
∣
∣
∣
: ‖δx

a‖1 ≤ 1

}

≤ sup

{∣
∣
∣
∣
∣

n∑

i=1

ci(xi, ϕi)(f)

∣
∣
∣
∣
∣
: ‖f‖1 ≤ 1

}

=

∥
∥
∥
∥
∥

n∑

i=1

ci(xi, ϕi)

∥
∥
∥
∥
∥

�1(X,A)∗
.

Thus, the proof is completed. �

Recall from [16] that a Banach algebra A is called a supremum norm
algebra if ‖â‖∞ = ‖a‖, for each a ∈ A. For example, all C∗-algebras are
supremum norm algebra.

Theorem 3.6. Let X be a set and A be a commutative semisimple Banach
algebra. If �1(X,A) is a BSE norm algebra, then A is so. The converse is
true if A is a supremum norm algebra.

Proof. Suppose that �1(X,A) is a BSE norm algebra. Thus, for each f ∈
�1(X,A), we have:

‖f‖1 = ‖f̂‖BSE.

It follows that:

‖a‖ = ‖δx
a‖1 = ‖δ̂x

a‖BSE (x ∈ X, a ∈ A). (3.4)

Let a ∈ A and take x ∈ X to be fixed. Then, for any finitely many complex
numbers c1, . . . , cn and the same number of elements (x1, ϕ1), . . . , (xn, ϕn) of
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X × Δ(A) with xk1 = · · · = xkm
= x, we have:

∣
∣
∣
∣
∣

n∑

i=1

ciδ̂x
a(xi, ϕi)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n∑

i=1

ciϕi(δx
a(xi))

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

i=1

cki
ϕki

(δx
a(xki

))

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

i=1

cki
ϕki

(a)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

i=1

cki
â(ϕki

)

∣
∣
∣
∣
∣

≤ ‖â‖BSE

∥
∥
∥
∥
∥

m∑

i=1

cki
ϕki

∥
∥
∥
∥
∥

A∗

≤ ‖â‖BSE

∥
∥
∥
∥
∥

n∑

i=1

ci(xi, ϕi)

∥
∥
∥
∥
∥

�1(X,A)∗
,

where the last inequality is obtained from Lemma 3.5. Consequently:
∣
∣
∣
∣
∣

n∑

i=1

ciδ̂x
a(xi, ϕi)

∣
∣
∣
∣
∣
≤ ‖â‖BSE

∥
∥
∥
∥
∥

n∑

i=1

ci(xi, ϕi)

∥
∥
∥
∥
∥

�1(X,A)∗
. (3.5)

Note that if all x1, . . . , xn are different from x, then the inequality 3.5 is
obviously satisfied. Thus, we have:

‖δ̂x
a‖BSE ≤ ‖â‖BSE. (3.6)

Now, the equality (3.4) and inequality (3.6) imply that:

‖a‖ ≤ ‖â‖BSE (a ∈ A).

Therefore, A is a BSE norm algebra.
Conversely, suppose that A is a supremum norm algebra. We show that

�1(X,A) is a BSE norm algebra. Take f ∈ �1(X,A) to be nonzero. It is
enough to show that ‖f‖1 ≤ ‖f̂‖BSE. For ε > 0, there exists N ∈ N, such
that:

‖f‖1 − ε <
N∑

k=1

‖f(xk)‖.

By the hypothesis:

‖f(xk)‖ = ‖f̂(xk)‖∞ = sup
ϕ∈Δ(A)

|ϕ(f(xk))|,

for each k = 1, . . . , N . Since A is unital, Δ(A) is compact and so all f̂(xk)
(k = 1, . . . , N) take their supremum on Δ(A). It follows that there exists
ϕk ∈ Δ(A), such that:

‖f̂(xk)‖∞ = |ϕk(f(xk))| (k = 1, . . . , N).
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Now let:

Ck =
‖f(xk)‖

ϕk(f(xk))
(k = 1, . . . , N).

Then, |Ck| = 1 and:
∣
∣
∣
∣
∣

N∑

k=1

Ckf̂(xk, ϕk)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

N∑

k=1

Ckϕk(f(xk))

∣
∣
∣
∣
∣

= ‖f(x1)‖ + · · · + ‖f(xN )‖

=
N∑

k=1

‖f(xk)‖

> ‖f‖1 − ε.

Thus:

‖f‖1 − ε <

∣
∣
∣
∣
∣

N∑

k=1

Ckf̂(xk, ϕk)

∣
∣
∣
∣
∣
. (3.7)

Moreover:
∥
∥
∥
∥
∥

N∑

k=1

Ck(xk, ϕk)

∥
∥
∥
∥
∥

= sup
‖h‖1≤1

∣
∣
∣
∣
∣

N∑

k=1

Ck(xk, ϕk)(h)

∣
∣
∣
∣
∣

= sup
‖h‖1≤1

∣
∣
∣
∣
∣

N∑

k=1

Ckϕk(h(xk))

∣
∣
∣
∣
∣

≤ sup
‖h‖1≤1

N∑

k=1

|Ck|‖ϕk‖‖h(xk)‖

= sup
‖h‖1≤1

N∑

k=1

‖h(xk)‖

≤ 1.

The last inequality together with (3.7) yields that:

‖f‖1 − ε <

∣
∣
∣
∣
∣

N∑

k=1

Ckf̂(xk, ϕk)

∣
∣
∣
∣
∣

≤ ‖f̂‖BSE

∥
∥
∥
∥
∥

N∑

k=1

Ck(xk, ϕk)

∥
∥
∥
∥
∥

≤ ‖f̂‖BSE.

Since ε is arbitrary, it follows that ‖f‖1 ≤ ‖f̂‖BSE, as claimed. �

4. The BSE Property of �p(X)

Let X be a nonempty set. By [19, Theorem 5], �1(X) is a BSE algebra if
and only if X is finite. Note that this result remains valid for �p(X), where
1 ≤ p < ∞. In this section, we provide another proof for this result, which
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is interesting in its own right. We first recall the definition of abstract Segal
algebras; see [3] for more information.

Let (A, ‖.‖A) be a commutative Banach algebra. A commutative Banach
algebra (B, ‖.‖B) is an abstract Segal algebra with respect to A if:

(i) B is a dense ideal in A.
(ii) There exists M > 0, such that ‖b‖A ≤ M‖b‖B, for all b ∈ B.
(iii) There exists C > 0, such that ‖ab‖B ≤ C‖a‖A‖b‖B, for all a, b ∈ B.
Moreover, B is called essential if:

B = {ab : a ∈ A, b ∈ B}.

Our new proof for [19, Theorem 5] is based on [10, Theorem 3.1], which is
described below:

“If (B, ‖.‖B) is an essential abstract Segal algebra with respect to the
BSE algebra A, then B is a BSE algebra if and only if it has a Δ-weak
bounded approximate identity.”

For this purpose, we remind the reader of some known spaces. Recall
that c0(X) is the space, consisting of all functions vanishing at infinity. More-
over, c0(X) is a Banach algebra under pointwise product and supremum
norm, defined as:

‖f‖∞ = {|f(x)| : x ∈ X} (f ∈ c0(X)).

The subspace c00(X) of c0(X), consisting of all finite support functions on
X, is dense in c0(X). Moreover:

c00(X) ⊆ �p(X) ⊆ c0(X)

and ‖f‖∞ ≤ ‖f‖p, for all f ∈ �p(X).

Lemma 4.1. Let X be a set and 1 ≤ p < ∞. Then, �p(X) is an essential
abstract Segal algebra with respect to c0(X).

Proof. Since �p(X) contains c00(X) and c00(X) is dense in c0(X), it follows
that �p(X) is also dense in c0(X). Moreover, �p(X) is an ideal in c0(X) and
for each f ∈ �p(X) and g ∈ c0(X), we have:

‖f g‖p =

(
∑

x∈X

|f(x)g(x)|p
)1/p

≤ ‖f‖p‖g‖∞ < ∞.

Consequently, �p(X) is an abstract Segal algebra in c0(X). In the sequel,
we show that �p(X) is essential. To that end, note that the collection F ,
consisting of all finite subsets of X, is a directed set by the upward inclusion;
that is:

F1 ≤ F2 if and only if F1 ⊆ F2.

It is easily verified that the net (χF )F∈F is a bounded approximate identity
for c0(X), where χF is the characteristic function on X at F . To establish the
essentiality of �p(X), by applying Cohen factorization theorem, it is sufficient
to show that (χF )F∈F is an approximate identity for �p(X); that is:

‖fχF − f‖p →F 0 (f ∈ �p(X)). (4.1)



94 Page 16 of 18 Z. Kamali and F. Abtahi MJOM

Suppose that f ∈ �p(X) and take ε > 0 to be arbitrary. There exists N ∈ N,
such that:

∞∑

i=N+1

|f(xi)|p < εp.

Let F0 = {x1, . . . , xn}. Since f ∈ c0(X), there exists finite subset F1 of X,
such that |f(x)| < ε, for all x �∈ F1. Set F2 := F0 ∪F1. Thus, for each F2 ≤ F ,
we have:

‖fχF − f‖p =

⎛

⎝
∑

x�∈F

|f(x)|p
⎞

⎠

1/p

≤
( ∞∑

i=N+1

|f(x)|p
)1/p

< ε,

and so, (4.1) is satisfied. This completes the proof. �

Note that c0(X) is a C∗-algebra, and so, it is a BSE algebra by [18,
Theorem 3]. Now, Theorem 2.6 and Lemma 4.1 together with [10, Theorem
3.1] yield the following result.

Theorem 4.2. Let X be a set and 1 ≤ p < ∞. Then, �p(X) is a BSE algebra
if and only if X is finite.

Proof. By Lemma 4.1, �p(X) is an essential abstract Segal algebra in c0(X).
Since c0(X) is a BSE algebra, [10, Theorem 3.1] implies that �p(X) is a BSE
algebra. It follows that �p(X) has a Δ-weak bounded approximate identity,
and so, X is finite by Theorem 2.6. The converse is obvious. �
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