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Multiplicity of Solution for a Quasilinear
Equation with Singular Nonlinearity
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Abstract. For an open, bounded domain Ω in R
N which is strictly convex

with smooth boundary, we show that there exists a Λ > 0 such that for
0 < λ < Λ, the quasilinear singular problem

−Δpu = λu−δ + uq in Ω

u = 0 on ∂Ω; u > 0 in Ω

admits at least two distinct solutions u and v in W 1,p
loc (Ω) ∩ L∞(Ω)

provided δ ≥ 1, 2N+2
N+2

< p < N and p − 1 < q < Np
N−p

− 1.

Mathematics Subject Classification. 35B09, 35B44, 35B45, 35D99.
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Introduction

In this paper, we study the multiplicity of weak solution to the quasilinear
singular problem given by

− Δpu = λu−δ + uq in Ω
u = 0 on ∂Ω; u > 0 in Ω (1)

where Ω(⊂ R
N ) is a strictly convex bounded domain with smooth boundary.

Here

Δpu := div(|∇u|p−2∇u)

is the p-Laplacian operator for 1 < p < ∞. We also assume that λ > 0, δ ≥ 1,
2N+2
N+2 < p < N and p−1 < q < p∗−1, where p∗ = Np

N−p is the critical Sobolev
exponent.

We start with a brief background of the problem (1) which were available
in the literature and is critical for a clear understanding of the issues and the
framework of our study. About 3 decades of work on the study of singular
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elliptic equation can be traced back to the pioneering work of of Crandall et
al. [1], where the problem

−Δu = u−δ in Ω; u = 0 on ∂Ω

was shown to admit a unique classical solution for any δ > 0 provided Ω
bounded. Following this Lazer–Mckenna [2] elaborating that the unique clas-
sical solution u is also in H1

0 (Ω) iff 0 < δ < 3. They also showed that the
solution belongs to C1(Ω̄) provided 0 < δ < 1. This was followed by the work
of Haitao [3] who studied the perturbed singular problem

− Δu = λu−δ + uq in Ω
u = 0 on ∂Ω; u > 0 in Ω (2)

and showed the existence of Λ > 0 such that there exists at least two solutions
u, v ∈ H1

0 (Ω) to problem (2) for λ < Λ, no solution for λ > Λ and at least
one solution for λ = Λ provided 0 < δ < 1 < q ≤ N+2

N−2 using fibering
method on Nehari manifold. These results were generalised for p-Laplacian
by Giacomoni et al. [4] who showed among other results the existence of at
least two solutions for 0 < δ < 1 and p−1 < q ≤ p∗−1. It should be noted that
in the above-mentioned works on perturbed problem, the solution so obtained
satisfied the equation in the trace sense and the restriction 0 < δ < 1 is due
to the use of variational methods which requires the associated functional to
be well defined on W 1,p

0 (Ω).
Boccardo and Orsina [5] took a different approach and showed that the

problem

− div(M(x)∇u) =
f(x)
uδ

in Ω; u = 0 in ∂Ω (3)

admits a solution u ∈ H1
loc(Ω) for any non-negative f ∈ L1(Ω) in the sense

that ∫
Ω

∇u∇φ =
∫

Ω

fφ

uδ
, φ ∈ C1

0 (Ω)

for u ≥ cω in ω where ω ⊂⊂ Ω and δ > 0 among other results. The bound-
ary condition is understood as such that u

1+δ
2 belongs to H1

0 (Ω). Recently,
the problem (3) has been generalised by Canino et al. [6] for the p-Laplacian,
where existence of a solution u ∈ W 1,p

loc (Ω) was shown for δ > 0 and f ∈ L1(Ω)
such that u

p−1+δ
p ∈ W 1,p

0 (Ω). Moreover, the solution was proved to be unique
provided Ω is star-shaped w.r.t the origin. The perturbed problem (2) was
studied by Arcoya-Mérida [7] and the existence of at least two solutions was
proved in H1

loc(Ω) ∩ L∞(Ω) for any δ > 0. Moreover, any solution u so ob-
tained satisfies u

1+δ
2 ∈ H1

0 (Ω). This was done by regularising the singular
problem and showing the multiplicity result using a combination of some a
priori estimates and bifurcation theory and then passing to the limit. In this
work, we aim to provide a generalization of the results of Arcoya-Mérida [7]
for any 2N+2

N+2 < p < N. We finish our survey of the literature by provid-
ing some references for nonexistence results concerning singular nonlinearity
which can be found in [8]. Interested readers may also find the corresponding
parabolic problem which was studied in [9,10] and the references therein.
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Now that the history of the problem is clear, let us move to discuss the diffi-
culties one encounters while studying the problem (1) for any 1 < p < ∞ and
the strategy we employ to circumvent those difficulties. To obtain the multi-
plicity result we start by the standard approach of studying the multiplicity
of solution to the regularized problem which is given by

− Δpu = λfn(u) + uq in Ω;
u = 0 on ∂Ω; u > 0 in Ω,

(4)

where fn(x) := (x+ 1
n )−δ with δ ≥ 1, n ∈ N and λ > 0. Note that this problem

is non-singular for any n ∈ N. We start by showing multiplicity of solution
to Eq. (4) for every fixed n by proving an uniform a priori estimate and then
using Leray–Schauder degree. We conclude by passing to the limit to obtain
two distinct solutions to our main problem (1). One of the main challenges
in this study is to find the uniform a priori estimates independent of n. For
p = 2, Kelvin transform has been employed to obtain the boundary estimate
on the solutions of the regularized problem in [7] which fails for p-Laplacian,
see Lindqvist [11]. Moreover, application of the moving plane method is also
tricky owing to the degeneracy of the p-Laplacian at the critical points. We
overcome this difficulty by proving an uniform Höpf Lemma by modifying
the arguments of Vázquez [12] (also see Peral [13]) in combination with a
delicate application of moving plane technique by combining some of our ideas
with that of Castorina–Sanchón [14] to arrive at the required estimate. This
process requires the strict convexity of the domain. Once we have an uniform
neighbourhood of the boundary, the blow-up analysis of Gidas–Spruck [15]
goes through, which required segregating the maxima’s of un in some interior
of the boundary independent of n.

Following Arcoya–Mérida [7], the solutions of (1) has been understood
here in the following sense:

Definition 0.1. We say u ∈ W 1,p
loc (Ω) ∩ L∞(Ω) is a weak solution to the

problem (1) if for every open subset ω ⊂⊂ Ω and φ ∈ W 1,p
0 (ω) one has

u−δφ ∈ L1(Ω) and also satisfying∫
Ω

|∇u|p−2∇u∇φ dx = λ

∫
Ω

u−δφ dx +
∫

Ω

uqφ dx. (5)

The boundary condition u = 0 on ∂Ω is understood as in Arcoya–Mérida [7],
i.e. we require that a suitable power of u is in W 1,p

0 (Ω).

Main Result

We denote the set

E =
{

(p, q) :
2N + 2
N + 2

< p < N and p − 1 < q < p∗ − 1
}

.

For the rest of the paper, we will assume (p, q) ∈ E, δ ≥ 1 and Ω is a strictly
convex bounded domain with smooth boundary unless otherwise mentioned.
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Theorem 0.1. Given δ ≥ 1, there exists Λ > 0 such that for any 0 < λ < Λ,
problem (1) admits at least two solution u, v ∈ W 1,p

loc (Ω) ∩ L∞(Ω) provided
(p, q) ∈ E. The solutions so obtained fulfils the boundary data in the sense
that

uα, vα ∈ W 1,p
0 (Ω) for all α >

(p − 1)(δ + p − 1)
p2

.

Remark 0.1. Note that for p = 2, Theorem 0.1 boils down to the main result
of Arcoya–Mérida [7] provided Ω is strictly convex. It is worth noting that
this assumption of strict convexity on Ω was not required in Arcoya–Mérida
as opposed to our case which is due to the non-degeneracy of the Laplace
operator.

Remark 0.2. For 1 ≤ δ < 2 + 1
p−1 , one has (p−1)(δ+p−1)

p2 < 1. Therefore,
choosing α = 1 in Theorem 0.1, we obtain u, v ∈ W 1,p

0 (Ω). This implies
that for δ ∈ [1, 2 + 1

p−1 ) one has the existence of at least two solutions
u, v ∈ W 1,p

0 (Ω), hence improving the result of Giacomoni et al. [4] when
p − 1 < q < p∗ − 1.

1. Preliminary Lemmas

We begin this section by extending a few results for the p-Laplacian case:

Lemma 1.1. Given λ > 0, the regularized singular problem

− Δpu = λ

(
u +

1
n

)−δ

in Ω; u = 0 on ∂Ω (6)

admits an unique positive solution un in W 1,p
0 (Ω) ∩ L∞(Ω) for each n ∈ N.

Moreover, one has the following:
(i) un is increasing w.r.t n.
(ii) un > cω > 0 for all ω ⊂⊂ Ω, where cω depends only on ω and not on n.
(iii) ||un||∞ ≤ Mλ

1
δ+p−1 for all n ∈ N with M > 0 is a constant independent

of n.

Lemma 1.2. There exists δ0 > 0 such that every bounded non-trivial positive
solution u of the problem −Δpu = uq in Ω satisfies ||u||∞ > δ0.

Lemma 1.3. There exists Λ̄ > 0 (independent of n) such that for all λ ≥ Λ̄
the problem (4) does not admit any weak solution un ∈ W 1,p

0 (Ω) ∩ L∞(Ω).

Lemma 1.4. Then there exists K > 0 (independent of n) such that ||un||∞ ≤
K, where un ∈ W 1,p

0 (Ω) ∩ L∞(Ω) solves (4) for λ > 0.

Lemma 1.5. Let δ ≥ 1. Then there exists N ∈ N and Λ > 0 such that for
any n ≥ N , the problem (4) admits at least two distinct solution un, vn ∈
W 1,p

0 (Ω) ∩ L∞(Ω) provided 0 < λ< Λ.

Before we start with the proof of the lemmas, we state some useful
results.
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Lemma 1.6 (Lemma B.1, Stampacchia [16]). Let φ(t), k0 ≤ t < ∞, be non-
negative and non-increasing such that

φ(h) ≤
[

c

(h − k)l

]
|φk|m, h > k > k0,

where c, l,m are positive constants with β > 1. Then

φ(k0 + d) = 0,

where

dl = C[φ(k0)]m−12
lm

m−1 .

Theorem 1.1 (Liouville theorem for p-Laplacian, Corollary 3 of Serrin-Zou
[17]). Let Ω = R

N and assume 1 < p < N . Then the problem −Δpu = uq

has a bounded positive C1 solution on Ω iff q ≥ p∗ − 1.

Before proceeding further, we state the following strong comparison
principle which follows arguing similarly as in the proof of Theorem 2.3 of
Giacomoni et al. [4].

Theorem 1.2. Let n ∈ N and u, v ∈ C1,α(Ω) for some 0 < α < 1 be positive
in Ω such that

− Δpu − λ

(
u +

1
n

)−δ

= f, (7)

−Δpv − λ

(
v +

1
n

)−δ

= g, (8)

with u = v = 0 on ∂Ω, where f, g ∈ C(Ω) are such that 0 ≤ f < g pointwise
everywhere in Ω. Then the following strong comparison principle holds:

0 < u < v in Ω and
∂v

∂η
<

∂u

∂η
< 0 on ∂Ω,

where η is the outward unit normal to the boundary of Ω.

Theorem 1.3 (Strong comparison principle, Theorem 3.7 of Damascelli–
Sciunzi [18].). Let Ω be a bounded smooth domain in R

N , N ≥ 2. Assume
2N+2
N+2 < p < ∞ and u, v ∈ C1(Ω) be positive in Ω such that

−Δpu − f(u) ≤ −Δpv − f(v) weakly in Ω,

and f satisfy the following conditions:

(a) f is a positive continuous on [0,∞),
(b) f is locally Lipschitz on (0,∞).

Let u solves the following equation:{−Δpw = f(w) in Ω,
w > 0 in Ω, w = 0 on ∂Ω.

(9)

If u ≤ v and u 	= v in Ω, then u < v in Ω.
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One can also have a strong comparison principle with sign changing
nonlinearity f which generalizes Lemma 9 due to Roselli–Sciunzi [19]. Before
we move to the proof of the lemmas, let us note that the first part of the
proof of Lemma 1.1 can be done using similar techniques from Canino et al.
[6] but we still provide it here for completeness.

Proof of Lemma 1.1. Fix v ∈ Lp(Ω) and n ∈ N. Consider Jλ : W 1,p
0 (Ω) → R

defined as

Jλ(u) =
1
p

∫
Ω

|∇u|pdx − λ

∫
Ω

u

(|v| + 1
n )δ

dx

Clearly, Jλ is continuous, coercive and strictly convex in W 1,p
0 (Ω). Hence,

there exists a unique minimizer u ∈ W 1,p
0 (Ω) solving

− Δpu =
λ

(|v| + 1
n )δ

. (10)

Define S : Lp(Ω) → Lp(Ω) by

S(v) = (−Δp)−1

(
λ

(|v| + 1
n )δ

)
:= u.

Arguing exactly as in A.0.3 of Peral [13] in conjugation with Poincaré in-
equality and Sobolev inequality yields the continuity and compactness of S.
Note that multiplying u with equation (10) and integrating we have,

∫
Ω

|∇u|p dx ≤ λnδ

∫
Ω

|u| dx ≤ C(λ, n, δ,Ω)
(∫

Ω

|u|p dx

) 1
p

,

where C(λ, n, δ,Ω) is a positive constant which depend only on λ, n, δ and
Ω. Hence, using Poincaré inequality on the left side of the above relation, we
have

||u||p ≤ (C(λ, n, δ,Ω))
1

p−1 .

This essentially shows that there exists a ball in Lp(Ω) which remains in-
variant under the action of S. Hence, Schauder fixed point theorem gives the
existence of a fixed point un ∈ W 1,p

0 (Ω) thus solving (6). Again by Vazquez
strong maximum principle [12], we have un > 0 in Ω satisfying

−Δpun = λ

(
un +

1
n

)−δ

; un ∈ W 1,p
0 (Ω).

Again using Lemma A.1 in Perera-Silva [20], we have un ∈ L∞(Ω) for any
fixed n. For monotonicity, we denote ui to be the solution of the equation:

− Δpu = λ
(
u +

1
i

)−δ in Ω; u = 0 on ∂Ω (11)

for i = 1, 2, . . .

Subtracting Eq. (11) for i = n from i = n + 1 and multiplying with
(un − un+1)+, we have
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∫

Ω

(|∇un|p−2∇un − |∇un+1|p−2∇un+1) · ∇(un − un+1)+dx

≤ λ

∫

Ω

[(
un +

1
n + 1

)−δ − (
un+1 +

1
n + 1

)−δ](un − un+1)+dx (12)

From the algebraic inequality (Lemma 4.1 of Ghoussoub and Yuan [21]),
we get for p ≥ 2∫

Ω

(|∇un|p−2∇un − |∇un+1|p−2∇un+1) · ∇(un − un+1)+dx

≥ Cp||∇(un − un+1)+||p ≥ 0.

Also when 1 < p < 2, we have∫

Ω

(|∇un|p−2∇un − |∇un+1|p−2∇un+1) · ∇(un − un+1)+dx

≥ Cp
||∇un − ∇un+1||2

(||∇un|| + ||∇un+1||)2−p
≥ 0.

Again from the monotonicity of fn(x) = (x + 1
n )−δ w.r.t x, we have

∫

Ω

[(
un +

1
n + 1

)−δ

−
(

un+1 +
1

n + 1

)−δ
]

(un − un+1)+dx ≤ 0.

Combining this with (12), we have

||(un − un+1)+||1,p = 0.

Employing with the boundary condition gives

(un − un+1)+ = 0;

therefore, un is monotonically increasing w.r.t n. Uniqueness follows arguing
as above.

The positivity of un on compact subsets follows by noting that u1 > 0
in Ω, where u1 solves the equation

−Δpu =
λ

(u + 1)δ
in Ω; u = 0 in ∂Ω.

Hence, using regularity theorem of Lieberman and DiBenedetto [22,23] one
can conclude that un ∈ C1,α(n)(Ω̄) for each n ∈ N for some 0 < α(n) < 1.
Therefore, from monotonicity of solutions, we can conclude that un > u1 in
Ω and hence

un > cω > 0 for ω ⊂⊂ Ω

with cω is independent of n.

Now to show the uniform boundedness of the solutions we assume, v =
un be a solution to Eq. (6) and let λ = 1.
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For k ≥ 1, choose

φ := Gk(v) =

{
v − k if v > k

0 if v ≤ k

and define, A(k) = {x ∈ Ω : v > k}. So for 0 < k < h we have A(h) ⊂ A(k).
Since −Δpv = 1

(v+ 1
n )δ < 1

vδ ; hence,
∫

A(k)
|∇v|pdx < C

∫
A(k)

v − k

vδ
dx ≤ |A(k)|

1
p′ ||(v − k)||Lp(A(k)) < C|A(k)|

1
p

′ ||∇v||Lp(A(k)).

By Poincaré and Sobolev inequalities, we have

||v||p−1
Lp∗(A(k)) <

C

Sp−1
|A(k)|

1
p

′ .

where C > 0 and S > 0 are the Poincaré and Sobolev constant respectively
with p′ = p

p−1 . Using the above inequalities we get,

|A(h)| ≤ ( c

Sp−1

) p∗
p−1

1
(h − k)p∗ |A(k)| p∗

p .

Using Lemma 1.6 we have for h > k > 0,

|A(T )| = 0,

which implies v ∈ L∞(Ω) and ||v||∞ ≤ T for some T independent of n.
Now, for any λ > 0, suppose v satisfies∫

Ω

|∇v|p−2∇v∇φ dx < λ

∫
Ω

φ

vδ
dx

for all positive φ ∈ [W 1,p
0 (Ω)].

Choosing w = ( 1
λ )

1
δ+p−1 un, we see that w satisfies:∫

Ω

|∇w|p−2∇w∇φ dx <

∫
Ω

φ

wδ
dx

for all positive φ ∈ W 1,p
0 (Ω). Hence, from the case λ = 1, we have

||w||∞ ≤ T which implies ||un||∞ ≤ Tλ
1

δ+p−1 .

�

Proof of Lemma 1.2. Assume there exists a sequence un ∈ W 1,p(Ω)∩L∞(Ω)
of non-trivial solutions of −Δpu = uq such that ||un||∞ → 0 as n → ∞.
Define vn(x) := un(x)||un||−1

∞ then ||vn||∞ = 1.
Since un satisfies −Δpu = uq, we have

−Δpvn = ||un||q−p+1
∞ vq

n := fn.

Since fn are uniformly bounded for sufficiently large n, we have by Tolksdorf,
Dibendetto and Lieberman regularity results [22–24] that ||vn||C1,β(Ω) ≤ M

for some β ∈ (0, 1) and M independent of n. By Ascoli-Arzelá theorem up
to a subsequence, vn → v in C1

0 (Ω), but that would imply v = 0, thanks to
Lemma 1.1 of Azizieh-Clément [25] contradicting that ||vn||∞ = 1. �
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Proof of Lemma 1.3. Let us assume φ1 ∈ [W 1,p
0 (Ω)]+ to be the first eigen-

function corresponding to the first eigenvalue λ1 of the operator −Δp, i.e.,

−Δpφ1 = λ1φ1
p−1 in Ω; φ1 = 0 on ∂Ω.

Let u = un be a weak solution of Eq. (4) for any fixed n, then by strong
maximum principle [12], we have φp

1
up−1 ∈ W 1,p

0 (Ω) and hence using Picone
identity (Theorem 1.1 of Allegretto-Huang [26] or Theorem 2.1 of Bal [27]),
we have ∫

Ω

|∇φ1|pdx −
∫

Ω

|∇u|p−2∇u∇
(

φp
1

up−1

)
dx ≥ 0.

This implies
∫
Ω
(λ1u

p−1 − λfn(u) − uq)φp
1dx ≥ 0.

Define Λ := max
x∈Ω

[λ1u
p−1 − uq

f1(u)

]
.

Using the boundedness of u, we have for every ε > 0 there exists a δ0 > 0
such that sq < εsp−1 for all s = ||u||∞ ∈ [0, δ0]. So for a suitable choice of ε,
we have Λ > 0.

Therefore,

Λ >
λ1u

p−1 − uq

fn(u)
≥ λ.

Hence, the result follows. �
We divide the proof of Lemma 1.4 into several steps. The idea of the

proof comes from combining and modifying some ideas from work of Castorina-
Sanchón [14] and that of Bal-Giacomoni [28]. Note that similar ideas as in
step 1 can also be found in papers of Canino et al. [?] and that of Esposito-
Sciunzi [29] for semilinear and quasilinear problems, respectively, and step 4
in Canino et al. [30,31].

Proof of Lemma 1.4. We will prove the lemma in several steps:
Step 1 (Uniform Höpf Lemma) We start by showing that for any n ∈ N

we have ∂un

∂η (x) < c < 0 for some c which is independent of n but depends
on x and η is the outward unit normal to ∂Ω at the point x.

Since Ω has a C2 boundary it also satisfies the interior ball condition.
Hence, for x0 ∈ ∂Ω, there exists Br(y) ⊂ Ω such that ∂Br(y) ∩ ∂Ω = {x0}.

Define the function w : Br(y) → R such that

w(x) = [2
N−p
p−1 − 1]−1r

N−p
p−1 |x − y| p−N

p−1 − [2
N−p
p−1 − 1]−1.

Hence, w satisfies the following:
1. w(x) ≡ 1 on ∂B r

2
(y) and w(x) = 0 on ∂Br(y).

2. 0 < w(x) < 1 if x ∈ Br(y) ∩ B r
2
(y) with |∇w(x)| > c > 0 for some

positive constant c depending on x .
Define τ = inf{un(x)|x ∈ ∂B r

2
(y)}, where un satisfies Eq. (4). We aim

to show that τ > cB 2r
3

(y) independent of n. Using Theorem 1.2, we also have

un(x) > vn(x) for all n ∈ N and a.e. x ∈ Ω, where vn solves (6). Hence, from
Lemma 1.1

un > vn ≥ v1 > cB 2r
3

(y) for all n ∈ N.
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Set v = τw and note that v satisfies the following equation:

−Δpv =0 in Br(y) − B r
2
(y)

v =τ if x ∈ ∂B r
2
(y); v = 0 if x ∈ ∂Br(y).

We also have that un ≥ v on the boundary of Br(y) − B r
2
(y) and −Δpv ≤

−Δpun in Br(y).
So using Theorem 1.2 of Lucia-Prashanth [32], we have un ≥ v in

Br(y) − B r
2
(y).

Now since un(x0) = v(x0) = 0, one has from properties of w:

∂un

∂η
(x0) = lim

t→0−

un(x0 + tη)
t

≤ lim
t→0−

v(x0 + tη)
t

=
∂v(x0)

∂η
= τ

∂w

∂η
(x0) < c < 0,

where c < 0 is independent of n and η is the outward normal at x0.
Step 2 (Existence of a neighbourhood of the boundary which is indepen-

dent of critical points of un) Define Z(un) = {x ∈ Ω : ∇un(x) = 0} to be the
the critical set of un, where un satisfies equation (4). Since un ∈ C1(Ω̄) from
Step 1 we have that ∂un

∂η < 0 on the boundary. So using the compactness of
∂Ω and Z(un), we deduce that dist(∂Ω, Z(un)) = dn > 0 for all n ∈ N.
We assert that there exists ε0 > 0 independent of n such that dn > ε0 > 0,
i.e, there exists a neighbourhood of boundary given by Ωε0 = {x ∈ Ω :
dist(x, ∂Ω) < ε0} such that Z(un) ∩ Ωε0 = φ for any n ∈ N. If not, then
∃ xm ∈ Z(un) s.t dist(xm, ∂Ω) → 0 as n → ∞ and ∇un(xm) = 0. Up to a
subsequence, xmk

→ y0. Clearly, y0 ∈ ∂Ω and let η(y0) is the unit outward
normal to y0 be such that ∂un

∂η (y0) < c < 0, thanks to the Uniform Hópf
Lemma. Hence, there exists ι > 0 such that for all y ∈ Bι(y0) ∩ Ω one has
|∇un(y)| > c

2 , where c is independent of n. This is a contradiction since we
can always choose xm0 ∈ Bι(y0) ∩ Ω such that ∇un0(xm0) = 0.

Step 3 (Monotonicity of un) For e ∈ S
n, γ ∈ R and a fixed n ∈ N define

(i) The hyperplane T := Tγ,e = {x ∈ R
N : x.e = γ} and the corresponding

cap Σ = Σγ,e = {x ∈ R
N : x.e < γ}.

(ii) a(e) = inf
x∈Ω

x.e

(iii) x′ = xγ,e be the reflection of x w.r.t T i.e, x′ = x + 2(γ − x.e)e.
(iv) Σ′ be the non-empty reflected cap of Σ w.r.t T for any γ > a(e).
(v) Λ1(e) := {μ > a(e) : ∀γ ∈ (a(e), μ), condition (A) holds} and Λ′(e) :=

sup Λ1(e),
where condition (A) is given by the following two conditions:

• Σ′ is not internally tangent to ∂Ω at some point p /∈ Tγ,e.
• For all x ∈ ∂Ω ∩ Tγ,e, e(x).e 	= 0, where e(x) is the unit inward normal

to ∂Ω at x.

From Proposition 2 of Azizieh-Lumaire [33], we have that the map e → Λ′(e)
is continuous, provided Ω is strictly convex.

Further, define vn(x) = un(xγ,e). Using the boundedness and the strict
convexity of the Ω we have Σ′ is contained in Ω for any γ ≤ γ1, where γ1
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depends only on Ω, independent of e. Define γ0 = min(γ1, ε0). For γ − a(e)
small consider any such Σ. Now since vn and un both satisfies Eq. (4) and
Δp is invariant under reflection hence on the hyperplane T both functions
coincides. Moreover, for x ∈ ∂Σ ∩ ∂Ω, we have un(x) = 0 and vn(x) =
un(x′) > 0 since x′ ∈ Ω. Hence, we have

Δpun + uq
n + fn(un) = Δpvn + vq

n + fn(vn) in Σ
un ≤ vn on ∂Σ. (13)

Using the comparison principle of Damascelli-Sciunzi [34] for narrow domain
we have un ≤ vn in Σ. Again using the comparison principle, we have un ≤ vn

in Σγ,e for any γ ∈ (a(e), γ0]. So un is non-decreasing in the e-direction for
all x ∈ Σγ0,e.

Step 4 (Existence of a non-zero measurable set away from boundary
where u is non-decreasing) Fix x0 ∈ ∂Ω and let e = η(x0) be the unit
outward normal to ∂Ω at x0. From step 3, we have that un is non-decreasing
in e direction for all x ∈ Σγ,e and a(e) < γ < γ0.

If θ ∈ S
N−1 be any other direction close to e, then the reflection of Σγ,θ

w.r.t Tγ,θ will still be in Ω due to the strict convexity of the domain and so
un will be non-decreasing in the θ direction. Choose γ = γ0

2 and consider the
region Σ γ0

2 ,e, since Ω is strictly convex there exists a small neighbourhood
Θ ∈ S

N−1 such that Σ γ0
2 ,e ⊂ Σγ0,θ for all θ ∈ Θ. Hence, un is non-decreasing

in every direction θ ∈ Θ and for any x with x.e < γ0
2 .

Set

Σ0 =
{

x ∈ Ω :
γ0

8
< x.e <

3γ0

8

}
.

Clearly Σ0 ⊂ Σ γ0
2 ,e and un is non-decreasing in any direction θ ∈ Θ and

x ∈ Σ0. Finally, choose ε = γ0
8 and fix any point x ∈ Ωε′ . If x0 is the

projection of this point on ∂Ω, then

un(x) ≤ un(x0 − εe) ≤ un(y)

for all y ∈ Ix, where Ix ⊂ Σ0 is the truncated cone with vertex at x0 − ε′e
and opening angle Θ

2 . Moreover, Ix has the following properties:

• |Ix| > κ for some κ depending only on Ω and ε.
• un(x) ≤ un(y) for all y ∈ Ix and n ∈ N.

Step 5 (Deriving the boundary estimates) Using Picone’s identity
(Allegretto-Huang [26]) on e1 the first eigenfunction of the p-Laplacian on
Ω and un one has using the strong maximum principle of Vázquez [12] that

ep
1

up−1
n

∈ W 1,p
0 (Ω).

Therefore,∫

Ω

[uq
n + fn(un)]ep

1

up−1
n

dx =
∫

Ω

|∇un|p−2∇un∇
(

ep
1

up−1
n

)
dx

≤
∫

Ω

|∇e1|pdx ≤ C(Ω). (14)
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Let e1(z) ≥ ζ > 0 for all z ∈ Ω − Ω ε′
2
. Hence from (14), we deduce

ζp

∫

Ω−Ω ε′
2

[uq
n + fn(un)]

up−1
n

dx ≤ C(Ω)

which would then imply that∫

Ix

[uq
n + fn(un)]

up−1
n

dx ≤ C(Ω)
ζp

.

Now, since∫

Ix

[uq
n + fn(un)]

up−1
n

dx ≥
∫

Ix

uq−p+1
n (y)dy ≥ uq−p+1

n (x)|Ix|, (15)

we have

uq−p+1
n (x) ≤ C ′(Ω)

ζp

for some constant C ′ > 0, i.e, un(x) ≤ C̄ for all x ∈ Ωε and for all n ∈ N.
Step 6 (Initiating the blow-up analysis) For any open set Ω′ ⊂⊂ Ω,

there exists C(Ω′) such that ||u||∞ < C(Ω′) for every solution un of (Pn,λ).
Assume by contradiction that there is a sequence (un) of positive solu-

tions of (Pn,λ) and a sequence of points xn ∈ Ω such that Mn = un(Pn) =
max{un(x) : x ∈ Ω̄′} → ∞ as n → ∞. Using the boundary estimates, we can
safely assume that xn → x0 ∈ Ω̄′ as n → ∞. Let 2d be the distance of Ω̄′ to
∂Ω and assume Ωd = {x ∈ Ω : dist(x,Ω′) < d}.

Let Rn be the sequence of positive numbers such that R
p

q−p+1
n Mn = 1.

Clearly, Rn → 0 as Mn → ∞.
Define the scaled function vn : B(0, d

Rn
) → R such that

vn(y) = R
p

q−p+1
n un(Pn + Rny).

Since un attains its maxima at Pn, we have ||vn||∞ = vn(0) = 1.
Again as Rn → 0, we can choose a n0 such that B(0, R) ⊂ B(0, d

Rn
) for

a fixed R > 0 and n ≥ n0.
Also we have that vn satisfies the following:

∇vn(y) = R
p

q−p+1+1
n ∇un(Pn + Rny)

hence, −Δpvn(y) = R
pq

q−p+1
n [λfn(un(Pn + Rny)) + R

−pq
q−p+1
n vq

n(Pn + Rny)]

Since Pn + Rny ∈ Ω̄d ⊂ Ω for any y ∈ B(0, R), we have from Lemma 1.1 and
Theorem 1.3,

R
pq

q−p+1
n [λfn(un(Pn + Rny)) + R

−pq
q−p+1
n vq

n(Pn + Rny)] ≤ C(Ω̄d)

for all n ≥ n0. Fixing a ball B̄ ∈ B(0, d
Rn

) for all n ≥ n0, from the interior
estimates of Tolksdorf [24] and Lieberman [22], we get the existence of some
constant K > 0 and β ∈ (0, 1) depending only on N, p,B such that

vn ∈ C1,β(B̄) and ||vn||1,β ≤ K.
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This allows us to deduce the existence of a function v ∈ C1(B̄) and a conver-
gence subsequence vn → v in C1(B̄) from Ascoli–Arzelá theorem. Passing to
the limit, we have∫

B

|∇v|p−2∇v∇φ dx =
∫

B

vqφ dx in B, φ ∈ C∞
c (B)

v ∈ C1(B̄), v ≥ 0 on B̄.

Moreover, we also have ||v||∞ = 1. Using strong maximum principle of
Vázquez [12], we also have v(x) > 0 for all x ∈ B. Taking larger and
larger balls, we obtain a Cantor diagonal subsequence which converges to
v ∈ C1(RN ) on all compact subsets of RN and satisfy∫

RN

|∇v|p−2∇v∇φ dx =
∫
RN

vqφ dx in R
N , φ ∈ C∞

c (RN )

v ∈ C1(RN ), v > 0 in R
N

which is a contradiction to Theorem 1.1. �

Before we begin with the proof of Lemma 1.5, we state some lemmas.
We will provide proof in cases where they are generalised for p-Laplacian.

Lemma 1.7. (DeFigueiredo et al. [35]). Let C be a cone in a Banach space
X and φ : C → C be a compact map such that φ(0) = 0. Assume that there
exists 0 < r < R such that

1. x 	= tφ(x) for 0 ≤ t ≤ 1 and ||x|| = r,
2. a compact homotopy, F : BR × [0,∞) → C such that F (x, 0) = φ(x) for

||x|| = R, F (x, t) 	= x for ||x|| = R and 0 ≤ t < ∞ and F (x, t) = x has
no solution x ∈ BR for t ≥ t0.

Then if U = {x ∈ C : r < ||x|| < R} and Bρ = {x ∈ C : ||x|| < ρ}, we have
deg(I − φ,BR, 0) = 0, deg(I − φ,Br, 0) = 1 and deg(I − φ,U, 0) = −1.

Let us define the set

P = {u ∈ C1,α
0 (Ω̄) : u(x) ≥ 0 in Ω}.

Clearly

P
∼ =

{
u ∈ C1,α(Ω̄) : u(x) > 0 in Ω and

∂u

∂η
(x) < 0 for all x ∈ ∂Ω

}

is the interior of P, where η is the unit outward normal to ∂Ω.

Lemma 1.8. Suppose u and u are the solution and super-solution to Eq. (4)
in C1,α

0 (Ω̄). If u 	= u, then u − u is not on ∂P, where ∂P is the boundary of
P.

Proof. Assume u−u ∈ ∂P. Hence, we have u(x) ≥ u(x) in Ω. Using Theorem
1.3, we have ū − u > 0 in Ω. Now Theorem 1.2 gives u − u ∈ P

∼. Since
P

∼ ∩ ∂P = ∅, we arrive at a contradiction to our assumption. �
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Lemma 1.9. Suppose I ⊂ R is an interval and let Σ ⊂ I × C1,α
0 (Ω) be a

connected set of solutions of Eq. (4). Consider a continuous map U : I →
C1,α

0 (Ω) such that U(λ) is a super-solution of (4) for every λ ∈ I, but not
a solution. If u0 ≤ U(λ0) in Ω but u0 	= U(λ0) for some (λ0, u0) ∈ Σ then
u < U(λ) in Ω for all (λ, u) ∈ Σ.

Proof. Consider a continuous map,

T : I × C1,α
0 (Ω) → C1,α

0 (Ω) given by T (λ, u) = U(λ) − u.

Since T is a continuous operator, T (Σ) is connected in C1,α
0 (Ω). By Lemma

1.8, T (
∑

) completely lies in P∼ or completely outside P. Since T (λ0, u0) ∈ P,
we have T (Σ) ⊂ P

∼ and, therefore, u < U(λ) for all (λ, u) ∈ Σ. �

Lemma 1.10 (Ambrosetti-Arcoya [36]). Given X be a real Banach space with
U ⊂ X be open, bounded set. Let a, b ∈ R such that the equation u−T (λ, u) =
0 has no solution on ∂U for all λ ∈ [a, b] and that u − T (λ, u) = 0 has no
solution in U for λ = b.

Also let U1 ⊂ U be open such that u − T (λ, u) = 0 has no solution in
∂U1 for λ = a and deg(I − Ka, U, 0) 	= 0. Then there exists a continuum C
in Γ = {(λ, u) ∈ [a, b] × X : u − T (λ, u) = 0} such that

C ∩ ({a} × U1) 	= ∅ and C ∩ ({a} × (U − U1)) 	= ∅
Proof of Lemma 1.5. We proceed by splitting the proof into several steps:

Step 1: (Existence of a super-solution which is not a solution) Define,
A(s) = 1

2

(
( s

T )δ+p−1 − sδ+q
)

for s ∈ [0,∞) and T is as in Lemma 1.4 and
define

β = max
0≤s≤min{δ0,δ1}

A(s),

where δ1 = (2q − 2p + 3)
1

p−q−1 T
δ+p−1
p−q−1 . Clearly for λ0 ∈ (0, β) and δ2 =

min{δ0, δ1}, we have A is strictly positive on (0, δ2) and so β > 0. Hence, by
I.V.P of continuous functions, there exists a μ ∈ (0, δ2) such that A(μ) = λ0.

If we set λ∗ = ( μ
T )δ+p−1, then

λ∗ > λ0 + μδ+q = λ0 + [T (λ∗)
1

δ+p−1 ]δ+q.

Hence, for wn,λ∗ satisfying Eq. (6) and n ≥ n0 one has

λ∗ > λ0 + ||wn,λ∗ ||q∞
(||wn,λ∗ ||∞ +

1
n

)δ

which can be rewritten as

λ∗ > λ + wq
n,λ∗

(
wn,λ∗ +

1
n

)δ for λ ≤ λ0.

Therefore,

−Δpwn,λ∗ =
λ∗(

wn,λ∗ + 1
n

)δ
>

λ

(wn,λ∗ + 1
n )δ

+ wq
n,λ∗ for λ ≤ λ0 and n ≥ n0.

Hence, we have the existence of a super-solution wn,λ∗ ∈ C1,α(Ω̄) for some
α > 0 with ||wn,λ∗ ||∞ ≤ μ which is not a solution to (4).
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Step 2: (Existence of an unique solution with a particular norm) Define

Fn(s) =
λ(s + 1

n )−δ + sq

sp−1
for s ∈ (0,∞).

Using the convexity of the function sq(s+ 1
n )1+δ, we can derive the existence

of a unique Mn > 0 which is increasing w.r.t λ such that

λ(p + δ − 1)Mn +
p − 1

n
= (q − p + 1)Mq

n(Mn +
1
n

)1+δ.

Moreover, one also has

(q − p + 1)sq

(
s +

1
n

)1+δ

≤ λ(p + δ + 1)s +
p − 1

n

for s ≤ Mn. From the above, we conclude that

F ′
n(s) =

1
sp

[λ(1 − p − δ)s + 1−p
n

(s + 1
n )1+δ

]
+ (q − p + 1)sq−p < 0.

Hence, Fn is decreasing and by Dı́az-Saá [37], we have the existence of an
unique solution to equation (4) s.t ||un||∞ ≤ Mn.

Moreover, from step 1, we have for μ < δ1,
q − p + 1
δ + p − 1

μδ+q < λ0

provided δ > 1. So

Mn(λ0) ≥ Mn(λn) = μ + ε

for all n ≥ m1, where λm is defined as

λm :=
(q − p + 1)(μ + ε)q(μ + ε + 1

m )1+δ

(μ + ε)(δ + p − 1) + p−1
m

< λ0.

Step 3: (Existence of two distinct solution) Let n ≥ N , where N =
max{n0,m1} and define Kλ : C(Ω̄) → C(Ω̄) by

Kλ(un) = (−Δp)−1(λfn(un) + uq
n); λ ≥ 0.

Using the compactness of (−Δp)−1 on C(Ω̄), we can assume that Kλ is also
compact map. Note that one can view Eq. (4) as the fixed point equation
given by un = Kλ(un).

Recall from Lemma 1.3, we have Eq. (4) does not admit any solution for
λ ≥ Λ̄. So for λ ∈ [0, Λ̄), choose Rn (depending on n) such that ||un||∞ ≤ Rn.

Consider the positive cone of C(Ω̄) given by

C = {un ∈ C(Ω) : un ≥ 0 in Ω}, R := Rn.

Define
K0 : C → C by φ(un) = (−Δp)−1uq

n

and

F : B̄R × [0,∞) → C by F (un, λ) = (−Δp)−1(λfn(un) + uq
n).

Using Lemmas 1.2, 1.3 and 1.4, we conclude that K0 and F satisfies all the
conditions in Lemma 1.7 for some 0 < r < R.

Hence, we have deg(I − K0, BR, 0) = 0 and deg(I − K0, Br, 0) = 1.
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Setting X = C1,α(Ω̄), a = 0, b = Λ̄, T (λ, un) = Kλ(un), U = BRn
and

U1 = Br in Lemma 1.10, we get a continuum Cn ⊂ Γ = {(λ, un) ∈ [0, Λ̄]×X :
un − Kλ(un) = 0} such that

Cn ∩ ({0} × Br) 	= ∅, Cn ∩ ({0} × (BRn
− Br)) 	= ∅. (16)

Define the continuous map U : [0, λ0] → C1,α
0 (Ω) by U(λ) = wn,λ∗ ∀ λ ∈

[0, λ0].
Since Ω satisfies the interior sphere condition, we can apply Lemma 1.8

to deduce that every pair (λ, un) belonging to the connected component of
Cn ∩ ([0, λ0] × C1,α(Ω̄)) which emanates from (0, 0) lies pointwise below the
branch {(λ,U(λ)) : 0 ≤ λ ≤ λ0} at least until it crosses λ = λ0.

In particular, there exists un in the slice Cλ0
n = {v ∈ C1,α(Ω) : (λ0, v) ∈

Cn} which satisfies that 0 < un < wn,λ∗ . Recalling that ||wn,λ∗ || ≤ μ, we
have ||un||∞ ≤ ||wn,λ∗ ||∞ ≤ μ.

Clearly, from step 2, we have un is the unique solution of equation (4)
with small norm, e.g., ||un||∞ ≤ μ + ε.

Again by (16) one has Cn∩({0}×(BRn
−Bμ+ε)) 	= ∅ and so we conclude

also the existence of vn such that ||vn||∞ ≥ μ + ε.
Hence, we have the existence of two distinct solution for λ = λ0; since

λ0 < Λ̄ is arbitrary, we have our required result. �

2. Proof of Main Result

Proof of Theorem 0.1. From Lemma 1.5, we have the existence of at least
two solutions un and vn solving Eq. (4).

Note that we can choose c > 0 such that u = (cφ1 + n
1+p−δ

p )
p

δ+p−1 − 1
n

will be a weak sub-solution to problem (6) for λ = λ0.
Since λ0

(s+ 1
n )δ ≤ λ0

(s+ 1
n )δ + sq for s ≥ 0, one concludes that each solution

of (4) with λ = λ0 is a super-solution of (6) with λ = λ0.
Using Theorem 1.2, we have

u ≤ wn,λ0 ≤ un ≤ μ, u ≤ wn,λ0 ≤ vn and ||vn||∞ ≥ μ + ε > μ. (17)

Let zn = un or vn so from (17) and Lemma 1.4, we have

u ≤ zn ≤ M,

where M is independent of n. By Theorem 1.2 and Lemma 1.1, we have

∀ ω ⊂⊂ Ω, ∃ cω : zn ≥ cω > 0 in ω and for all n ∈ N. (18)

We now claim that zn is bounded in W 1,p
loc (Ω).

Let φ ∈ C1
0 (Ω) and taking znφp as test function in Eq. (4), we get

∫
Ω

|∇zn|pφp dx = −p

∫
Ω

φp−1zn|∇zn|p−2∇φ∇zn dx+

∫
Ω

λ0znφp

(zn + 1
n
)δ

+

∫
Ω

zq+1
n φpd.x

Again using Young’s inequality with ε, we have
∫
Ω

|∇zn|pφp ≤ cφ for all n ∈
N for some cφ depending only on φ. So zn ∈ W 1,p

loc (Ω).
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Hence, there exists z ∈ W 1,p
loc (Ω)∩L∞(Ω) such that up to a subsequence

zn → z a.e. to z weakly in W 1,p(ω) for all ω ⊂⊂ Ω.
Therefore, applying dominated convergence theorem, we deduce that

lim
n→∞

∫
Ω

( λ0(
zn + 1

n

)δ
+ φzq

n

)
dx = λ0

∫
Ω

φ

zδ
dx +

∫
Ω

φzp dx.

Again since ||un||∞ ≤ μ, ||vn||∞ ≥ μ + ε > μ and un → u, vn → v a.e. we
have the existence of two distinct solution u and v in W 1,p

loc (Ω). Now we will
prove that for some α > 0, we have uα, vα ∈ W 1,p

0 (Ω). Fix α > (p−1)(δ+p−1)
p2

and θ = p(α − 1) + 1; hence, θ > (δ−1)(p−1)
p .

Take φ = (zn + 1
n )θ − ( 1

n )θ as a test function in Eq. (4) to obtain∫
Ω

|∇((
zn +

1
n

)α − 1
nα

)|pdx = αp

∫
Ω

(
zn +

1
n

)(α−1)p|∇zn|pdx

≤ λ0

∫
Ω

(
zn +

1
n

)θ−δ +
∫

Ω

(
zn +

1
n

)θ
zq
ndx

≤ λ0

∫
Ω

(zn + 1)θ−δ +
∫

Ω

(
zn +

1
n

)θ
zq
ndx

provided θ ≥ δ and then the above integration is bounded thanks to Lemma
1.4.

If θ < δ, then we have
(

zn +
1
n

)θ−δ

≤
(
cφ1 + n

δ+p−1
p

) p(θ−δ)
δ+p−1 ≤ (cφ1)

p(θ−δ)
δ+p−1 .

Since θ > (δ−1)(p−1)
p ,

∫
Ω

φ
p(θ−δ)
δ+p−1
1 dx < ∞ (See Mohammed [38]).

Therefore, (zn + 1
n )α − ( 1

n )α is bounded in W 1,p
0 (Ω) and since zn con-

verges a.e. to z in Ω, we have (zn + 1
n )α − ( 1

n )α →w zα a.e. in W 1,p
0 (Ω).
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