
Mediterr. J. Math. (2020) 17:78
https://doi.org/10.1007/s00009-020-01508-4
1660-5446/20/030001-16
published onlineMay 8, 2020
c© Springer Nature Switzerland AG 2020

Multiple Solutions for a Kirchhoff-Type
Equation

Ruichang Pei and Caochuan Ma

Abstract. In this paper, we study a class of Kirchhoff-type equation with
asymptotically linear right-hand side and compute the critical groups
at a point of mountain pass type under suitable Hilbert space. The
existence results of three nontrivial solutions under the resonance and
non-resonance conditions are established by using the minimax method
and Morse theory.

Mathematics Subject Classification. 35J65, 58E05.

Keywords. Kirchhoff-type problems, critical groups, mountain pass
theorem, Morse theory.

1. Introduction

In this article, we consider the following Kirchhoff-type problems with Dirich-
let boundary conditions:{

−(a + b
∫
Ω

|∇u|2dx)Δu(x) = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in R
N (N = 1, 2, 3), a, b > 0, and

f : Ω̄ × R → R is continuous and satisfies:

(f1) f ∈ C1(Ω̄ × R, R), f(x, 0) = 0, f(x, t)t ≥ 0 for all x ∈ Ω, t ∈ R,
(f2) f ′ is subcritical in t, i.e., there is a constant p ∈ (2, 2∗), 2∗ = +∞ for

N = 1, 2 and 2∗ = 6 for N = 3 such that

lim
t→∞

ft(x, t)
|t|p−1

= 0 uniformly for x ∈ Ω̄,

(f3) lim|t|→0
f(x,t)

t = f0, lim|t|→∞
f(x,t)

t3 = l uniformly for x ∈ Ω, where f0

and l are constants;
(f4) lim|t|→∞[f(x, t)t − 4F (x, t)] = +∞, where F (x, t) =

∫ t

0
f(x, s)ds.
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It is pointed out in [1] that the problem (1.1) models several physical
and biological systems where u describes a process which depends on its
average (for example, population density). Moreover, this problem is related
to the stationary analogue of the Kirchhoff equation

utt −
(

1 +
∫

Ω

|∇u|2dx

)
Δu = g(x, t),

which was proposed by Kirchhoff [16] as an extension of the classical
D’Alembert’s wave equation for free vibration of elastic strings. Kirchhoff’s
model takes into account the changes in length of the string produced by
transverse vibrations. Some early studies of Kirchhoff equations may be seen
[2,4,13]. Recently, by variational methods, Alves [1], Ma-Rivera [20] studied
the existence of one positive solution, and He-Zou [15] studied the existence of
infinitely many positive solutions for the problem (1.1), respectively; Perera-
Zhang [22] studied the existence of nontrivial solutions for the problem (1.1)
via the Yang index theory; Zhang-Perera [24] and Mao-Zhang [21] studied
the existence of sign-changing solutions for problem (1.1) via invariant sets
of descent flow. In [24], the authors considered the 4-superlinear case:

there exists ν > 4 : νF (x, t) ≤ tf(x, t), |t| large, (1.2)

which implies that there exists a constant c > 0 such that

F (x, t) ≥ c(|t|ν − 1).

Note that condition (1.2) plays an important role for showing the bound-
edness of Palais–Smale sequences. Furthermore, by a simple calculation, it is
easy to see that condition (1.2) implies that

lim
t→+∞

F (x, t)
t4

= +∞.

Hence F (x, u) grows in a 4-superlinear rate as |t| → +∞. In the case of
N > 3, some related work for problem (1.1), see [17,18] and their references.
In particular, in [11], Cheng-Wu studied the existence and non-existence of
positive solutions for problem (1.1) with the asymptotic behavior assumption
of f at zero and the more general asymptotically 4-linear than our condition
(f3) of f at infinity. In the present paper, following the idea of [7,9,10,12,
23] on the study of p-Laplacian problems, we can compute mountain pass-
type critical groups under suitable Hilbert space and obtain the existence of
multiple solutions of asymptotically 4-linear problem (1.1) by using Morse
theory.

We need the following preliminaries. Let E := H1
0 (Ω) be the Sobolev

space equipped with the inner product and the norm〈
u, ϕ

〉
=

∫
Ω

∇u∇ϕdx, ||u|| =
〈
u, u

〉 1
2

and λ1 be the first eigenvalue of (−Δ,H1
0 (Ω)). We denote by | · |p the usual

Lp-norm. Since Ω (Ω ⊂ R
3) is a bounded domain, E ↪→ Lp(Ω) continuously

for p ∈ [1, 6], compactly for p ∈ [1, 6), and there exists γp > 0 such that

|u|p ≤ γp||u||, ∀u ∈ E.
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Seeking a weak solution of problem (1.1) is equivalent to finding a critical
point u∗ of C1 functional

I(u) :=
a

2
||u||2 +

b

4
||u||4 −

∫
Ω

F (x, u)dx, ∀u ∈ E, (1.3)

where F (x, u) =
∫ u

0
f(x, s)ds. Then

〈
I ′(u∗), ϕ

〉
= (a + b||u∗||2)

∫
Ω

∇u∗∇ϕdx −
∫

Ω

f(x, u∗)ϕdx = 0, ∀ϕ ∈ E.

Definition 1.1. Let (E, || · ||E) be a Hilbert space with its dual space (E∗, || ·
||E∗) and I ∈ C1(E, R). For c ∈ R, we say that I satisfies the (PS)c condition
if for any sequence {un} ⊂ E with

I(un) → c, I ′(un) → 0 in E∗,

there is a subsequence {unk
} such that {unk

} converges strongly in E. Also,
we say that I satisfies (C)c condition (i.e., Cerami condition) if for any se-
quence {un} ⊂ E with

I(un) → c, ||I ′(un)||E∗(1 + ||un||E) → 0,

there is subsequence {unk
} such that {unk

} converges strongly in E.

Lastly, to state our results, we recall some basic facts on the eigenvalue
problem:

{
−||u||2
u = μu3, in Ω,

u = 0, on ∂Ω.
(1.4)

μ is an eigenvalue of problem (1.4) means that there is a non-zero u ∈ E such
that

||u||2
∫

Ω

∇u∇ϕdx = μ

∫
Ω

u3ϕdx, ∀ϕ ∈ E.

This u is called an eigenvector corresponding to eigenvalue μ. Set

J(u) = ||u||4, u ∈ S :=
{

u ∈ E :
∫

Ω

u4dx = 1
}

.

Denote by A the class of closed symmetric subsets of S and denote by
i(A) the yang index of A, let

Fm = {A ∈ A : i(A) ≥ m − 1},

and set

μm := inf
A∈Fm

max
u∈A

J(u).

By Proposition 3.2 of Perera-Zhang [22], we know that {μm} is an un-
bounded eigenvalues sequence of the nonlinear problem (1.4) and

0 < μ1 ≤ μ2 ≤ · · ·.
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Let ϕi be the normalized eigenfunction corresponding to the eigenvalue μi.
Then the first eigenvalue μ1 of problem (1.4) can be characterized as

μ1 := inf
u∈S

J(u),

and μ1 can be achieved at some ϕ1 ∈ S and ϕ1 > 0 in Ω (see [24]).
Now, we give our main results.

Theorem 1.1. Assume conditions (f1)–(f3) hold, f0 < aλ1 and l ∈ (bμk, bμk+1)
for some k ≥ 2, then problem (1.1) has at least three nontrivial solutions.

Theorem 1.2. Assume conditions (f1)–(f4) hold, f0 < aλ1 and l = bμk for
some k ≥ 3, then problem (1.1) has at least three nontrivial solutions.

Here, we also give an example for f(x, t). It satisfies all assumptions of
our Theorem 1.2.
Example A. Set

f(x, t) =

⎧⎪⎨
⎪⎩

− (
3l − aλ1ε

2

)
t + lt3 + 2l, t > 1;

aλ1ε
2 t, |t| ≤ 1;

− (
3l − aλ1ε

2

)
t + lt3 − 2l, t < −1,

where 0 < ε < min{ 6l
aλ1

, 1} and l = bμk.
As previous introduction, assume condition (f3) holds, then problem

(1.1) is called asymptotically 4 linear at infinity, which means that usual
condition (1.2) is not satisfied. This will bring some difficulty if the moun-
tain pass theorem is used to seek nontrivial solutions of problem (1.1). For
standard Laplacian Dirichlet problem, Zhou [25] have overcome it by using
some monotonicity condition. Novelties of our this paper are as following.

We consider multiple solutions of problem (1.1) in the cases of reso-
nance and non-resonance by using the mountain pass theorem and Morse
theory. At first, we use the truncated technique and mountain pass theorem
to obtain a positive solution and a negative solution of problem (1.1) under
our more general condition (f1), (f2) and (f3) with respect to the conditions
(H1) and (H3) in [25]. In the course of proving the existence of positive so-
lution and negative solution, the monotonicity condition (H2) of [25] on the
nonlinear term f is not necessary, this point is very important because we
can directly prove existence of positive solution and negative solution by us-
ing Rabinowitz’s mountain pass theorem. That is, the proof of our compact
condition is more simple than that in [25]. Furthermore, we can obtain a non-
trivial solution when the nonlinear term f is resonance or non-resonance at
the infinity by computing mountain pass-type critical groups under suitable
Hilbert space.

The paper is organized as follows. In Sect. 2, we prove some lemmas in
order to prove our main results. In Sect. 3, we give the proofs for our main
results.
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2. Some Lemmas

Consider the following problem{
−(a + b

∫
Ω

|∇u|2dx)Δu(x) = f+(x, u), in Ω,

u = 0, on ∂Ω,

where

f+(x, t) =

{
f(x, t), t > 0,

0, t ≤ 0.

Also we set F+(x, t) =
∫ t

0
f+(x, s)ds and introduce the functional I+ : E → R

defined by

I+(u) :=
a

2
||u||2 +

b

4
||u||4 −

∫
Ω

F+(x, u)dx, ∀u ∈ E.

Clearly I+ ∈ C2−0(E, R).

Lemma 2.1. I+ satisfies the (PS) condition.

Proof. Let {un} ⊂ E be a sequence such that |I+(un)| ≤ c, 〈I ′
+(un), ϕ〉 → 0

as n → ∞. Note that

〈I ′
+(un), ϕ〉 = (a + b||un||2)

∫
Ω

∇un∇ϕdx −
∫

Ω

f+(x, un)ϕdx

= o(‖ϕ‖)
(2.1)

for all ϕ ∈ E. Assume that |un|4 is bounded, taking ϕ = un in (2.1). By (f3),
there exists c1, c2 > 0 such that |f+(x, un(x))| ≤ c1|un(x)| + c2|un(x)|3, a.e.
x ∈ Ω. So un is bounded in E. If |un|4 → +∞, as n → ∞, set vn = un

|un|4 , then
|vn|4 = 1. Taking ϕ = vn in (2.1), it follows that ‖vn‖ is bounded. Without
loss of generality, we assume that vn ⇀ v in E, then vn → v in L4(Ω). Hence,
vn → v a.e. in Ω. Dividing both sides of (2.1) by |un|34, we get

(a + b||un||2)(|un|−2
4 )

∫
Ω

∇vn∇ϕdx −
∫

Ω

f+(x, un)
|un|34

ϕdx

= o

( ‖ϕ‖
|un|34

)
, ∀ϕ ∈ E. (2.2)

Then for a.e. x ∈ Ω, we deduce that f+(x,un)
|un|34 → lv3

+ as n → ∞, where
v+ = max{v, 0}. In fact, when v(x) > 0, by (f3) we have

un(x) = vn(x)|un|4 → +∞
and

f+(x, un)
|un|34

=
f+(x, un)

u3
n

v3
n → lv3.

When v(x) = 0, we have

f+(x, un)
|un|34

≤ c1|vn||un|−2
4 + c2|v3

n| −→ 0.
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When v(x) < 0, we have

un(x) = vn(x)|un|4 −→ −∞
and

f+(x, un)
|un|34

= 0.

Since f+(x,un)
|un|34 ≤ c1|vn||un|−2

4 + c2|v3
n|, by (2.2) and the Lebesgue dominated

convergence theorem, we arrive at

(b‖v‖2)
∫

Ω

∇v∇ϕdx −
∫

Ω

lv3
+ϕdx = 0, forany ϕ ∈ E. (2.3)

From the strong maximum principle, we deduce that v > 0. Choosing ϕ = ϕ1

in (2.3), we obtain

l

∫
Ω

v3ϕ1dx = bμ1

∫
Ω

v3ϕ1dx.

This is a contradiction. �

Lemma 2.2. Let ϕ1 be the eigenfunction corresponding to μ1 with ‖ϕ1‖ = 1.
If f0 < aλ1 and l > bμ1, then
(a) There exist ρ, β > 0 such that I+(u) ≥ β for all u ∈ E with ‖u‖ = ρ;
(b) I+(tϕ1) = −∞ as t → +∞.

Proof. By (f1) and (f3), if l ∈ (bμ1,+∞), for any ε > 0, there exist A =
A(ε) ≥ 0 and B = B(ε) such that for all (x, s) ∈ Ω × R,

F+(x, s) ≤ 1
2
(f0 + ε)s2 + Asp+1, (2.4)

F+(x, s) ≥ 1
4
(l − ε)s4 − B, (2.5)

where p ∈ (1, 5).
Choose ε > 0 such that f0+ε < aλ1. By (2.4) and the Sobolev inequality,

we get

I+(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫
Ω

F (x, u)dx

≥ a

2
‖u‖2 − 1

2

∫
Ω

[(f0 + ε)u2 + A|u|p+1]dx

≥ 1
2

(
a − f0 + ε

λ1

)
‖u‖2 − c‖u‖p+1.

So, part (a) holds if we choose ‖u‖ = ρ > 0 small enough.
On the other hand, if l ∈ (bμ1,+∞), take ε > 0 such that l − ε > bμ1.

By (2.5), we have

I+(tϕ1) ≤ a

2
t2||ϕ1||2 +

1
4

(
b − l

μ1

)
t4||ϕ1||4 + B1|Ω| → −∞ as t → ∞.

Thus part (b) is proved. �
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Lemma 2.3. Let E = V ⊕ W , where V = span{ϕ1, ϕ2, · · ·, ϕk} when l > bμk

or V = span{ϕ1, ϕ2, · · ·, ϕk−1} when l = bμk and W = V ⊥. If f satisfies
(f1), (f3) and (f4) then

(i) the functional I is coercive on W , that is

I(u) → +∞ as ‖u‖ → +∞, u ∈ W

and bounded from below on W,
(ii) the functional I is anti-coercive on V .

Proof. We firstly prove this conclusion for l > bμk.
For u ∈ W , by (f1) and (f3), for any ε > 0, there exists B1 = B1(ε)

such that for all (x, s) ∈ Ω × R,

F (x, s) ≤ 1
4
(l + ε)s4 + B1. (2.6)

So we have

I(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫
Ω

F (x, u)dx

≥ a

2
‖u‖2 +

b

4
‖u‖4 − 1

4
(l + ε)|u|44 − B1|Ω|

≥ 1
4

(
b − l + ε

μk+1

)
‖u‖4 − B1|Ω|.

Choose ε > 0 such that l + ε < bμk+1. This proves (i).
For u ∈ V , again using (f1) and (f3), for any ε > 0, there exists B2 =

B2(ε) such that for all (x, s) ∈ Ω × R,

F (x, s) >
1
4
(l − ε)s4 + B2. (2.7)

From (2.7), we have

I(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫
Ω

F (x, u)dx

≤ a

2
‖u‖2 +

b

4
‖u‖4 − 1

4
(l − ε)|u|44 − B2|Ω|

≤ a

2
‖u‖2 +

1
4

(
b − l − ε

μk

)
‖u‖4 − B1|Ω|.

Choose ε > 0 such that l − ε > bμk. This proves (ii).
Now we consider the case l = bμk.
Write G(x, t) = F (x, t)− b

4μkt4, g(x, t) = f(x, t)− bμkt3. Then (f3) and
(f4) imply that

lim
|t|→∞

[g(x, t)t − 4G(x, t)] = +∞ (2.8)

and

lim
|t|→∞

4G(x, t)
t4

= 0. (2.9)
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It follows from (2.8) that for every M > 0, there exists a constant T > 0
such that

g(x, t)t − 4G(x, t) ≥ M, ∀t ∈ R, |t| ≥ T, a.e. x ∈ Ω. (2.10)

For τ > 0, we have

d
dτ

G(x, τ)
τ4

=
g(x, τ)τ − 4G(x, τ)

τ5
. (2.11)

Integrating (2.11) over [t, s] ⊂ [T,+∞), we deduce that

G(x, s)
s4

− G(x, t)
t4

≥ −M

4

(
1
s4

− 1
t4

)
. (2.12)

Letting s → +∞ and using (2.9), we see that G(x, t) ≤ −M
4 , for t ∈ R, t ≥ T,

a.e. x ∈ Ω. A similar argument shows that G(x, t) ≤ −M
4 , for t ∈ R, t ≤ −T,

a.e. x ∈ Ω. Hence

lim
|t|→∞

G(x, t) → −∞, a.e. x ∈ Ω. (2.13)

For u ∈ W , by (2.13), we get

I(u) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫
Ω

F (x, u)dx

≥ a

2
‖u‖2 +

b

4
‖u‖4 − b

4
μk|u|44 −

∫
Ω

G(x, u)dx

≥ a

2
‖u‖2 −

∫
Ω

G(x, u)dx → +∞

for u ∈ W with ‖u‖ → ∞.
The proof of conclusion (ii) is completely identical to the case l > bμk.

Hence we omit it here. �

Lemma 2.4. If bμk < l < bμk+1, then I satisfies the (PS) condition.

Proof. Let {un} ⊂ E be a sequence such that |I(un)| ≤ c, 〈I ′(un), ϕ〉 → 0.
Since

〈I ′(un), ϕ〉 = (a + b||un||2)
∫

Ω

∇un∇ϕdx −
∫

Ω

f(x, un)ϕdx

= o(‖ϕ‖) (2.14)

for all ϕ ∈ E. If |un|4 is bounded, we can take ϕ = un. By (f3), there exists
a constant c1, c2 > 0 such that |f(x, un(x))| ≤ c1|un(x)| + c2|un(x)|3, a.e.
x ∈ Ω. So un is bounded in E. If |un|4 → +∞, as n → ∞, set vn = un

|un|4 ,
then |vn|4 = 1. Taking ϕ = vn in (2.14), it follows that ‖vn‖ is bounded.
Without loss of generality, we assume vn ⇀ v in E, then vn → v in L4(Ω).
Hence, vn → v a.e. in Ω. Dividing both sides of (2.14) by |un|4, we get

(a + b||un||2)(|un|−2
4 )

∫
Ω

∇vn∇ϕdx −
∫

Ω

f(x, un)
|un|34

ϕdx

= o

( ‖ϕ‖
|un|34

)
, ∀ϕ ∈ E. (2.15)
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Then for a.e. x ∈ Ω, we have f(x,un)
|un|34 → lv3 as n → ∞. In fact, if

v(x) �= 0, by (f3), we have

|un(x)| = |vn(x)||un|4 → +∞
and

f(x, un)
|un|34

=
f(x, un)

u3
n

v3
n → lv3.

If v(x) = 0, we have

|f(x, un)|
|un|34

≤ c1|vn||un|−2
4 + c2|vn|3 −→ 0.

Since |f(x,un)|
|un|34 ≤ c1|vn||un|−2

4 + c2|vn|3, by (2.15) and the Lebesgue
dominated convergence theorem, we arrive at

(b‖v‖2)
∫

Ω

∇v∇ϕdx −
∫

Ω

lv3ϕdx = 0, for any ϕ ∈ E.

Obviously v �= 0, hence, this contradicts our assumption. �

Lemma 2.5. Suppose l = bμk and I satisfies (f4). Then the functional I
satisfies the (C) condition.

Proof. Suppose un ∈ E satisfies

I(un) → c ∈ R, (1 + ‖un‖)‖I ′(un)‖ → 0 as n → ∞. (2.16)

In view of (f3), it suffices to prove that un is bounded in E. Similar to the
proof of Lemma 2.4, we have

(b‖v‖2)
∫

Ω

∇v∇ϕdx −
∫

Ω

lv3ϕdx = 0, for any ϕ ∈ E. (2.17)

Therefore, v �= 0 is an eigenfunction of μk, then |un(x)| → ∞ for a.e. x ∈ Ω0

(Ω0 ⊂ Ω) with positive measure. It follows from (f4) that

lim
n→+∞[f(x, un(x))un(x) − 4F (x, un(x))] = +∞

holds uniformly in x ∈ Ω0, which implies that∫
Ω

(f(x, un)un − 4F (x, un))dx → +∞ as n → ∞. (2.18)

On the other hand, (2.16) implies that

4I(un)− < I ′(un), un >→ 4c as n → ∞.

Thus ∫
Ω

(f(x, un)un − 4F (x, un))dx → −∞ as n → ∞,

which contradicts (2.18). Hence un is bounded. �
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It is well known that critical groups and Morse theory are the important
tools in solving elliptic partial differential equation. Let us recall some results
which will be used later. We refer the readers to the books [6] for more
information on Morse theory.

Let E be a Hilbert space and I ∈ C1(E, R) be a functional satisfying the
(PS) condition or (C) condition, and Hq(X,Y ) be the qth singular relative
homology group with integer coefficients. Let u0 be an isolated critical point
of I with I(u0) = c, c ∈ R, and U be a neighborhood of u0. The group

Cq(I, u0) := Hq(Ic ∩ U, Ic ∩ U\{u0}), q ∈ Z

is said to be the qth critical group of I at u0, where Ic = {u ∈ E : I(u) ≤ c}.

Let K := {u ∈ E : I ′(u) = 0} be the set of critical points of I and
a < inf I(K), the critical groups of I at infinity are formally defined by (see
[3])

Cq(I,∞) := Hq(E, Ia), q ∈ Z.

The following result comes from [3,6] and will be used to prove the
results in this paper.

Proposition 2.6. [3] Assume that E = V ⊕W, I is bounded from below on W
and I(u) → −∞ as ‖u‖ → ∞ with u ∈ V . Then

Ck(I,∞) � 0, if k = dimV < ∞. (2.19)

Next, we recall some similar results in [7,8]. We assume that (f2) holds
and u0 is an isolated critical point of the functional I. The second-order
differential of I in u0 is given by

〈I ′′(u0)ϕ,w〉 = a

∫
Ω

∇ϕ∇wdx −
∫

Ω

f ′(x, u0)ϕwdx

+b

(
2
∫

Ω

∇u0∇wdx

∫
Ω

∇u0∇ϕdx + ‖u0‖2

∫
Ω

∇ϕ∇wdx

)
,

(2.20)

for any ϕ,w ∈ E. Let Hu0 be the closure of C∞
0 (Ω) under the scalar product

〈ϕ, w〉u0=a

∫
Ω

∇ϕ∇wdx+b

(
2

∫
Ω

∇u0∇wdx

∫
Ω

∇u0∇ϕdx+‖u0‖2

∫
Ω

∇ϕ∇wdx

)
,

then Hu0 is topological isomorphic to E. By (f2), we know that I ′′(u0) is a
Fredholm operator defined by setting

〈I ′′(u0)ϕ,w〉 = 〈ϕ,w〉u0 −
∫

Ω

f ′(x, u0)ϕwdx (2.21)

for any ϕ,w ∈ Hu0 . So we can consider splitting Hu0 = H− ⊕ H0 ⊕ H+,
where H−,H0,H+ are, respectively, the negative, null, and positive space,
according to the spectral decomposition of I ′′(u0) in L2(Ω), and H−,H0 have
finite dimensions. If we set W = H+ and V = H−⊕H0, then we get splitting

Hu0 = V ⊕ W. (2.22)
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Now, by our assumptions (f1) and (f2), slightly modifying the proof
of Lemmas 4.2–4.5 in [7], we will obtain four parallel results for Kirchhoff
problem (1.1) as follows.

Lemma 2.7. If N = 1, then there exist r0 > 0 and C > 0 such that for any
η ∈ E, ‖η − u0‖ < r0, we have

〈I ′′
(η)ϕ,ϕ〉 ≥ C‖ϕ‖2

u0

for any ϕ ∈ W.

Lemma 2.8. Let τ > 0. If η ∈ Bτ (u0) ⊂ E is a solution of

(a + b‖η‖2)
∫

Ω

∇η∇wdx −
∫

Ω

f(x, η)wdx = 0

for any w ∈ W, then η ∈ L∞(Ω). Moreover, there exists K∗ > 0 such that
‖η‖∞ ≤ K∗ with K∗ depending on τ .

Lemma 2.9. If N = 2, 3, for any M > 0, then there exist r0 > 0 and C > 0
such that for any η ∈ E ∩ L∞(Ω), with ‖η‖∞ ≤ M, ‖η − u0‖ < r0, we have

〈I ′′
(η)ϕ,ϕ〉 ≥ C‖ϕ‖2

u0

for any ϕ ∈ W.

Lemma 2.10. There exists δ > 0 such that for any w ∈ W\{0}, with ‖w‖ ≤ δ,
we have

I(u0 + w) > I(u0).

Next, we give three auxiliary results to prove our main results in this
paper.

Lemma 2.11. There exist r ∈ (0, δ) and ρ ∈ (0, r) such that for any v ∈
V ∩ B̄ρ(0) there exists one and only one w̄ ∈ W ∩ Br(0) such that for any
z ∈ W ∩ B̄r(0) we have

I(v + w̄ + u0) ≤ I(v + z + u0).

Moreover, w̄ is the only element of W ∩ B̄r(0) such that

〈I ′(u0 + v + w̄), z〉 = 0, ∀z ∈ W.

Furthermore, u0 is the only critical point of Br(u) and Br(u) ⊂ Ic+1, where
c = I(u0).

Proof. The proof of this result essentially derives from [7]. For convenience,
we prove it. We first consider the case N = 2, 3. Since u0 is an isolated
critical point of I and I is continuous, we can fix 0 < τ < δ such that u0 is
the only critical point of I in Bτ (u0) and Bτ (u0) ⊂ Ic+1. From Lemma 2.8,
if η ∈ Bτ (u0) is a solution of 〈I ′(η), w〉 = 0 for any w ∈ W , then ‖η‖∞ ≤ M ,
where M > 0 is a positive constant, depending on τ . Now, by Lemma 2.9,
in correspondence of 2M , there exists r0 ∈ [0, τ ] such that the conclusion of
Lemma 2.9 holds.

Now let r ∈ [0, r0
3 ]. Since I is sequentially low semicontinuous with

respect to the weakly topology of E. Therefore let us fix v ∈ Br(0)∩V ; there
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exists a minimum point w̄ ∈ W ∩ B̄r(0) of the function w ∈ W ∩ B̄r(0) �→
I(u0 + v + w).

We shall prove that there exists ρ ∈ [0, r] such that for any v ∈ V ∩B̄ρ(0)
we have

inf{I(u0 + v + w) : w ∈ W, ‖w‖ = r} > I(u0 + v). (2.23)

Arguing by contradiction, we assume that there exist a sequence {wn} in
W ∩ ∂Br(0) and a sequence {vn} in V with ‖vn‖ → 0 such that

I(u0 + vn + wn) ≤ I(u0 + vn). (2.24)

Since {wn} is bounded, there exists w̃ ∈ W such that {wn} weakly converges
to w̃ in E. From Lemma 2.10, 0 is unique minimum point of the function
w ∈ W ∩ B̄r(0) �→ I(u0 + w), therefore, we get

I(u0) ≤ I(u0 + w̃). (2.25)

From (2.24) and (2.25), we can conclude that

I(u0) = I(u0 + w̃) = lim
n→+∞ I(u0 + vn + wn). (2.26)

Thus, we have wn → w in E. It follows that ‖w‖ = r which leads to a
contradiction.

As a consequence, we infer that there exists ρ ∈ [0, r] such that for any
v ∈ V ∩ B̄ρ(0), (2.23) holds. Therefore, we have that for any v ∈ V ∩ B̄ρ(0)
the minimum point w̄ belongs to W ∩ Br(0) and then 〈I ′(u0 + v + w̄), z〉 = 0
for any z ∈ W .

At last, by Lemmas 2.8, 2.9, similar to the last proof of Lemma 4.6 in
[7], we also can prove that w̄ is the only element of W ∩ B̄r(0) such that

〈I ′(u0 + v + w̄), z〉 = 0 ∀z ∈ W.

In the case N = 1 the proof is easier and the thesis immediately follows
by Lemma 2.7, arguing as before. �

Now we can introduce that map ψ : V ∩ B̄ρ(0) → W ∩ B̄r(0) defined
by ψ(v) = w̄ and the function ϕ∗ : V ∩ B̄ρ(0) → R defined by ϕ∗(v) =
I(u0 + v + ψ(v)), which is a continuous map by [7]. Moreover, we have that

Lemma 2.12. For any v ∈ V ∩ B̄ρ(0), z ∈ V,w ∈ V, we have

ψ is C1, ψ(0) = 0, ψ′(0) = 0,
〈ϕ∗′(v), z〉 = 〈I ′(u0 + v + ψ(v)), z〉,

〈ϕ∗′′(v)z, w〉 = 〈I ′′(u0 + v + ψ(v))(z + ψ′(v)(z)), w〉.
Proof. The proof of this lemma is essentially equal to the proof of Lemma
2.2 in [8]. We omit it here. �

Lemma 2.13. If (f2) holds, then

Cq(I, u0) = Cq(ϕ∗, 0), q ∈ Z.

Proof. By the crucial Lemma 2.11, we know that the proof of this lemma is
essentially equal to the proof of two formulas (5.4) and (5.5) in [7]. We omit
it here. �
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3. Proof of the Main Results

Proof. (Proof of Theorem 1.1.) By Lemmas 2.1, 2.2 and the mountain pass
theorem, the functional I+ has a critical point u1 satisfying I+(u1) ≥ β. Since
I+(0) = 0, u1 �= 0 and by the maximum principle, we get u1 > 0. Hence u1

is a positive solution of the problem (1.1) and satisfies

C1(I+, u1) �= 0, u1 > 0. (3.1)

By (f2), the functional I+ is C2−0. Now, we claim that

Cq(I+, u1) = δq,1Z. (3.2)

Using (2.21), for the isolated critical point u1 we can define V = H− ⊕H0 ⊂
Hu1 , and it follows from Lemma 2.13 that there exists

ϕ∗ : V ∩ B̄ρ(0) → R

such that

Cq(I+, u1) = Cq(ϕ∗, 0), q = 0, 1, 2, · · ·, (3.3)

and

C1(ϕ∗, 0) = Cq(I+, u1) �= 0. (3.4)

Set m = dimH− and n = dim H0, we know that m ≤ 1.
If n = 0, then 0 is a non-degenerate critical point of ϕ∗, and

Cq(ϕ∗, 0) = δq,mZ,

which implies that (3.2) holds.
If n �= 0, then 0 is a degenerate critical point of ϕ∗, and from the Shifting

theorem (see [5]), we have

Cq(ϕ∗, 0) = Cq−m(ϕ̃∗, 0), q = 0, 1, 2, · · ·, (3.5)

where ϕ̃∗(u) = ϕ∗ |H0 .
Case 1. If m = 1, then C0(ϕ̃∗, 0) �= 0, which is equivalent to 0 being an

isolated local minimum of ϕ̃∗, so

Cq(ϕ̃∗, 0) = δq,0Z,

then (3.2) holds.
Case 2. If m = 0, then (3.5) implies that

Cq(ϕ∗, 0) = Cq(ϕ̃∗, 0), q = 0, 1, 2, . . . . (3.6)

Next, we show n = 1. For ker ϕ∗′′(0) to be nontrivial it amounts to saying
that 1 is the first eigenvalue of the following linear eigenvalue problem{

−div[(a + b
∫
Ω |∇u1|2dx)∇u(x) + 2b(

∫
Ω ∇u1∇udx)∇u1] = λf ′(x, u1)u, in Ω,

u = 0, on ∂Ω.

From [11, Sect. 6.1], the first eigenvalue 1 is simple, then n = 1. Thus, by
Theorem 2.7 in [19], we have

Cq(I+, u1) = Cq(ϕ∗, 0) = Cq(ϕ̃∗, 0) = δq,1Z.

Now, we claim that C1(I, u1) = C1(I+, u1). Set for all (t, u) ∈ [0, 1] × E,

h+(t, u) = (1 − t)I(u) + tI+(u).
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Then, for all t ∈ [0, 1], h+(t, ·) ∈ C1(E) and u1 ∈ K(h+(t, ·)). We claim that
u1 is an isolated critical point of h+(t, ·), uniformly with respect to t ∈ [0, 1].
Arguing by contradiction, assume that there exist sequences (tn) in [0, 1] and
{un} in E \ {u1}, respectively, such that un ∈ K(h+(tn, ·)) for all integer
n ≥ 1 and un → u1 in E. Thus, for all n ≥ 1, un solves the problem{−(a + b‖un‖2)Δun = (1 − tn)f(x, un) + tnf+(x, un) in Ω

un = 0 on ∂Ω.
(3.7)

By (f1) and the result of regularity in [1], the sequence {un} is bounded in
C1

0 (Ω) and un(x) > 0. Thus (3.7) reduces to{−(a + b‖un‖2)Δun = f+(x, un) in Ω
un = 0 on ∂Ω,

(3.8)

i.e., un ∈ K(I+). This leads to a contradiction. Thus, we have

Cq(I, u1) = δq,1Z. (3.9)

Similarly, we can obtain another negative critical point u2 of I satisfying

Cq(I, u2) = δq,1Z. (3.10)

Since f0 < aλ1, the zero function is a local minimizer of I, then

Cq(I, 0) = δq,0Z. (3.11)

On the other hand, by Lemmas 2.3, 2.4 and Proposition 2.6, we have

Ck(I,∞) � 0. (3.12)

Hence I has a critical point u3 satisfying

Ck(I, u3) � 0. (3.13)

Since k ≥ 2, it follows from (3.9)–(3.13) that u1, u2 and u3 are three different
nontrivial solutions of the problem (1.1). �

Proof. (Proof of Theorem 1.2.) By Lemmas 2.3, 2.5 and Proposition 2.6,
we can prove the conclusion (3.12). The other proof is similar to that of
Theorem 1.1. �
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