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Spectra of Weighted Composition
Operators on Analytic Function Spaces

Pablo Galindo , Mikael Lindström and Niklas Wikman

Abstract. Let E be a complex Banach space with open unit ball BE .
For analytic self-maps ϕ of BE with ϕ(0) = 0, we investigate the spec-
tra of weighted composition operators uCϕ acting on a large class of
spaces of analytic functions. This class contains, for example, weighted
Banach spaces of H∞-type on BE , weighted Bergman spaces Ap

α(BN)
and Hardy spaces Hp(BN). We present a general approach for deducing
new information about the spectrum and for estimating the essential
spectral radius of uCϕ.
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1. Introduction

Throughout this article, E stands for a complex Banach space of arbitrary
dimension and BE = {x ∈ E : ‖x‖ < 1} for its open unit ball. Moreover,
let ϕ : BE → BE be an analytic mapping and u ∈ H(BE), where H(BE)
is the space of analytic functions on BE . Recall that a mapping is analytic
if it is Fréchet differentiable at every point in its domain. Each such pair
(ϕ, u) induces via composition and multiplication a weighted composition
operator uCϕ(f) = u(f ◦ ϕ) which preserves H(BE). Our object of study is
the operator uCϕ acting on a Banach space, X(BE), of analytic functions
on BE , specifically, its spectrum σ(uCϕ). This is a topic of current interest;
see for instance [4,5,7,11,13,16,25] and other references quoted below. Very
little is known about the spectrum of the composition operator Cϕ acting on
classical analytic function spaces for a non-univalent symbol ϕ of the open
unit ball BN in C

N .
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Some information about the space X(BE) is unavoidable to obtain in-
teresting results for uCϕ acting on X(BE). Therefore, the space X(BE) will
always satisfy five conditions stated in Sect. 2 that are fulfilled by very natural
and common Banach spaces of analytic functions like the weighted Bergman
spaces, Ap

α(BN ), the Hardy spaces, Hp(BN ), 1 ≤ p < ∞, and, even in the in-
finite dimensional setting, the weighted spaces of analytic functions H∞

υ (BE)
as we show in the examples of the next section.

Our quite general approach allows us to extend earlier results. For in-
stance, the main result (Theorem 15) of Cowen and MacCluer in [9] contain-
ing information about the spectrum for (weighted) Hilbert spaces of analytic
functions and composition operators with univalent and not unitary on any
slice symbol that fixes the origin, is generalized by Corollary 4.14 where it
is only required that the norm of the derivative mapping at the fixed point
0 be less than 1 and neither the analytic function spaces are required to be
Hilbert. In the context of the weighted spaces of analytic functions H∞

υ (BE)
and weighted composition operators, we extend to arbitrary dimensions the
description of the spectrum in case E = C by Aron and Lindström [2], and
the one of Yuan and Zhou [27] given for the case υ ≡ 1. Also the results for
weighted Bergman spaces are new.

The main result (Theorem 4.9) provides conditions for the spectrum to
contain a disc centered at 0 and all finite products of eigenvalues of the de-
rivative mapping ϕ′(0) ∈ L(E), the Banach algebra of all bounded operators
on E. The radius of such disc is closely related to the essential spectral radius
of the operator: actually, equal in the case of H∞

υ (BN ) in which we give a
complete description of the spectrum. This relationship motivated the esti-
mations in Sect. 3 where we extend Lefèvre’s Theorem 2.5 in [20] to weighted
spaces of analytic functions using quite different techniques.

Our standing assumptions are ϕ(0) = 0 with ‖ϕ′(0)‖ < 1 and that the
range of ϕ is a relatively compact set. The core of our results is Lemma 4.8.
It is an elaboration on the nice sharpening in [9] of Kamowitz technique [18]
that has been further exploited by many other authors [3,12,15,22,28]. It
strongly depends on the existence of (iterated) interpolating sequences that
in the infinite dimensional setting was initiated in [12] and developed in [14].
Such suitable interpolating sequences are known to exist when E is a Hilbert
space or E = C0(X ), X a locally compact Hausdorff topological space. Thus,
the mentioned standing assumptions suffice to get the results for both the
ball and the polydisc.

2. Conditions and Examples

Recall that Hb(BE) := {f : BE → C : f analytic and bounded on balls of
radius less than 1} is a Fréchet algebra when endowed with the topology of
uniform convergence on balls of radius less than 1. By H∞(BE) we denote
the subspace of Hb(BE) of bounded functions endowed with the topology of
uniform convergence on BE .
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We deal with a vector space X(BE) of analytic functions on BE and
a norm on it ‖ · ‖ that renders X(BE) a Banach space. As usual, for each
x ∈ BE , δx is the evaluation functional defined by δx(f) = f(x) for all
f ∈ X(BE). We assume that X(BE) contains the constant functions, so then
all δx are non-zero.

The Banach space X(BE) is assumed to satisfy the following conditions:

(I) For every x ∈ BE , δx : X(BE) → C is a linear bounded functional, and
the closed unit ball B = {f ∈ X(BE) : ||f || ≤ 1} of X(BE) is compact with
respect to the compact-open topology τ0.

In particular, for each x ∈ BE there is a fx ∈ X(BE) with ||fx|| ≤ 1
such that ||δx||X = fx(x). Moreover, by the Dixmier–Ng theorem, there is a
Banach space ∗X(BE) whose dual space is isometrically isomorphic to X(BE)
and, further, the mapping x ∈ BE 	→ δx ∈ ∗X(BE) is holomorphic because it
is weakly holomorphic. Actually, ∗X(BE) is the subspace of X(BE)∗ of the
elements that are τ0-continuous on bounded sets.

(II) For every g ∈ H∞(BE) and f ∈ X(BE), the function fg ∈ X(BE).
If both (I) and (II) hold, the multiplication operator Mg(f) = fg is

continuous on X(BE), thanks to the closed graph theorem. A subsequent
application of the closed graph theorem shows the existence of a constant
MX > 0 such that ‖Mg‖ ≤ MX‖g‖∞.

(III) X(BE) ⊂ Hb(BE).
This inclusion mapping is a continuous embedding thanks to the closed

graph theorem.
Denote by Pnf the n-th term of the Taylor series at 0 of the analytic

function f ∈ X(BE). For m ∈ N, let

Xm(BE) = {f ∈ X(BE) : Pnf = 0 for n = 0, 1, . . . ,m − 1} .

That is, a function in X(BE) belongs to Xm(BE) if the first m terms of its
Taylor series at 0 vanish. Equivalently, f ∈ X(BE) belongs to Xm(BE) if,
and only if, f(x)

‖x‖m is bounded in some punctured ball centered at 0.

(IV) For each m ∈ N there is a constant c(m) > 0 (depending also on the
norm of X(BE)) such that for all x ∈ BE we have

||δx||Xm
≤ c(m)||x||m||δx||,

where Xm(BE) is endowed with norm of X(BE) and ‖δx‖Xm
denotes the

norm of δx restricted to Xm.
What can we say about this condition in the complex plane? Now,

BC = D is the open unit disk. If for a positive integer m we have that
Xm(D) = zmX(D), then there is a constant c(m) > 0 such that

|f(z)| ≤ c(m)|z|m‖f‖X‖δz‖ (2.1)

for every f ∈ Xm(D) and z ∈ D. Indeed, this can be proved following the
proof of [3, Proposition 3.3] and for completeness we give the details. The
map f ∈ Xm(D) 	→ f/zm ∈ X(D) is well defined, linear and continuous by
the closed graph theorem. Hence there is c(m) > 0 such that ||f/zm||X ≤
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c(m)||f ||Xm
for each f ∈ Xm(D). Now, for 0 �= w ∈ D and f ∈ Xm(D), we

obtain

|f(w)| = |w|m|f(w)/wm| ≤ |w|m||f/zm||X ||δw|| ≤ c(m)|w|m||f ||Xm
||δw||.

Notice that from this result, we can obtain Propositions 2 and 11 in [22].

(V) For every 0 < r < 1, consider Kr(f)(x) = f(rx). The operator Kr :
X(BE) → X(BE) is well defined and ‖Kr‖ ≤ 1. In case dim E < ∞, the
operator Kr is compact.

The operator uCϕ : X(BE) → X(BE) will be assumed to be bounded.
Since u = uCϕ(1), we get that u ∈ X(BE).

Notice that whenever ϕ(BE) is a relatively compact set strictly inside
BE , Cϕ is a compact operator: for any net (fi) ⊂ B that we may suppose by
(II) to be τ0-convergent to some g ∈ B, we have that (fi ◦ ϕ) is uniformly
convergent to g ◦ ϕ in H∞(BE), hence convergent in X(BE).

Next, we list a number of spaces satisfying the above conditions to which
our main result applies.

2.1. Examples

(a) The weighted space of analytic functions

H∞
υ (BE) :=

{
f : BE → C : f is analytic and ‖f‖υ = sup

x∈BE

υ(x)|f(x)| < ∞
}

is a Banach space when endowed with the ‖ ·‖υ norm. Here, υ : BE → (0,∞)
is a weight, that is, a continuous, bounded and norm non-increasing function,
in particular, υ(x) = υ(y) if ‖x‖ = ‖y‖. For example, υα(x) = (1 − ||x||2)α

with α > 0 is such a weight. Moreover, the associated weight of υ is defined
by υ̃(x) = 1

||δx|| , x ∈ BE . Notice that for the constant weight υ(x) = 1,
H∞

υ (BE) = H∞(BE).
Using Montel’s theorem [6, Theorem 17.21] it follows that condition (I)

holds. Next, we check condition (IV ). For given m ∈ N, we need to show that
there exists a constant c(m) depending only on m, so that if f ∈ H∞

v,m(BE)
and x ∈ BE , then

|f(x)| ≤ c(m)‖x‖m‖δx‖‖f‖v.

Indeed, for ξ ∈ E such that ‖ξ‖ = 1, consider the function fξ : D → C,
fξ(z) = f(zξ), where f ∈ H∞

v,m(BE). Moreover, define wξ(z) = v(zξ). By ra-
diality of the weight v, it follows that wξ(z) = wξ(|z|). Clearly, fξ ∈ H∞

wξ,m(D)
and ‖fξ‖wξ

≤ ‖f‖v. Now since H∞
wξ,m(D) = zmH∞

wξ
(D), we may apply (2.1)

to get for 0 �= x ∈ BE that

|f(x)| = |f x
‖x‖ (‖x‖) ≤ c(m)‖δ||x||‖‖f‖v‖x‖m,

and since ‖δ||x||‖ ≤ ‖δx‖, the statement follows. Also, the other conditions
are easily seen to be satisfied.

(b) The standard weighted Bergman space Ap
α(BN ), α > −1, p ≥ 1, is

the set of all analytic functions on BN such that

||f ||p
Ap

α
=
∫
BN

|f(z)|pcα(1 − |z|2)αdv(z) < ∞,
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where dv(z) is the normalized volume measure on BN and cα = Γ(N+α+1)
N !Γ(α+1) .

The set of polynomials are dense in Ap
α(BN ). By [26], for z ∈ BN we have

||δz|| =
1

(1 − |z|2)N+1+α
p

. (2.2)

By Montel’s theorem and Fatou’s lemma it can be seen that condition (I)
holds. The only condition that we need to verify is (IV ), since the other
conditions are clearly valid. For ξ ∈ SN , the map f ∈ Ap

α(BN ) 	→ fξ ∈
Ap

N+α−1(D) is bounded by Theorem 1.1. in [19], so there is a constant c(N) >
0 such that

||fξ||Ap
N+α−1(D) ≤ c(N)||f ||Ap

α(BN ).

If f ∈ Ap
α,m(BN ), then fξ ∈ Ap

N+α−1,m(D) = zmAp
N+α−1(D), so by (2.1) we

obtain for 0 �= z ∈ BN that

|f(z)| = |f z
|z| (|z|) ≤ c(m)c(N)|z|m‖f‖Ap

α(BN )‖δz‖.

(c) The Hardy spaces Hp(BN ), 1 ≤ p < ∞, are defined by

Hp(BN ) =
{

f ∈ H(BN ) : ||f ||pHp = sup
0<r<1

∫
SN

|f(rζ)|pdσ(ζ) < ∞
}

,

where SN denotes the unit sphere in C
N and σ is the normalized surface

measure on it. The set of polynomials are dense in Hp(BN ). It is known [29]
that for z ∈ BN , we have

||δz|| =
1

(1 − |z|2)N
p

. (2.3)

For condition (I) we use Montel’s theorem and Fatou’s lemma. For ξ ∈ SN ,
using Theorem 1.1. in [19], we obtain that the map f ∈ Hp(BN ) 	→ fξ ∈
Ap

N−2(D) is bounded. Here, Ap
−1(D) = Hp(D). Therefore, there is a constant

c(N) > 0 such that

||fξ||Ap
N−2(D) ≤ c(N)||f ||Hp(BN ).

For f ∈ Hp
m(BN ), then fξ ∈ Ap

N−2,m(D) = zmAp
N−2(D), so using (2.1) we

get for 0 �= z ∈ BN that

|f(z)| = |f z
|z| (|z|) ≤ c(m)c(N)|z|m‖f‖Hp(BN )‖δz‖.

All the other conditions can easily be verified.
(d) The weighted Hardy spaces of bounded type H(BN ) introduced by

Cowen and MacCluer in [9] also satisfy the above five conditions. See the
paper to verify it: Condition (I) is recalled in the bottom line of page 227.
Condition (II) is [9, Proposition 1]. Condition (IV) follows from their com-
putations in page 227 for the reproducing kernels, that is, the evaluation
functionals:
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‖δz‖2
Xm

=
∞∑

s=m

(N − 1 + s)!|z|2s

(N − 1)!s!
1

τ(s)2

= |z|2m
∞∑

j=0

|z|2j (N − 1 + j + m)!
(N − 1)!(j + m)!

1
τ(j + m)2

≤ |z|2m
∞∑

j=0

(N − 1 + j)!(N − 1 + j + 1) · · · (N − 1 + j + m)
(N − 1)!j!(j + 1) · · · (j + m)

b−m

τ(j)2

= |z|2m
∞∑

j=0

(N − 1 + j)!
(N − 1)!j!

((
1 +

N − 1
j + 1

)
· · ·
(

1 +
N − 1
j + m

))
b−m

τ(j)2

≤ Q(m)|z|2m‖δz‖2b−m,

where b is the assumed constant satisfying τ2(s+1)
τ2(s) ≥ b > 0 and Q(m) =∏m

k=1(1 + N−1
k ). Notice also that ||δz|| → ∞ when |z| → 1 by Proposition 2

in [9] and that the set of polynomials is dense in H(BN ).

3. The Essential Spectral Radius

Recall that for the essential spectral radius of an operator T, we have that
re(T ) = infn

n
√‖Tn‖e, and by ϕn we denote the n-fold iterate of ϕ, so that

ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ (n times). In this section, we obtain estimates for the
essential norm and spectral radius of the weighted composition operator uCϕ.

We first consider the operators Cϕ ◦ Kr = Crϕ where 0 < r < 1.

Lemma 3.1. Suppose that ϕ(λBE) is a relatively compact subset of E for all
0 < λ < 1. Then every Cϕ ◦ Kr :

(
Hb(BE), τ0

) → Hb(BE) defines a linear
continuous mapping and {Cϕ ◦ Kr : 0 < r < 1} is an equicontinuous family.

Proof. The balanced hull, Lλ, of ϕ(λBE) ⊂ λBE is a relatively compact set
strictly inside BE for all 0 < λ < 1.

Since for all 0 < r < 1,

‖(Cϕ ◦ Kr)(f)‖λBE
= sup

‖x‖<λ

|f(rϕ(x))| ≤ sup
y∈Lλ

|f(y)| = ‖f‖Lλ
,

{Cϕ ◦ Kr : 0 < r < 1} is an equicontinuous family. �
The closed unit ball B of X(BE) is a compact subset of

(
Hb(BE), τ0

)
by condition (I).

Lemma 3.2. Suppose that ϕ(λBE) is a relatively compact subset of E for all
0 < λ < 1. For every 0 < λ < 1,

lim
r→1

sup
f∈B

sup
‖ϕ(x)‖<λ

|f(rϕ(x)) − f(ϕ(x))| = 0.

Proof. Let us see that for all f ∈ Hb(BE), limr→1(Cϕ ◦ Kr)(f) = Cϕ(f) in
Hb(BE). Fix ε > 0 and 0 < λ < 1. The uniform continuity of f in λBE leads
to some δ > 0 such that |f(u) − f(v)| < ε if u, v ∈ λBE and ‖u − v‖ < δ.
Therefore, if r > 1−δ, one has ‖rϕ(x)−ϕ(x)‖ < δ. So, for all x with ‖ϕ(x)‖ <
λ, we get |f(rϕ(x)) − f(ϕ(x))| < ε, that is, ‖(Cϕ ◦ Kr)(f) − Cϕ(f)‖λBE

< ε.



MJOM Spectra of Weighted Composition Operators Page 7 of 22 34

Therefore, {Cϕ ◦Kr : 0 < r < 1} converges to Cϕ for the topology of the
pointwise convergence, hence also for the topology of uniform convergence on
compact subsets of

(
H(BE), τ0

)
since they coincide on compact subsets due

to [24, III. 4.5]. So the statement follows because B is
(
H(BE), τ0

)
-compact.

�

Proposition 3.3. Assume that ϕ(BE) is a relatively compact subset of E. For
the weighted composition operator uCϕ : X(BE) → H∞

v (BE), we have that

‖uCϕ‖e ≤ 2 lim
s→1

sup
‖ϕ(x)‖≥s

|u(x)|‖δϕ(x)‖X

‖δx‖ .

Proof. First of all, notice that for 0 < r < 1,
(
Cϕ ◦Kr

)
(f)(x) = f(rϕ(x)), so

Cϕ◦Kr : X(BE) → H∞(BE) is a compact operator as a composition operator
whose symbol rϕ lies in a compact subset of BE . Since u ∈ H∞

v (BE), also
the operators uCϕ ◦ Kr : X(BE) → H∞

v (BE) are compact.
Next, by using that v(x) ≤ ṽ(x) = 1

||δx|| and u ∈ H∞
ṽ (BE), we estimate

‖uCϕ ◦ Kr − uCϕ‖ ≤

sup
f∈B

sup
‖ϕ(x)‖<s

|u(x)|
‖δx‖

∣∣f(rϕ(x)) − f(ϕ(x))
∣∣

+ sup
f∈B

sup
‖ϕ(x)‖≥s

|u(x)|
‖δx‖

∣∣f(rϕ(x)) − f(ϕ(x))
∣∣. (3.1)

Concerning the first summand, we have

sup
f∈B

sup
‖ϕ(x)‖<s

|u(x)|
‖δx‖

∣∣f(rϕ(x)) − f(ϕ(x))
∣∣

≤ ‖u‖ sup
f∈B

sup
‖ϕ(x)‖<s

∣∣f(rϕ(x)) − f(ϕ(x))
∣∣.

So, we may apply Lemma 3.2 to conclude that for fixed 0 < s < 1, the first
summand tends to 0 whenever r → 1.

Concerning the second summand, realize that

f(rϕ(x)) − f(ϕ(x)) = Kr(f)(ϕ(x)) − f(ϕ(x)) = (Kr − Id) (f)(ϕ(x)).

Hence,

1
‖δx‖

∣∣f(rϕ(x)) − f(ϕ(x))
∣∣ = 1

‖δx‖‖δϕ(x)‖X

∣∣∣∣ 1
‖δϕ(x)‖X

(
Kr − Id

)
(f)(ϕ(x))

∣∣∣∣
≤ ‖δϕ(x)‖X

‖δx‖ · 2.

So the second summand is bounded from above by 2 · sup‖ϕ(x)‖≥s
|ψ(x)|‖δϕ(x)‖X

‖δx‖ .

Therefore, ‖uCϕ‖e ≤ lim infr→1 ‖uCϕ ◦ Kr − ψCϕ‖ ≤ 2 · sup‖ϕ(x)‖≥s
|u(x)|‖δϕ(x)‖X

‖δx‖ . �
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Proposition 3.4. Assume that ϕ(BE) is a relatively compact subset of E.
There exists MX > 0 such that for the weighted composition operator uCϕ :
H∞

v (BE) → X(BE), we have

‖uCϕ‖e ≥ M−1
X lim

s→1
sup

‖ϕ(x)‖≥s

|u(x)|‖δϕ(x)‖
‖δx‖X

.

Proof. If for some s < 1, {x : ‖ϕ(x)‖ > s} = ∅, then the right hand side is 0,
and we are done. So we are left in the case that ϕ(BE) does not lie strictly
inside BE .

We can find a sequence (xn) ∈ BE such that limn ‖ϕ(xn)‖ = 1 and
limn

|u(xn|‖δϕ(xn)‖
‖δxn‖X

= lims→1 sup‖ϕ(x)‖≥s
|u(x)|‖δϕ(x)‖

‖δx‖X
. Without loss of gener-

ality, we may assume that also
(
ϕ(xn)

)
converges to some a ∈ BE with

‖a‖ = 1. Let l ∈ E∗, ‖l‖ = 1 such that ‖a‖ = l(a). Thus, limn l
(
ϕ(xn)

)
= 1.

Put zn = l
(
ϕ(xn)

)
.

As shown in the proof of [17, Theorem 3.1] there is a subsequence of
(zn) that we still denote the same, there are functions f, gn ∈ A(D), two
sequences of increasing positive integers (nk) and (mk), and a sequence of
complex numbers (ck) with |ck| < 1, such that

∞∑
k=1

|ckfmk(z)gnk
(z)| ≤ 1 for all z, |z| ≤ 1 (3.2)

and

ckfmk(zk)gnk
(zk) > 1 −

(
1
2

)k

for all k. (3.3)

By condition (I), for each k ∈ N we can also find a function fk ∈
H∞

v (BE) such that ‖fk‖ ≤ 1 and that

‖δϕ(xk)‖ = fk(ϕ(xk)). (3.4)

Now, consider Fk := M(ckfmk gnk
)◦l(fk). According to condition (II), the se-

quence (Fk) ⊂ H∞
v (BE) and∥∥Fk

∥∥ ≤ ∥∥M(ckfmk gnk
)◦l

∥∥∥∥fk

∥∥ ≤ MX

∥∥ ((ckfmkgnk
) ◦ l)

∥∥
∞
∥∥fk

∥∥ ≤ MX .

Let T : H∞
v (BE) → X(BE) be a compact operator. By (3.2) the

map (ξk)k 	→ ∑∞
k=1 ξkFk is a well-defined, bounded operator from c0 into

H∞
v (BE). Consequently, the sequence (Fk) converges weakly to zero and

||T (Fk)|| → 0 in X(BE). Thus using condition (I), we get

MX ‖uCϕ − T‖ ≥ ‖(uCϕ − T )Fk‖ ≥ ‖(uCϕ)Fk‖ − ‖T (Fk)‖

≥ 1
‖δxk

‖X
|u(xk)| · ∥∥δϕ(xk)

∥∥
(

1 −
(

1
2

)k
)

− ‖T (Fk)‖,

and we are done. �

The above two results yield an extension of [20, Theorem 2.5] to the
weighted spaces case. We are now able to state the following essential spectral
radius result.
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Corollary 3.5. Assume that ϕ(BE) is a relatively compact subset of E. For
the weighted composition operator uCϕ acting on H∞

v (BE), we have that

re(uCϕ) = lim inf
n

n

√
lim
s→1

sup
‖ϕn(x)‖≥s

‖δϕn(x)‖|u(x) · · · · · u(ϕn(x))|
‖δx‖ .

The proof of the next result is much easier than Proposition 3.4 and the
result can be applied to the spaces Hp(BN ) and Ap

α(BN ).

Proposition 3.6. Assume that ||δx|| → ∞ when ||x|| → 1 and that the con-
tinuous polynomials are dense in X(BE). Then for the weighted composition
operator uCϕ acting on X(BE), we have that

‖uCϕ‖e ≥ lim
s→1

sup
‖x‖≥s

|u(x)|‖δϕ(x)‖
‖δx‖ .

Proof. Take a sequence (xn) ⊂ BE with ||xn|| → 1 when n → ∞ such that

lim
s→1

sup
‖x‖≥s

|u(x)|‖δϕ(x)‖
‖δx‖ = lim

n→∞ |u(xn)| ||δϕ(xn)||
||δxn

|| .

Let ln := δxn

||δxn || ∈ X(BE)∗, then ln → 0 weak∗ in X(BE)∗. Indeed, clearly

for any continuous polynomial P, limn ln(P ) = limn
P (xn)
||δxn || = 0, and on the

closed unit ball of X(BE)∗, the weak∗-topology coincides with that of the
pointwise convergence on the total subset of the continuous polynomials.

For an arbitrary compact operator T : X(BE) → X(BE), it follows now
that

||uCϕ − T || ≥ lim
n→∞(||(uCϕ)∗(ln)|| − ||T ∗(ln)||) = lim

n→∞ |u(xn)| ||δϕ(xn)||
||δxn

|| ,

and the statement follows. �

Now, we can deduce the following lower estimate of the essential spectral
radius of uCϕ.

Corollary 3.7. For the weighted composition operator uCϕ acting on Hp(BN )
and Ap

α(BN ), respectively, for α > −1, p ≥ 1, we have that

re(uCϕ) ≥ lim inf
n

n

√
lim
s→1

sup
|z|≥s

‖δϕn(z)‖|u(z) · · · · · u(ϕn(z))|
‖δz‖ .

Here, we recall an upper estimate of the spectral radius of Cϕ on Ap
α(BN ).

Proposition 3.8. Let α > −1, p > 1. Assume that ϕ(0) = 0 and that the
composition operator Cϕ is bounded on Ap

β(BN ) for some −1 < β < α. Then
for Cϕ acting on Ap

α(BN ), we have that

re(Cϕ)
N+1+α

α−β ≤ lim inf
n

n

√
lim
s→1

sup
|z|≥s

‖δϕn(z)‖
‖δz‖ .
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In case N = 1, then Cϕ : Ap
α(D) → Ap

α(D), α > −1, p > 1, is always bounded
and

re(Cϕ)
2+α
1+α ≤ lim inf

n

n

√
lim
s→1

sup
|z|≥s

‖δϕn(z)‖
‖δz‖ .

Proof. We will use Corollary 4.7 in [24] which gives that

||Cϕ||e ≤ C lim sup
|z|→1

(
1 − |z|2

1 − |ϕ(z)|2
)α−β

p

,

where C is an absolute constant. Since ||δz|| = 1

(1−|z|2)
N+1+α

p

, we conclude

that

re(Cϕ) ≤ lim inf
n

n

√√√√ lim
s→1

sup
|z|≥s

(‖δϕn(z)‖
‖δz‖

) α−β
N+1+α

,

and the first statement follows. For the second statement, we use Corollary
3.9 in [21] (see also page 141 in [10]), that is,

||Cϕ||e ≤ C lim sup
|z|→1

(
1 − |z|2

1 − |ϕ(z)|2
)α+1

p

.

�

The next lemma contains useful information about the essential spectral
radius of uCϕ.

Lemma 3.9. Assume that ϕ(BE) is a relatively compact subset of E and that
ϕ(0) = 0. Suppose that |u(x)| ||δx||−1 → 0 as ||x|| → 1. Then,

lim
s→1

sup
‖x‖≥s

|u(x)|‖δϕ(x)‖
‖δx‖ = lim

s→1
sup

‖ϕ(x)‖≥s

|u(x)|‖δϕ(x)‖
‖δx‖ . (3.5)

Proof. Since ‖ϕ(x)‖ ≤ ‖x‖, the limit on the right hand side is not greater
than the one on the left hand side. There is a sequence (xn) ⊂ BE such
that ‖xn‖ → 1 and lim sup‖x‖→1

|u(x)|‖δϕ(x)‖
‖δx‖ = limn

|u(xn)|‖δϕ(xn)‖
‖δxn‖ . From the

bounded sequence
(
ϕ(xn)

)
, we get a convergent subsequence, say to a ∈ E,

which we denote the same. If ‖a‖ = 1, we have lim sup‖ϕ(x)‖→1
|u(x)|‖δϕ(x)‖

‖δx‖ ≥
limn

|u(xn)|‖δϕ(xn)‖
‖δxn‖ that leads to the equality in (3.5). While if ‖a‖ < 1, then

the sequence
(
δϕ(xn)

)
is, by condition (I), a convergent one in ∗X(BE),

and hence bounded. Therefore, according to the assumption lim sup‖x‖→1
|u(x)|‖δϕ(x)‖

‖δx‖ = 0, (3.5) holds as well. �

Remark 3.10. Equality (3.5) also holds if there is a constant d > 0 such that
‖ϕ(x)‖ ≥ d‖x‖ for all x ∈ BE and ϕ(0) = 0. Such is the case of univalent
ϕ : BN → BN with ϕ(0) = 0 and ‖ϕ′(0)‖ < 1, as pointed out in [9, page 239].
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4. The Spectrum

Define an operator S on a direct sum of Banach spaces X = X1 ⊕ · · · ⊕ Xm.
Such an operator leaves invariant each direct subsum Xk ⊕ · · · ⊕ Xm if and
only if it has a lower triangular matrix representation

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S11 0 0 . . . 0
S21 S22 0 . . . 0
...

. . . . . . . . . Sm−1,m−1 0
Sm1 Sm2 . . . Sm,m−1 Smm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where Sjk : Xj → Xk. Recall that an operator S is called a Riesz operator if
re(S) = 0.

Throughout this section, we assume that ϕ(0) = 0 unless otherwise
stated.

Theorem 4.1. [12, Corollary 2.4] Let X = X1 ⊕ · · · ⊕ Xm be a direct sum
of Banach spaces, and let S be an operator on X with a lower triangu-
lar matrix representation. If X is infinite dimensional, and the operators
S11, . . . , Sm−1,m−1 are Riesz operators, then σ(S) = σ(S11) ∪ · · · ∪ σ(Smm).

Let Pk := P (kE) ⊂ H∞(BE) denote the subspace of homogeneous
polynomials of degree k on E. The Taylor series expansion at 0 of each
element f in X(BE) yields a direct sum decomposition of X(BE),

X(BE) = P0 ⊕ · · · ⊕ Pm−1 ⊕ Xm(BE),

because the mapping f ∈ X(BE) 	→ Pk(f) ∈ Pk is a continuous projection
of X(BE) thanks to conditions (II) and (III).

Lemma 4.2. The operator uCϕ leaves invariant the space Xm(BE).

Proof. Fix x ∈ BE . It is easy to see, from the Taylor series expansion of
ϕ at 0, that the function g : D −→ E defined by g(λ) = ϕ(λx) satisfies
g(λ) = λhx(λ) for a particular analytic function hx which depends on x and
λ. Set f ∈ Xm(BE). We have that

u(f ◦ ϕ)(λx) = u(λx)
∑
n≥m

Pnf(ϕ(λx))

= u(λx)
∑
n≥m

Pnf(λhx(λ))

= u(λx)
∑
n≥m

λnPnf(hx(λ)),

and so there is no non-null term of degree less than m in the series expansion
of u(f ◦ ϕ)(λx). Therefore, if

∑
n Qn is the Taylor series of uCϕ(f), there

must be no non-null term of degree less than m in∑
n

Qn(λx) =
∑

n

λnQn(x).

�
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By Lemma 4.2, the weighted composition operator uCϕ leaves invariant
the spaces Xk−1(BE) = Pk ⊕ . . . ⊕ Pm−1 ⊕ Xm(BE), 0 ≤ k ≤ m − 1, and
leaves the space Xm(BE) invariant as well. Consequently, uCϕ has a lower
triangular matrix representation

uCϕ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C11 0 0 . . . 0
C21 C22 0 . . . 0
...

. . . . . . . . . Cm−1,m−1 0
Cm1 Cm2 . . . Cm,m−1 Cm,

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where the operator Cm is the restriction of uCϕ to Xm(BE). By Theorem 4.1,
we can determine the spectrum of uCϕ by determining the spectrum of Cm :
Xm(BE) → Xm(BE) and the diagonal elements Ckk : Pk → Pk as soon as
they are Riesz operators.

Next, we proceed to determine the operators Ckk. We use the following
result:

Lemma 4.3. (i) For v := u − u(0), the function v(x)
‖x‖ is bounded in some

punctured neighborhood of 0.

(ii) For every x ∈ BE , we have ‖ϕ(x) − ϕ′(0)(x)‖ ≤ ‖x‖2

1−‖x‖ .

Proof. Since limx→0
v(x)−u′(0)x

‖x‖ = limx→0
u(z)−u(0)−u′(0)x

‖x‖ = 0, and |v(x)|
‖x‖ ≤

|v(x)−u′(0)x|
‖x‖ + ‖u′(0)‖, the statement i) follows.

To realize ii), consider the Taylor series of ϕ,
∑∞

m=1 Pmϕ, and recall that
according to Cauchy inequalities, ‖Pmϕ‖ ≤ 1. Then,

‖ϕ(x) − ϕ′(0)(x)‖ ≤
∞∑

m=2

‖Pmϕ(x)‖ ≤
∞∑

m=2

‖x‖m‖Pmϕ‖

≤
∞∑

m=2

‖x‖m =
‖x‖2

1 − ‖x‖ .

�

Proposition 4.4. For every f ∈ Pk,

Ckk(f)(x) = u(0)f̂ (ϕ′(0)(x), . . . , ϕ′(0)(x)) ,

where f̂ is the k-linear symmetric mapping determining f.

Proof. Denote R(x) = ϕ(x) − ϕ′(0)(x). Then we use the binomial formula

f(ϕ(x)) = f̂ (ϕ′(0)(x) + R(x))

=
k∑

l=0

(
k
l

)
f̂
(
ϕ′(0)(x), k−l. . . ϕ′(0)(x), R(x), l. . ., R(x)

)
.
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We claim that if l > 0, the corresponding term in this sum belongs to Xk+1 :
Indeed,

f̂
(
ϕ′(0)(x), k−l. . ., ϕ′(0)(x), R(x), l. . ., R(x)

)
‖x‖k+1

= f̂

(
ϕ′(0)

(
x

‖x‖
)

, k−l. . ., ϕ′(0)
(

x

‖x‖
)

,
R(x)
‖x‖2

, l. . .,
R(x)
‖x‖

)
,

where all terms are bounded bearing in mind Lemma 4.3. Moreover, for l = 0
the term is a k-homogeneous polynomial, and

1
‖x‖k+1

∣∣∣v(x)f̂
(
ϕ′(0)(x), k. . ., ϕ′(0)(x)

)∣∣∣
≤ |v(x)|

‖x‖
∣∣∣∣f̂
(

ϕ′(0)
(

x

‖x‖
)

, k. . ., ϕ′(0)
(

x

‖x‖
))∣∣∣∣

is bounded in a neighborhood of 0, where v(x) = u(x) − u(0).
Now,

u(x)f (ϕ(x))

= (u(0) + v(x))
(
f̂
(
ϕ′(0)(x), k. . ., ϕ′(0)(x)

+
k∑

l=1

f̂
(
ϕ′(0)(x), k−l. . ., ϕ′(0)(x), R(x), l. . ., R(x)

))

= u(0)
(
f̂
(
ϕ′(0)(x), k. . ., ϕ′(0)(x)

)

+u(0)

(
k∑

l=1

f̂
(
ϕ′(0)(x), k−l. . ., ϕ′(0)(x), R(x), l. . ., R(x)

))

+v(x)
(
f̂
(
ϕ′(0)(x), k. . ., ϕ′(0)(x)

)

+v(x)

(
k∑

l=1

f̂
(
ϕ′(0)(x), k−l. . ., ϕ′(0)(x), R(x), l. . ., R(x)

))
.

Here, the last three terms belong to Xk(BE), and so their kth term in the
Taylor series vanishes. Therefore, Ckk(f) = u(0)

(
f̂
(
ϕ′(0)(x), k. . ., ϕ′(0)(x)

))
.
�

Now, we apply Lemma 3.1 in [12] to obtain

Lemma 4.5. σ
(
Ckk

)
= {u(0) · λ1 · · · λk : λj ∈ σ(ϕ′(0)), 1 ≤ j ≤ k}.

Definition 4.6. A finite or infinite sequence {zn} ⊂ BE is called an iteration
sequence for ϕ if ϕ(zk) = zk+1 for k ≥ 0, and a sequence {zn} ⊂ BE is called
an interpolating sequence for H∞(BE) if for any bounded sequence {an} ⊂ C

there exists f ∈ H∞(BE) such that f(zn) = an for n ∈ N.

Recall the following Schwarz’s lemma type inequality as shown in [12]:
Suppose that ϕ : BE −→ BE satisfies ϕ(0) = 0 and ‖ϕ′(0)‖ < 1. Then for
each s < 1, there exists a < 1 such that

‖ϕ(x)‖ ≤ a‖x‖, for x ∈ E, ‖x‖ ≤ s. (4.1)
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Hence, given 0 < r < s < 1, there exists ε > 0 such that
1 − ‖ϕ(x)‖

1 − ‖x‖ ≥ 1 + ε, x ∈ BE , r < ‖x‖ < s.

Lemma 4.7. Let E be a complex Banach space and let ϕ : BE → BE be
analytic such that ϕ(0) = 0 and ‖ϕ′(0)‖ < 1. Suppose that there exist W ⊂
BE ,with ϕ(W ) ⊂ W, δ > 0 and ε > 0 such that

1 − ‖ϕ(x)‖
1 − ‖x‖ ≥ 1 + ε, for all x ∈ W such that ‖x‖ ≥ δ . (4.2)

Then, there exists a constant M ≥ 1 which depends only on ε, such that any
finite iteration sequence {x0, x1, . . . , xN} satisfying x0 ∈ W and ‖xN‖ ≥ δ is
an interpolating sequence for H∞(BE) with interpolation constant not greater
than M .

The proof of this lemma can be seen in [15]. It relies on the interpolation
result [14, Corollary 8]. We will refer to inequalities of the form (4.2) as Julia-
type estimates.

Denote

γ(uCϕ;W ) := lim inf
n

n

√√√√ lim
s→1

sup
‖ϕn(x)‖≥s

x∈W

‖δϕn(x)‖X |u(x) · · · · · u(ϕn(x))|
‖δx‖X

.

Lemma 4.8. Consider the weighted composition operator uCϕ acting on
X(BE). Assume that ϕ(0) = 0, ‖ϕ′(0)‖ < 1 and that ϕ(BE) is a relatively
compact subset of E. Suppose also that ||ϕn|| = 1 for all n ∈ N and that there
exists W ⊆ BE with ϕ(W ) ⊆ W and such that a Julia-type estimate holds
for some ε, δ > 0. If λ �= 0 satisfies |λ| < γ(uCϕ;W ), then λ ∈ σ(uCϕ).

Proof. We will consider iteration sequences {zk}∞
k=0 such that z0 ∈ W and

||z0|| > δ. In view of (4.1), the norms of the elements of any such iteration
sequence decrease to 0. We define N = N(z0) to be the largest integer such
that ‖zN‖ > δ. The hypothesis guarantees that for all k ≥ 1, ϕk(BE) is
not contained in the ball {||z|| ≤ δ}. Consequently, we can find z0 for which
N(z0) is arbitrarily large.

Choose c < 1 such that

‖ϕ(z)‖ ≤ c‖z‖, z ∈ E, ‖z‖ ≤
√

δ.

We can assume that c >
√

δ. By considering separately the cases ‖zN‖ ≤ √
δ

and ‖zN‖ >
√

δ, we see also that ‖zN+1‖ ≤ c‖zN‖. Since ‖zn+1‖ ≤ c‖zn‖ for
n > N + 1, we obtain by induction that

‖zN+k‖ ≤ ck‖zN‖, k ≥ 0.

Since u ∈ Hb(BE) it holds that 0 < C := max{sup‖z‖≤δ |u(z)|, supn |
u(zn)|} < ∞. Put Dk(z0) = |u(z0) · · · · · u(zk−1)|.

For any iteration sequence (zk)∞
k=0 and m ∈ N, let us define Lλ,u on

Xm(BE) by

Lλ,u(f) = f(z0) +
∞∑

k=1

u(z0)
k· · · u(zk−1)f(zk)λ−k.
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By using condition (IV), we get that Lλ,u is bounded, because
∣∣∣∣∣

∞∑
k=N+1

u(z0) . . . u(zk−1)f(zk)λ−k

∣∣∣∣∣
≤ DN (z0)

∞∑
k=N+1

Ck−N |λ|−kc(m)‖zk‖m‖δzk
‖X‖f‖

≤ DN (z0)‖f‖c(m)
∞∑

k=N+1

Ck−N |λ|−k
(
ck−N‖zN‖)m ‖δzk

‖X

≤ ‖f‖DN (z0)c(m)
∞∑

k=N+1

‖δzk
‖X‖zN‖m

(
C · cm

|λ|
)k−N 1

|λ|N .

Since (zk) converges to 0 in BE , also (δzk
) converges, so

‖f‖DN (z0)c(m)M0‖zN‖m 1
|λ|N

( ∞∑
k=N+1

(
C · cm

|λ|
)k−N

)
.

So there exists m0 so that if m ≥ m0, then Lλ,u is bounded, i.e, Ccm0

|λ| < 1.
Note that (C∗

m − λI)(Lλ,u) = −λδz0 , because for any f ∈ Xm(BE),

〈(C∗
m − λI)(Lλ,u), f〉 = Lλ,u(uCϕ(f) − λf)

= Lλ,u(u · f ◦ ϕ) − λLλ,u(f) = u(z0)f(ϕ(z0))

+
∞∑

k=1

uz0 · · · · · u(zk−1)u(zk)f(ϕ(zk))λ−k

−λf(z0) −
∞∑

k=1

u(z0) · · · · · u(zk−1)λ−k+1f(zk) = −λf(z0)

+
∞∑

k=1

u(z0) · · · · · u(zk)λ−kf(zk+1)

−
∞∑

k=2

u(z0) · · · · · u(zk−1)λ−k+1f(zk) = −λf(z0).

Now, we find a suitable lower bound for ‖Lλ,u‖. For 0 ≤ K ≤ N , pick
l ∈ E∗, ‖l‖ = 1 such that l(zK) = ‖zK‖, and by using Lemma 4.7, pick
f ∈ H∞(BE) with ‖f‖∞ ≤ M and f(zk) = 0 for all 0 ≤ k ≤ N except
for k = K, in which case f(zK) = 1. By (I), there is f0 ∈ X(BE) such
that ‖f0‖ ≤ 1 and f0(zK) = ‖δzK

‖X . Then by condition (II), the function
g := lm · f0 · f ∈ Xm(BE) and ‖g‖ ≤ M1.

We now calculate

Lλ,u(g) = u(z0) · · · · · u(zK−1)λ−K‖zK‖m‖δzK
‖X + DN (z0)

×
∞∑

k=N+1

u(zN ) · · · · · u(zk−1)λ−kf0(zk)f(zk)lm(zk).
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We assume that DK(z0) �= 0. The first term is bounded above by

DK(z0)|λ|−K‖zK‖m‖δzK
‖X ,

and the second term is bounded above by

DN (z0)
∞∑

k=N+1

Ck−N |λ|−kM‖δzk
‖X‖zk‖m

≤ DN (z0)MM0

( ∞∑
k=N+1

Ck−N |λ|−k(ck−N‖zN‖)m

)

= DN (z0)MM0|λ|−N

( ∞∑
k=N+1

(
C

|λ|c
m

)k−N
)

‖zN‖m

≤ DN (z0)MM0|λ|−N

( ∞∑
k=N+1

(
C

|λ|c
m

)k−N
)

‖zK‖m.

Thus,

|Lλ,u(g)| ≥ DK(z0)|λ|−K‖zK‖m‖δzK
‖X

−DN (z0)|λ|−(N−K)MM0

∞∑
k=N+1

(
C

|λ|c
m

)k−N

|λ|−K ||zK ||m.

There is m1 ≥ m0, so that if m ≥ m1 we have
∞∑

k=N+1

(
C

|λ|c
m

)k−N

<
DK(z0)

DN (z0)2MM0|λ|K−N
‖δzK

‖X if DN (z0) �= 0.

So,

|Lλ,u(g)| ≥ 1
2
DK(z0)|λ|−K‖zK‖m‖δzK

‖X regardless the value of DN (z0).

Consequently,
1
2
DK(z0)|λ|−K‖zK‖m‖δzK

‖X ≤ ‖Lλ,u‖‖g‖v ≤ ‖Lλ,u‖ · M1,

which gives us

‖Lλ,u‖ ≥ 1
2

DK(z0)
M1

‖zK‖m‖δzK
‖X |λ|−K ,

in the case |DK(z0)| �= 0.
If

|λ| < lim inf
n

n

√√√√ lim
s→1

sup
‖ϕn(x)‖≥s

x∈W

‖δϕn(x)‖X |u(x) · · · · · u(ϕn(x))|
‖δx‖X

,

we can pick μ > 0 such that

|λ| < μ < lim inf
n

n

√√√√ lim
s→1

sup
‖ϕn(x)‖≥s

x∈W

‖δϕn(x)‖X |u(x) · · · · · u(ϕn(x))|
‖δx‖X

.
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Hence, there is n0 such that if K ≥ n0, it holds that

μK < lim
s→1

sup
‖ϕK(x)‖≥s

x∈W

‖δϕK(x)‖X |u(x) · · · · · u(ϕK(x))|
‖δx‖X

.

So for every K ≥ n0, we can find x ∈ W with ‖ϕK(x)‖ > δ such that

μK ≤ ‖δϕK(x)‖X

‖δx‖X
|u(x)| · · · · · |u(ϕK(x))|,

for which necessarily DK(z0) �= 0.
We consider the iteration sequence {ϕi(x)}∞

i=0 that satisfies indeed the
condition ‖ϕK(x)‖ > δ. So for z0 = x, we have N = N(z0) so that ‖zN‖ > δ,
K ≤ N and zK = ϕK(x). Pick Lλ,u as above.

Now,

‖(C∗
m − λI)(Lλ,u)‖

‖Lλ,u‖ ≤ |λ|‖δz0‖Xm

DK(z0)
2M1

‖δϕK(x)‖X |λ|−K‖ϕK(x)‖m

=
2|λ|K+1M1

DK(z0)
‖δz0‖Xm

‖ϕK(x)‖m‖δϕK(x)‖X

≤ 2|λ|K+1M1

DK(z0)
‖δz0‖Xm

δm‖δϕK(x)‖X

≤ 2|λ|K+1M1‖δz0‖X

δm‖δϕK(x)‖X

1
DK(z0)

.

Since

μK ≤ ‖δϕK(z0)‖X

‖δz0‖X
DK(z0),

in combination with the above inequality we now get

2|λ|K+1M‖δz0‖X

δm‖δϕK(x)‖X

1
DK(z0)

≤ 2|λ|K+1M‖δz0‖X

δm‖δzK
‖X

‖δϕK(z0)‖X

‖δz0‖X
μ−K

≤ 2M |λ|
δm

( |λ|
μ

)K

.

By choosing K ≥ n0 large enough, we see that C∗
m − λI is not bounded

from below and consequently Cm − λI is not invertible, i.e., λ ∈ σ(Cm). �

We are now ready to formulate the main result.

Theorem 4.9. Consider the weighted composition operator uCϕ acting on
X(BE). Assume that ϕ(0) = 0, ‖ϕ′(0)‖ < 1 and that ϕ(BE) is a relatively
compact subset of E. Suppose that there exists W ⊆ BE with ϕ(W ) ⊆ W
such that a Julia-type estimate holds for some ε, δ > 0. Then,

{u(0)} ∪ {u(0)λ1 · · · λk : λj ∈ σ(ϕ′(0)),
1 ≤ j ≤ k, k ≥ 1} ∪ {λ : |λ| ≤ γ(uCϕ;W )} ⊂ σ(uCϕ).
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Proof. First of all, notice that the linear mapping ϕ′(0) ∈ L(E) is a com-
pact operator, since by the Cauchy integral formula (see [23, 7.3 Corollary]),
ϕ′(0)(x) = 1

2πi

∫
|ξ|=1/2

ϕ(ξx)
ξ dξ belongs to the closed convex hull of the com-

pact set 2ϕ(BE). Therefore, the mappings Ckk in Proposition 4.4 are com-
pact.

In case that ||ϕn|| = 1 for all n ∈ N, the result follows from Theorem 4.1,
Lemmas 4.8 and 4.5. If for some n ∈ N, ||ϕn|| < 1, then γ(uCϕ;W ) = 0, and
the argument is simpler as there is no need of Lemma 4.8. �

From the above result, we get several consequences.

Corollary 4.10. Let E be a Hilbert space or E = C0(X ), X a locally compact
Hausdorff topological space. Assume that uCϕ : H∞

υ (BE) → H∞
υ (BE) is

bounded with ϕ(0) = 0 and ‖ϕ′(0)‖ < 1. Suppose that ϕ(BE) is a relatively
compact subset of E. Then,⎧⎪⎪⎨
⎪⎪⎩

λ ∈ C : |λ| ≤ lim inf
n

n

√√√√√ lim
s→1

sup
‖ϕn(x)‖≥s
x∈ϕ(BE)

‖δϕn(x)‖|u(x) · · · · · u(ϕn(x))|
‖δx‖

⎫⎪⎪⎬
⎪⎪⎭

∪σp(uCϕ) ⊂ σ(uCϕ).

Proof. We need, respectively, [12, Theorem 6.1] and [15, Theorem 2.2]. Each
of them guarantees, respectively, that under the current assumptions, W ≡
ϕ(BE) satisfies the Julia-type estimates (4.2) for some ε, δ > 0. �

One can find plenty of mappings ϕ which do fulfill the assumptions in
Corollary 4.10. Indeed, consider for every pair (k,m) ∈ N × N, m > 1, the
mapping

ϕk,m : (xn) ∈ �2 	→
(

xm
1 , . . . , xm

k , xm
k+1,

xm
k+2

2
,
xm

k+3

3
, . . . ,

xm
k+i

i
, . . .

)
∈ �2.

Clearly, ϕk,m(0) = 0, (ϕk,m)′(0) = 0, since ϕk,m is an m-homogeneous poly-
nomial and ϕk,m(B�2) ⊂ B�2 is relatively compact.

Corollary 4.11. Let BE be either the n-ball BN or the n-polydisc ΔN . Assume
that uCϕ : H∞

υ (BE) → H∞
υ (BE) is bounded with ϕ(0) = 0 and ‖ϕ′(0)‖ < 1.

Then,

{λ ∈ C : |λ| ≤ re(uCϕ)} ∪ σp(uCϕ) = σ(uCϕ).

Proof. Recall that according to Corollary 3.5,

re(uCϕ) = lim inf
n

n

√
lim
s→1

sup
|ϕn(x)|≥s

‖δϕn(x)‖|u(x) · · · · · u(ϕn(x))|
‖δx‖ .

As in the proof of Corollary 4.10 by using [12, Theorem 6.1] and [15, Theorem
2.2] respectively, W ≡ BE satisfies the Julia-type estimates (4.2) for some
ε, δ > 0. Thus, it is clear from Theorem 4.9 that

{λ ∈ C : |λ| ≤ re(uCϕ)} ∪ σp(uCϕ) ⊂ σ(uCϕ).



MJOM Spectra of Weighted Composition Operators Page 19 of 22 34

The converse inclusion follows from the fact that if λ ∈ σ(uCϕ) and |λ| >
re(uCϕ), then λ ∈ σp(uCϕ) by Lemma 7.43 and Theorem 7.44 in [1] or
Propositions 2.2 and 3.4 in [5]. �

Remark 4.12. Also for the Hardy space H∞(BE), re(uCϕ)=γ
(
uCϕ;ϕ(BE)

)
.

Indeed, in this case, we have that ||δx|| = 1 and that u is bounded by
some M > 0. Hence,

sup
||ϕn(x)||>s

|u(x)u(ϕ(x)) · · · u(ϕn(x)|

≤ M sup
‖ϕn−1(y)‖≥s

y∈ϕ(BE)

|u(y)u(ϕ(y)) · · · u(ϕn−1(y))|,

from where we get that re(uCϕ) ≤ γ
(
uCϕ;ϕ(BE)

)
, as required. This yields

the same conclusion as in Corollary 4.11, so we recover the main results
concerning the spectrum in [12,15,27].

Corollary 4.13. Let p ≥ 1 and α > −1. If uCϕ is a bounded operator on
H(BN ), Ap

α(BN ) and Hp(BN ), respectively, with ϕ(0) = 0 and ‖ϕ′(0)‖ < 1,
then

{u(0)} ∪ {u(0)λ1 · · · λk : λj ∈ σ(ϕ′(0)), 1 ≤ j ≤ k, k ≥ 1} ∪ {λ : |λ|
≤ γ (uCϕ;BN )} ⊂ σ(uCϕ).

Proof. If the range of some iterated of ϕ lies strictly inside BN , we have
γ
(
uCϕ;BN

)
= 0. If that wasn’t the case, then ||ϕn|| = 1 for all n ∈ N and as

in the proof of Corollary 4.11, BN satisfies the Julia-type estimates (4.2) for
some ε, δ > 0. So we may apply Theorem 4.9. �

Corollary 4.14. Let p ≥ 1 and α > −1. If Cϕ is a bounded operator on
H(BN ), Ap

α(BN ) and Hp(BN ), respectively with ϕ(0) = 0 and ‖ϕ′(0)‖ < 1,
then

{1} ∪ {λ1 · · · λk : λj ∈ σ(ϕ′(0)), 1 ≤ j ≤ k, k ≥ 1} ∪ {λ : |λ|
≤ γ0 (Cϕ;BN )} ⊂ σ(Cϕ),

where

γ0(Cϕ;BN ) = lim inf
n

n

√
lim
s→1

sup
|z|≥s

‖δϕn(z)‖
‖δz‖ .

Proof. Notice that Lemma 3.9 applies since lim‖z‖→1 ‖δz‖ = ∞ by Propo-
sition 2 in [9], (2.2) and (2.3), respectively. Thus, γ(Cϕ;BN ) = γ0(Cϕ;BN ).
Now the statement follows from Corollary 4.13. �

This corollary yields [9, Theorem 15] because any map ϕ with ϕ(0) = 0
not unitary on any slice does satisfy ‖ϕ′(0)‖ < 1, as shown in the proof of [9,
Lemma 14].

Corollary 4.15. Assume that ϕ(0) = 0, ||ϕ′(0)|| < 1 and that the composition
operator Cϕ is bounded on Ap

β(BN ) for some −1 < β < α and p > 1. Then
for Cϕ acting on Ap

α(BN ), we have
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{1} ∪ {λ1 · · · λk : λj ∈ σ(ϕ′(0)), 1 ≤ j ≤ k, k ≥ 1}
∪
{

λ ∈ C : |λ| ≤ re(Cϕ)
N+1+α

α−β

}
⊂ σ(Cϕ),

and, when N = 1, then Cϕ : Ap
α(D) → Ap

α(D), α > −1, p > 1, is always
bounded and

{ϕ′(0)n : n ≥ 0} ∪
{
λ ∈ C : |λ| ≤ re(Cϕ)

2+α
1+α

}
⊂ σ(Cϕ).

Proof. Both statements follow from Corollary 4.14 and Proposition 3.8. �
Remark 4.16. For every bounded operator T : E → E, it holds by the general
argument used in the proof of Corollary 4.11 that σ(T ) ⊂ σp(T ) ∪ {λ ∈ C :
|λ| ≤ re(T )

}
. Therefore for Cϕ : Ap

α(D) → Ap
α(D), α > −1, p > 1, with

ϕ(0) = 0 and |ϕ′(0)| < 1, we obtain that

{ϕ′(0)n : n ≥ 0} ∪
{

λ ∈ C : |λ| ≤ re(Cϕ)
2+α
1+α

}
⊂ σ(Cϕ) ⊂ {ϕ′(0)n : n ≥ 0} ∪ {λ ∈ C : |λ| ≤ re(Cϕ)} .

The univalent case with α = 0 was studied in [22]. In fact, it follows also
for univalent symbol ϕ with the above assumptions and α > −1, p > 1, that
σ(Cϕ) = {ϕ′(0)n : n ≥ 0} ∪ {λ ∈ C : |λ| ≤ re(Cϕ)

}
. Indeed, in this case the

essential spectral radius re(Cϕ) can be calculated using that the generalized
Nevalinna counting function Nϕ,2+α(z) =

(
log 1

|ϕ−1(z)|
)2+α

.
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