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Generalized Riesz Systems and Quasi Bases
in Hilbert Space

F. Bagarello, H. Inoue and C. Trapani

Abstract. The purpose of this article is twofold. First of all, the notion
of (D, E)-quasi basis is introduced for a pair (D, E) of dense subspaces
of Hilbert spaces. This consists of two biorthogonal sequences {ϕn} and
{ψn}, such that

∑∞
n=0 〈x, ϕn〉 〈ψn, y〉 = 〈x, y〉 for all x ∈ D and y ∈

E . Second, it is shown that if biorthogonal sequences {ϕn} and {ψn}
form a (D, E)-quasi basis, then they are generalized Riesz systems. The
latter play an interesting role for the construction of non-self-adjoint
Hamiltonians and other physically relevant operators.

Mathematics Subject Classification. 42B35, 47A07.

1. Introduction

A sequence {ϕn} in a Hilbert space H is called a generalized Riesz system if
there exist an orthonormal basis (from now on, ONB) Fe = {en} in H and a
densely defined closed operator T in H with densely defined inverse, such that
Fe ⊂ D(T ) ∩ D((T−1)∗) and Ten = ϕn, n = 0, 1, . . .. In this case, (Fe, T ) is
called a constructing pair for {ϕn}, [4,7,8]. Then, if we put ψn := (T−1)∗en,
n = 0, 1, . . ., Fϕ := {ϕn} and Fψ := {ψn} are biorthogonal sequences in H,
that is, 〈ϕn, ψm〉 = δnm, n,m = 0, 1, . . ..

The notion of generalized Riesz system is useful to investigate non-self-
adjoint Hamiltonians constructed from Fϕ and Fψ. More precisely, let Fϕ be
a generalized Riesz system with a constructing pair (Fe, T ) and define ψn as
above. Then, we consider the operators:

Hα
ϕ := THα

e T−1, Aα
ϕ := TAα

e T−1 and Bα
ϕ := TBα

e T−1,

together with

Hα
ψ := (T ∗)−1Hα

e T ∗, Aα
ψ := (T ∗)−1Aα

e T ∗ and Bα
ψ := (T−1)∗Bα

e T ∗,

where α = {αn} ⊂ C. Here:

Hα
e :=

∞∑

n=0

αnen ⊗ ēn, Aα
e :=

∞∑

n=0

αn+1en ⊗ ēn+1, Bα
e :=

∞∑

n=0

αn+1en+1 ⊗ ēn
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are a self-adjoint Hamiltonian, the lowering operator, and the raising operator
for {en}, respectively (if, x, y, z ∈ H, (y ⊗ z̄)x := 〈x, z〉 y).

Since Hα
ϕ ϕn = αnϕn, Aα

ϕϕn = αnϕn−1 (0 if n = 0) and Bα
ϕ ϕn =

αn+1ϕn+1, n = 0, 1, . . ., it seems natural to call the operators Hα
ϕ , Aα

ϕ and
Bα

ϕ the non-self-adjoint Hamiltonian, and the generalized lowering and raising
operators for {ϕn}, respectively. Similarly, since Hα

ψ ψn = αnψn, Aα
ψψn =

αnψn−1 (0 if n = 0) and Bα
ψ ψn = αn+1ψn+1, the operators Hα

ψ , Aα
ψ , Bα

ψ are
called the non-self-adjoint Hamiltonian, generalized lowering operator, and
raising operator for {ψn} respectively.
Then, it is interesting to understand under what conditions biorthogonal
sequences Fϕ and Fψ are generalized Riesz system, which is what we will
discuss in this paper.

Studies on this subject have been undertaken in Refs. [6–9]. Here, we
want to explore this question in a more general framework.

Let Dϕ and Dψ be the linear spans of the biorthogonal sequences Fϕ

and Fψ, respectively, and define the subspaces D(ϕ) and D(ψ) in H by:

D(ϕ) =

{

x ∈ H;
∞∑

n=0

| 〈x, ϕn〉 |2 < ∞
}

,

D(ψ) =

{

x ∈ H;
∞∑

n=0

| 〈x, ψn〉 |2 < ∞
}

.

Clearly, Dψ ⊂ D(ϕ) and Dϕ ⊂ D(ψ). In Ref. [6], one of us has shown that
if both Dϕ and Dψ are dense in H (this case is called regular), then Fϕ and
Fψ are generalized Riesz systems. After that, in Ref. [7], it was proved that,
if either Dϕ and D(ϕ), or Dψ and D(ψ), are dense in H (the case is called
semiregular), again, Fϕ and Fψ are generalized Riesz systems. Hence, we will
consider under what conditions Fϕ and Fψ are generalized Riesz systems
when none of the above conditions is satisfied. In Ref. [4], we have proved
that this holds under the assumptions that Fϕ and Fψ are biorthogonal and,
at the same time, D-quasi bases, in the sense that:

∞∑

n=0

〈x, ϕn〉 〈ψn, y〉 = 〈x, y〉 , ∀x, y ∈ D,

where D is a dense subspace in H, such that Fϕ ∪ Fψ ⊂ D ⊂ D(ϕ) ∩ D(ψ),
with some additional assumptions. In this paper, we shall show that this
result holds in a more general case. In Sect. 3, we define the notion of (D, E)-
quasi bases which is a generalization of D-quasi bases as follows:

∞∑

n=0

〈x, ϕn〉 〈ψn, y〉 = 〈x, y〉 , ∀x ∈ D, y ∈ E ,

where D and E are dense subspaces in H, such that Dψ ⊂ D ⊂ D(ϕ) and
Dϕ ⊂ E ⊂ D(ψ), and we show in Theorem 3.2 that, under this condition, Fϕ

and Fψ are generalized Riesz systems.
In Sect. 4, we shall investigate non-self-adjoint Hamiltonians, general-

ized lowering and raising operators constructed from (D, E)-quasi bases. This
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analysis can be relevant for concrete physical applications, and extends what
already deduced, for instance, in Refs. [2,3,6].

2. Preliminaries

In this section, we review some results on generalized Riesz systems needed
in the rest of the paper. By Lemma 3.2, [7], we have the following.

Lemma 2.1. Let {ϕn} be a generalized Riesz basis with a constructing pair
(Fe, T ). Then, we have the following statements.
(1) T ∗ has a densely defined inverse and (T ∗)−1 = (T−1)∗.
(2) Let ψn := (T−1)∗en, n = 0, 1, . . .. Then, {ϕn} and {ψn} are biorthog-

onal and (T−1)∗ is a densely defined closed operator in H with densely
defined inverse T ∗. Hence, {ψn} is a generalized Riesz basis with a con-
structing pair (Fe, (T−1)∗).

(3) D(ϕ) ∩ D(ψ) is dense in H.

Next, for any ONB {en} in H and a sequence {ϕn} in H, we introduce
the operators T 0

ϕ,e , Tϕ,e and Te,ϕ as follows:

T 0
ϕ,e := the linear operator defined by T 0

ϕ,een = ϕn, n = 0, 1, . . . ,

Tϕ,e :=
∞∑

n=0

ϕn ⊗ ēn,

Te,ϕ :=
∞∑

n=0

en ⊗ ϕ̄n.

Similarly, we can introduce, for the set {ψn} in Lemma 2.1, the operators
T 0

ψ,e , Tψ,e , and Te,ψ. These operators had a role in Ref. [7] and will also be
relevant here. By Lemmas 2.1, 2.2 in Ref. [7], we get the following.

Lemma 2.2. (1) Tϕ,e is a densely defined linear operator in H, such that:

Tϕ,e ⊇ T 0
ϕ,e and T 0

ϕ,een = Tϕ,een = ϕn, n = 0, 1, . . . .

(2) D(Te,ϕ) = D(ϕ) and (T 0
ϕ,e)∗ = T ∗

ϕ,e = Te,ϕ.
(3) T 0

ϕ,e is closable if and only if Tϕ,e is closable if and only if D(ϕ) is dense
in H. If this holds, then:

T̄ 0
ϕ,e = T̄ϕ,e = (Te,ϕ)∗. (1)

Furthermore, by Lemmas 2.3 and 2.4 in Ref. [7], we have:

Lemma 2.3. Let Fϕ and Fψ be biorthogonal sequences in H. Suppose that
D(ϕ) is dense in H. Then, we have the following:
(1) T̄ϕ,e has an inverse and T̄−1

ϕ,e ⊆ Te,ψ = (Tψ,e)∗.
(2) The following (i), (ii), and (iii) are equivalent:

(i) Dφ is dense in H.
(ii) T̄ϕ,e has a densely defined inverse.
(iii) T ∗

ϕ,e(= Te,ϕ) has a densely defined inverse.
If this holds, then T−1

e,ϕ = (T̄−1
ϕ,e)∗.
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(3) For the operators Tψ,e and Te,ψ, the same results as in (1) and (2) hold.

By [7], Theorem 3.4, we also get

Theorem 2.4. Let Fϕ and Fψ be biorthogonal sequences in H, and let Fe be
an arbitrary ONB in H. Then, the following statements hold:
(1) Suppose that both Dϕ and Dψ are dense in H. Then, Fϕ (resp. Fψ) is a

generalized Riesz basis with constructing pairs (Fe, T̄φ,e) and (Fe, T
−1
e,ψ)

(resp. (Fe, T̄ψ,e) and (Fe, T
−1
e,φ)), and T̄φ,e (resp. T̄ψ,e) is the minimum

among constructing operators of the generalized Riesz basis Fϕ (resp.
Fψ), and T−1

e,ψ (resp. T−1
e,φ) is the maximum among constructing oper-

ators of Fϕ (resp. Fψ). Furthermore, any closed operator T (resp. K)
satisfying T̄φ,e ⊂ T ⊂ T−1

e,ψ (resp. T̄ψ,e ⊂ K ⊂ T−1
e,φ) is a constructing

operator for Fϕ (resp. Fψ).
(2) Suppose that D(φ) and Dφ are dense in H. Then, Fϕ (resp. Fψ) is a

generalized Riesz basis with a constructing pair (Fe, T̄φ,e)
(resp. (Fe, T

−1
e,φ)) and the constructing operator T̄φ,e (resp. T−1

e,φ) is the
minimum (resp. the maximum) among constructing operators of Fϕ

(resp. Fψ).
(3) Suppose that D(ψ) and Dψ are dense in H. Then, Fψ (resp. Fϕ) is a

generalized Riesz basis with a constructing pair (Fe, T̄ψ,e)
(resp. (Fe, T

−1
e,ψ)) and the constructing operator T̄ψ,e (resp. T−1

e,ψ) is
the minimum (resp. the maximum) among constructing operators of Fψ

(resp. Fϕ).

Theorem 2.4 shows how the problem stated in Introduction (under what
conditions biorthogonal sequences Fϕ and Fψ are generalized Riesz systems)
can be solved in the case when either Dϕ and D(ψ) or Dψ and D(ϕ) are
dense in H. However, this problem has not been solved completely in case
that both Dϕ and Dψ are not dense in H, which is what is interesting for us
here. We will see how the operators Tϕ,e , Te,ϕ, Tψ,e and Te,ψ will be relevant
in our analysis, together with the (D, E)-quasi bases, we will define in the
next section. This result is a generalization of the one obtained in Ref. [4].

3. (D, E)-Quasi Bases

In this section, we extend the notion of D-quasi bases by introducing a second
dense subset E of the Hilbert space H, and we relate these new families of
vectors to generalized Riesz systems.

Definition 3.1. Let Fϕ and Fψ be biorthogonal sequences in H, and let D
and E be dense subspaces, such that Dψ ⊆ D ⊆ D(ϕ) and Dϕ ⊆ E ⊆ D(ψ).
Then, ({ϕn}, {ψn}) is said to be a (D, E)-quasi basis if:

∞∑

k=0

〈x, ϕk〉 〈ψk, y〉 = 〈x, y〉

for all x ∈ D and y ∈ E .
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It is clear that any (D,D)-quasi basis is a D-quasi basis in the sense of
[1].

Example 1. A very simple example of a (D, E)-quasi basis can be constructed
as follows. Let {en} be an ONB for H. Let αn an unbounded sequence of
positive real numbers having 0 as limit point. To be more concrete, let us
take:

αn =
{

1
n if n is even
n if n is odd.

Let Tx =
∑∞

n=1 αn 〈x, en〉 en be defined on the domain:

D(T ) =

{

x ∈ H :
∞∑

k=0

(2k + 1)2|(x, e2k+1)|2 < ∞
}

.

The operator T is unbounded, self-adjoint, invertible with inverse T−1 is
defined as T−1y =

∑∞
n=1 α−1

n 〈x, en〉 en on the domain:

D(T−1) =

{

y ∈ H :
∞∑

k=1

(2k)2|(y, e2k)|2 < ∞
}

.

Both D(T ) and D(T−1) are dense subspaces of H and they are different
as one can easily check. Let us set ϕn = Ten and ψn = T−1en, n ∈ N.
The ϕn = αnen, while ψn = T−1en = α−1

n en. Moreover D(ϕ) = D(T ),
D(ψ) = D(T−1). Then, we have:

∞∑

n=0

〈x, ϕn〉 〈ψn, y〉 =
∞∑

n=0

〈x, αnen〉 〈
α−1

n en, y
〉

= 〈x, y〉.

Thus, (Fϕ,Fψ) is a (D(ϕ),D(ψ))-quasi basis.

Example 2. Let H0 = p2 + x2 be (twice) the self-adjoint Hamiltonian of a
one-dimensional harmonic oscillator. We consider H0 to be the closure of the
operator acting in the same way on the Schwartz space S(R), and T = 1+p2,
which is an unbounded self-adjoint operator defined on D(T ) = W 2,2(R), the
Sobolev space of functions having first and second order weak derivatives in
L2(R). The operator T = H0 +1−x2 is unbounded, invertible with bounded
inverse T−1. The eigensystem of H0 is well known:

H0en(x) = (2n + 1)en(x), en(x) =
1√

2nn!π1/2
Hn(x) e−x2/2,

n ≥ 0, where Hn(x) is the nth Hermite polynomial. Moreover:

H0f =
∞∑

n=0

(2n + 1)(en ⊗ ēn)f =
∞∑

n=0

(2n + 1)(f, en)en, ∀f ∈ S(R). (2)

It is easy to see that en(x) ∈ D(T ), so that we can define ϕn(x) =
(Ten)(x) and ψn(x) = (T−1en)(x). We get:

ϕn(x) = (2 + 2n − x2)en(x), ψn(x) =
1
2

∫

R

e−|x−y| en(y) dy.
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These functions are, respectively, eigenvectors of H = TH0T
−1 and H†, with

eigenvalue 2n + 1. Some computations show that, for instance:

H = H0 − 2
(

1 + 2x
d
dx

)

G � .

Here, G(x) is the Green function of T , G(x) = 1
2e−|x|, and (G � f)(x) =∫

R
G(x − y)f(y)dy, for all f(x) ∈ L2(R). Of course, we can rewrite H as

follows: H = H0 − 2(1 + 2ixp)G�, which is manifestly non-self-adjoint.
The sets Fϕ and Fψ are biorthogonal and form a (D(T ),H)-quasi basis,

since:
∞∑

k=0

〈f, ϕk〉 〈ψk, g〉 = 〈f, g〉,

for all f(x) ∈ D(T ) and g(x) ∈ L2(R).
Let Fϕ and Fψ be biorthogonal sequences. Suppose that Fϕ is a gener-

alized Riesz system with constructing pair (Fe , T ). We put ψT
n := (T−1)∗en,

n = 0, 1, . . .. Then, Fψ and FT
ψ := {ψT

n } are biorthogonal sequences, but
Fψ does not necessarily coincide with FT

ψ . For this reason, we will call the
constructing pair (Fe , T ) natural for the biorthogonal sequences Fϕ and Fψ

if Fψ = FT
ψ . If Dϕ is dense in H, then (Fe, T ) is automatically natural for

Fϕ and Fψ.
The next theorem, which is the main result of this paper, shows that the

notion of (D, E)-quasi basis is intimately linked to that of generalized Riesz
system.

Theorem 3.2. Let (Fϕ,Fψ) be a biorthogonal pair and D and E be dense
subspaces in H, such that Dψ ⊆ D ⊆ D(ϕ) and Dϕ ⊆ E ⊆ D(ψ). Then, the
following statements are equivalent:
(i) (Fϕ,Fψ) is a (D, E)-quasi basis.
(ii) For any ONB Fe = {en} in H, Fϕ is a generalized Riesz system with a

natural constructing pair (Fe, T ) satisfying D(T ∗) ⊇ D and D(T−1) ⊇
E.

(iii) For any ONB Fe = {en} in H, Fψ is a generalized Riesz system with a
natural constructing pair (Fe,K) satisfying D(K∗) ⊇ E and D(K−1) ⊇
D.

If the statement (i) holds, then we can take (Te,ψ�E)−1 and (Te,ϕ�D)−1 as T
and K in (ii) and (iii), respectively. If Dϕ is not dense in H, then Te,ψ does
not have an inverse, but Te,ψ�E has an inverse.

Proof. Take arbitrary x ∈ D and y ∈ E . Since x ∈ D(Te,ϕ) = D(ϕ) and
y ∈ D(Te,ψ) = D(ψ), we have:

〈x, y〉 =
∞∑

n=0

〈x, ϕn〉 〈ψn, y〉 =
∞∑

n=0

〈x, Tϕ,een〉 〈Tψ,een, y〉

=
∞∑

n=0

〈Te,ϕx, en〉 〈en, Te,ψy〉 = 〈Te,ϕx, Te,ψy〉,
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which implies that:

(Te,ψ�E)−1 ⊆ (Te,ϕ�D)∗ and (Te,ϕ�D)−1 ⊆ (Te,ψ�E)∗. (3)

Now, we put T := (Te,ψ�E)−1. Since D(T ) = Te,ψ�ED(Te,ψ�E) ⊇
Te,ψ�EE ⊇ Te,ψ�EDϕ = De and D((T−1)∗) = D((Te,ψ�E)∗) ⊇ D((Te,ϕ�D)−1)
= Te,ϕ�DD(Te,ϕ�D) ⊇ Te,ϕ�DDψ = De , it follows that T is a densely
defined closed operator in H with densely defined inverse, such that e ⊆
D(T ) ∩ D((T−1)∗). Furthermore, we have:

Ten = (Te,ψ�E)−1Te,ψ�Eϕn = ϕn,

(T−1)∗en = (Te,ψ�E)∗en = Tψ,een = ψn, n = 0, 1, . . .

Thus, Fϕ is a generalized Riesz system with a natural constructing pair
(Fe, T ). Furthermore, we have D(T−1) = D(Te,ψ�E) ⊇ E and by (2) D(T ∗) ⊇
D(Te,ϕ�D) ⊇ D. Thus, (i) ⇒ (ii).
In a similar way, setting K = (Te,ϕ�D)−1, we can show that Fψ is a
generalized Riesz system for a natural constructing pair (Fe,K) satisfying
D(K∗) ⊇ E and D(K−1) ⊇ D. Thus, (i) implies (iii).
(ii) ⇒ (i) Take arbitrary x ∈ D and y ∈ E . Since:

∞∑

k=0

〈x, ϕk〉 〈ψk, y〉 =
∞∑

k=0

〈x, Ten〉 〈
(T−1)∗en, y

〉

=
∞∑

k=0

〈T ∗x, en〉 〈
en, T−1y

〉
=

〈
T ∗x, T−1y

〉
= 〈x, y〉,

it follows that (Fϕ,Fψ) is a (D, E)-quasi basis. Similarly, we can show (iii)
⇒ (i). This completes the proof. �

For D-quasi basis, we have the following:

Corollary 3.3. Let Fϕ and Fψ be biorthogonal sequences and D be a dense
subspace in H, such that Dϕ ∪ Dψ ⊆ D ⊆ D(ϕ) ∩ D(ψ). Then, the following
statements are equivalent:

(i) (Fϕ,Fψ) is a D-quasi basis.
(ii) For any ONB Fe = {en} in H, Fϕ is a generalized Riesz system with a

natural constructing pair (Fe, T ) satisfying D(T ∗) ∩ D(T−1) ⊇ D.
(iii) For any ONB Fe = {en} in H, Fψ is a generalized Riesz system with a

natural constructing pair (Fe,K) satisfying D(K∗) ∩ D(K−1) ⊇ D.

If (i) holds, then we can take (Te,ψ�D)−1 and (Te,ϕ�D)−1 as T in (ii) and K
in (iii), respectively.

By Theorem 3.2, if (Fϕ,Fψ) is a (D, E)-quasi basis, then, for any ONB
Fe = {en}, (Te,ψ�E)−1 and (Te,ϕ�D)∗ are constructing operators for the gen-
eralized Riesz system Fϕ, such that (Te,ψ�E)−1 ⊆ (Te,ϕ�D)∗, and (Te,ϕ�D)−1

and (Te,ψ�E)∗ are constructing operators for the generalized Riesz system
Fψ, such that (Te,ϕ�D)−1 ⊆ (Te,ψ�E)∗.
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Remark. For a biorthogonal pair (Fϕ,Fψ), it is clear that Dψ ⊆ D(ϕ) and
Dϕ ⊆ D(ψ). What is not clear is whether Dϕ ⊆ D(ϕ) and Dψ ⊆ D(ψ). For
this reason, it may be more convenient to work, in some concrete cases, with
(D, E)-quasi bases rather than with D-quasi bases.

Let Fϕ be a generalized Riesz system with constructing pair (Fe, T ). We
discuss now when there exists a sequence Fψ in H and subspaces D and E in
H, such that Fϕ and Fψ are biorthogonal and define a (D, E)-quasi basis:

Proposition 3.4. Let Fϕ be a generalized Riesz system with a constructing
pair (Fe, T ). Then, (Fϕ,FT

ψ ) is a (D(T ∗),D(T−1))-quasi basis and T =
(
Te,ψT �D(T −1)

)−1, (T−1)∗ =
(
Te,ϕ�D(T ∗)

)−1.

Proof. It is clear that (Fϕ,FT
ψ ) is a (D(T ∗),D(T−1))-quasi basis. Further-

more, since Ten = ϕn, n = 0, 1, . . ., we have:

Tϕ,e ⊆ T,

which implies that:

T ∗ ⊆ Te,ϕ.

Hence, we have:

T ∗ = Te,ϕ�D(T ∗).

Thus, we have:

(T ∗)−1 =
(
Te,ϕ�D(T ∗)

)−1
.

Since (T−1)∗en = ψT
n , n = 0, 1, . . ., we can similarly show T =

(
Te,ψT �D(T −1)

)−1. This completes the proof. �

Next, we consider when there exists a subspace D in H, such that (Fϕ,FT
ψ )

is D-quasi basis.

Proposition 3.5. Let Fϕ be a generalized Riesz system with constructing pair
(Fe, T ). Suppose that Fe ⊂ D(T ∗T ) ∩ D(T−1(T−1)∗). Then, (Fϕ,FT

ψ ) is a

(D(T ∗) ∩ D(T−1))-quasi basis and T =
(
Te,ψT �D(T ∗)∩D(T −1)

)−1

, (T−1)∗ =
(
Te,ϕ�D(T ∗)∩D(T −1)

)−1

.

Proof. We denote for simplicity ψT by ψ. At first, we show that D(T−1) ∩
D(T ∗) is a core for T−1. Take an arbitrary x ∈ D(T ). Let |T | =

∫ ∞
0

λdET (λ)
be the spectral resolution of the absolute |T | := (T ∗T )1/2 of T . Then, we
have TET (n)x ∈ D(T ∗) ∩ D(T−1), n = 0, 1, . . . and limn→∞ TET (n)x = Tx.
Furthermore, take an arbitrary y ∈ D(T−1). Then, y = Tx for some x ∈ D(T )
and we have limn→∞ TET (n)x = Tx = y and limn→∞ T−1(TET (n)x) =
limn→∞ ET (n)x = x = T−1y. Thus, D(T−1) ∩ D(T ∗) is a core for T−1.

At second, we show that D(T−1) ∩ D(T ∗) is a core for T ∗. Take an
arbitrary y ∈ D(T ∗). Let |T ∗| =

∫ ∞
0

λdET ∗(λ) be the spectral resolution
of the absolute |T ∗| := (TT ∗)1/2 of T ∗. Then, it follows that ET ∗(n)y =
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T (T ∗|T ∗|−2ET ∗(n)y) ∈ D(T−1) ∩ D(T ∗), n = 0, 1, . . ., limn→∞ ET ∗(n)y = y
and limn→∞ T ∗ET ∗(n)y = T ∗y. Thus, D(T−1) ∩ D(T ∗) is a core for T ∗.

At third, we show that Dϕ ⊆ D(T−1) ∩ D(T ∗) ⊆ D(ϕ) ∩ D(ψ) and
Dψ ⊆ D(T−1) ∩ D(T ∗) ⊆ D(ϕ) ∩ D(ψ). It is clear that ϕn = Ten ∈ D(T−1).
Furthermore, since Fe ⊆ D(T ∗T ), we have:

〈Tx, ϕn〉 = 〈Tx, Ten〉 = 〈x, T ∗Ten〉
for all x ∈ D(T ). Hence, we have ϕn ∈ D(T ∗). Thus Dϕ ⊆ D(T−1) ∩ D(T ∗).
And since ψn = (T−1)∗en(= (T ∗)−1en), we have ψn ∈ D(T ∗). Furthermore,
since Fe ⊆ D(T−1(T−1)∗), we have:

〈
(T−1)∗y, ψn

〉
=

〈
(T−1)∗y, (T−1)∗en

〉
=

〈
y, T−1(T−1)∗en

〉

for all y ∈ D((T−1)∗). Hence, we have ψn ∈ D(T−1). Thus Dψ ⊆ D(T−1) ∩
D(T ∗). We show D(T−1) ∩ D(T ∗) ⊆ D(ϕ) ∩ D(ψ). Indeed, take an arbitrary
y ∈ D(T−1) ∩ D(T ∗). Since

∞∑

k=0

| 〈y, ϕk〉 |2 =
∞∑

k=0

| 〈y, Tek〉 |2 =
∞∑

k=0

| 〈T ∗y, ek〉 |2 = ‖T ∗y‖2

and
∞∑

k=0

| 〈y, ψk〉 |2 =
∞∑

k=0

| 〈T−1y, ek

〉 |2 = ‖T−1y‖2,

we have y ∈ D(ϕ) ∩ D(ψ).
Finally, we show that (Fϕ,FT

ψ ) is a (D(T ∗) ∩ D(T−1))-quasi basis and

T =
(
Te,ψ�D(T ∗)∩D(T −1)

)−1

, (T−1)∗ =
(
Te,ϕ�D(T ∗)∩D(T −1)

)−1

. Since

∞∑

k=0

〈x, ϕk〉 〈ψk, y〉 =
∞∑

k=0

〈x, Tek〉 〈
(T−1)∗ek, y

〉

=
∞∑

k=0

〈T ∗x, ek〉 〈
ek, T−1y

〉

=
〈
T ∗x, T−1y

〉

= 〈x, y〉
for all x, y ∈ D(T ∗)∩D(T−1), it follows that (Fϕ,FT

ψ ) is a (D(T ∗)∩D(T−1))-
quasi basis. Furthermore, since T−1 ⊆ Te,ψ and D(T−1) ∩ D(T ∗) is a core
for T−1, we have:

T−1 = T−1�D(T ∗)∩D(T −1) = Te,ψ�D(T ∗)∩D(T −1),

which implies that T = (Te,ψ�D(T ∗)∩D(T −1))−1. Furthermore, since Tϕ,e ⊆ T

and D(T−1) ∩ D(T ∗) is a core for T ∗, we have:

T ∗ = T ∗�D(T ∗)∩D(T −1) = Te,ϕ�D(T ∗)∩D(T −1),

which implies that (T ∗)−1 = (Te,ϕ�D(T ∗)∩D(T −1))−1. This completes the
proof. �
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4. Physical Operators Constructed from (D, E)-Quasi Bases

In this section, extending what was discussed recently for instance in Refs.
[2,3,6], we investigate some physical operators constructed from (D, E)-quasi
bases. Let (Fϕ,Fψ) be a (D, E)-quasi basis. As shown in Theorem 3.2,
Fϕ is a generalized Riesz system with constructing pairs (Fe, (Te,ψ�E)−1)
and (Fe, (Te,ϕ�D)∗) for any ONB Fe = {en}, such that (Te,ψ�E)−1 ⊆
(Te,ϕ�D)∗, and {ψn} is a generalized Riesz system with constructing pairs
(Fe, (Te,ϕ�D)−1) and (Fe, (Te,ψ�D )∗), such that (Te,ϕ�D)−1 ⊆ (Te,ψ�E)∗.
Here, we put, to keep the notation simple:

T = (Te,ψ�E)−1 or (Te,ϕ�D)∗,

K = (Te,ϕ�D)−1 or (Te,ψ�E)∗.

For a generalized Riesz system Fϕ with constructing pair (Fe, T ), we can
define a non-self-adjoint Hamiltonian Hα

ϕ := THα
e T−1, a generalized low-

ering operator Aα
ϕ := TAα

e T−1, and a generalized raising operator Bα
ϕ :=

TBα
e T−1. Similarly, for a generalized Riesz system {ψn} with a construct-

ing pair (Fe,K), we define a non-self-adjoint Hamiltonian Hα
ψ := KHα

e K−1,
a generalized lowering operator Aα

ψ := KAα
e K−1, and a generalized raising

operator Bα
ψ := KBα

e K−1. However, we do not know whether these opera-
tors are even densely defined or not. Suppose that Dϕ is dense in H. Then,
since Hα

ϕ ϕn = αnϕn, Aα
ϕϕn = αnϕn−1 (0 if n = 0) and Bα

ϕ ϕn = αn+1ϕn+1,
it is clear that Hα

ϕ , Aα
ϕ and Bα

ϕ are densely defined, but since Dψ is not nec-
essarily dense in H, the operators Hα

ψ , Aα
ψ , and Bα

ψ need not being densely
defined. Therefore, we first investigate when Dϕ or Dψ are dense in H under
the assumption that (Fϕ,Fψ) is a (D, E)-quasi basis.

Before going forth, we shortly discuss an example which is the leading
model for the objects which we are dealing with and which allows an explicit
computation of all involved operators.

Example 3. Let H0 = p2 + x2 be the self-adjoint Hamiltonian introduced
in Example 2 above, and let T be the following multiplication operator:
(Tf)(x) = (1 + x2)f(x), for all functions f(x) ∈ D(T ) = {g(x) ∈ L2(R) :
(1 + x2)g(x) ∈ L2(R)}. T is an unbounded self-adjoint operator, invertible
with bounded inverse T−1.

As seen in (2), H0 has the form Hα
e where α = {2n + 1, n ∈ N} and

{en} is the orthonormal basis constructed from the Hermite polynomials. To
simplify notations, we will omit here explicit reference to α.

If we identify K with T−1, straightforward computations show that:

Hϕ = p2 + Vϕ(x) +
4ix

1 + x2
p, Hψ = p2 + Vψ(x) − 4ix

1 + x2
p,

where Vϕ(x) = x2 + 2 (1−3x2)
(1+x2)2 and Vψ(x) = x2 − 2

1+x2 . Notice that, because
of the relation between T and K, Hϕ = H∗

ψ, even if this is not evident
from our explicit formulas. From a physical point of view both Hϕ and Hψ

can be seen as a modified version of the harmonic oscillator where an extra
potential is added, going to zero as x−2, and the manifestly non-self-adjoint



MJOM Generalized Riesz Systems and Quasi Bases in Hilbert Space Page 11 of 17 41

terms ± 4ix
1+x2 p appear. These Hamiltonians can be factorized as follows: Hϕ =

2BϕAϕ + 1 and Hψ = 2BψAψ + 1, where

Aϕ =
1√
2

(

x − 2x

1 + x2
+ ip

)

, Bϕ =
1√
2

(

x +
2x

1 + x2
− ip

)

,

while

Aψ =
1√
2

(

x +
2x

1 + x2
+ ip

)

, Bψ =
1√
2

(

x − 2x

1 + x2
− ip

)

.

All these operators formally collapse to c = 1√
2

(x + ip) or to c† = 1√
2

(x − ip)
for large x. It is also interesting to observe that Bϕ = A∗

ψ and Aϕ = B∗
ψ

The two vacua of Aϕ and Aψ, corresponding to the lower eigenvectors
of Hϕ and Hψ respectively, can be easily obtained by solving the differential
equations Aϕϕ0(x) = 0 and Aψψ0(x) = 0. The solutions we find in this way
coincide with those we find introducing:

ϕn(x) = (Ten)(x) =
1√

2n n!π1/2
(1 + x2)Hn(x)e−x2/2,

and

ϕn(x) = (Ken)(x) =
1√

2n n!π1/2

Hn(x)
1 + x2

e−x2/2,

see Example 2. Incidentally, it is clear that en(x) ∈ D(T ). Of course, en(x) ∈
D(K), since D(K) = L2(R).

The last point we want to consider here concerns the density of Dϕ and
Dψ in L2(R). More concretely, we will check that Fϕ is total in D(T ) and
that Fψ is total in D(K) = L2(R). In fact, let f(x) ∈ D(T ) be such that
〈f, ϕn〉 = 0 for all n. Hence, 0 = 〈f, ϕn〉 = 〈Tf, en〉, so that Tf = 0 and, since
Tf ∈ D(K), f(x) = 0 a.e. in R. Similarly, we can prove that, if g(x) ∈ L2(R)
is such that 〈g, ψn〉 = 0 for all n, then g(x) = 0 a.e. in R.

We come now back to investigate more general situations.

Proposition 4.1. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis. Then, we have
the following statements.
(1) D⊥

ϕ ⊆ D(ϕ), where D⊥
ϕ is an orthogonal complement of Dϕ in H.

(2) If D ∩ D⊥
ϕ is dense in D⊥

ϕ , then Dϕ is dense in H.
Similar results hold for Fψ.

Proof. (1) For x ∈ D⊥
ϕ , we have:

〈Tϕ,een, x〉 = 〈ϕn, x〉 = 0,

for any ONB Fe in H and n = 0, 1, . . .. Since Fe is a core for T̄ϕ,e by
Lemma 2.2, we have x ∈ D(T ∗

ϕ,e) = D(Te,ϕ) = D(ϕ).
(2) For any x ∈ D⊥

ϕ , there exists a sequence {xn} ⊆ D ∩ D⊥
ϕ , such that

limn→∞ xn = x. Since (Fϕ,Fψ) is a (D, E)-quasi basis, we have:

〈x, y〉 = lim
n→∞ 〈xn, y〉

= lim
n→∞

∞∑

k=0

〈xn, ϕk〉 〈ψk, y〉 = 0
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for all y ∈ E . Hence, we have x = 0. Thus, Dϕ is dense in H.
�

Proposition 4.2. Let (Fϕ,Fψ) be a biorthogonal pair, such that D(ϕ) and
D(ψ) are dense in H. Then, we have the following:
(1) (Fϕ,Fψ) is a (D(ϕ), E)-quasi basis for some dense subspace E in H,

such that Dϕ ⊆ E ⊆ D(ψ) if and only if Dϕ is dense in H. If this is
true, (Fϕ,Fψ) is a (D(ϕ),Dϕ)-quasi basis.

(2) (Fϕ,Fψ) is a (D,D(ψ))-quasi basis for some dense subspace D in H,
such that Dψ ⊆ D ⊆ D(ϕ) if and only if Dψ is dense in H. If this is
true, (Fϕ,Fψ) is a (Dψ,D(ψ))-quasi basis.

Proof. (1) Suppose that (Fϕ,Fψ) is a (D(ϕ), E)-quasi basis for some dense
subspace E in H, such that Dϕ ⊆ E ⊆ D(ψ). Take an arbitrary x ∈ D⊥

ϕ .
By Proposition 4.1, (1) we have x ∈ D(ϕ). Since ({ϕn}, {ψn}) is a
(D(ϕ), E)-quasi basis, we have:

〈x, y〉 =
∞∑

k=0

〈x, ϕk〉 〈ψk, y〉 = 0

for all y ∈ E , which implies that x = 0. Hence, Dϕ is dense in H.
Conversely, suppose that Dϕ is dense in H. Then, we show that (Fϕ,Fψ)
is a (D(ϕ),Dϕ)-quasi basis. Indeed, take arbitrary x ∈ D(ϕ) and y ∈
Dϕ. Then, y =

∑n
j=0 αjϕj for some αj ∈ C, j = 0, 1, . . . , n, and we

have:
∞∑

k=0

〈x, ϕk〉 〈ψk, y〉 =
∞∑

k=0

〈x, Tϕ,eek〉 〈Tψ,eek, y〉

= 〈Te,ϕx, Te,ψy〉

=
n∑

j=0

ᾱj 〈Te,ϕx, Te,ψϕj〉

=
n∑

j=0

ᾱj 〈x, Tϕ,eej〉

=

〈

x,
n∑

j=0

αjϕj

〉

= 〈x, y〉 .

(2) This is shown similarly to (1).
�

Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis. Let r := {rn} ⊂ R;
1 ≤ rn, n = 0, 1, . . . and we put:

ϕr := {rnϕn},

ψ 1
r

:=
{

1
rn

ψn

}

.
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Then, (ϕr, ψ 1
r
) is a biorthogonal pair satisfying:

Dψr
= Dψ ⊆ D(ϕr) ⊆ D(ϕ),

Dϕr
= Dϕ ⊆ E ⊆ D(ψ) ⊆ D(ψ 1

r
),

where

D(ϕr) :=

{

x ∈ H;
∞∑

k=0

r2k| 〈x, ϕk〉 |2 < ∞
}

and

D(ψ 1
r
) :=

{

x ∈ H;
∞∑

k=0

1
r2k

| 〈x, ψk〉 |2 < ∞
}

.

Then, we have the following:

Proposition 4.3. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis and there
exists a sequence r := {rn} ⊂ R, such that 1 ≤ rn, n = 0, 1, . . . and
D(ϕr) ⊆ D and D(ϕr) is dense in H. Then, Dϕ is dense in H and (Fϕ,Fψ)
is a (D(ϕ),Dϕ)-quasi basis.

Proof. Since D(ϕr) ⊆ D, it follows that (ϕr, ψ 1
r
) is a (D(ϕr), E)-quasi basis,

which implies by Proposition 4.2 that Dϕr
= Dϕ is dense in H. �

We next consider the case that Dϕ and Dψ are not necessarily dense in
H.

Proposition 4.4. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis. Then, there
exists an ONB Ff := {fn} in H, such that Tf ,ϕ�D is a positive self-adjoint
operator in H and (Ff , Tf ,ϕ�D) is a constructing pair for the generalized
Riesz system Fϕ. Furthermore, (Ff , (Tf ,ϕ�D)−1) is a constructing pair for
the generalized Riesz system Fψ.

Proof. By Theorem 3.2, (Te,ϕ�D)∗ is a constructing operator for the general-
ized Riesz system Fϕ and any ONB Fe = {en} in H. Let Te,ϕ�D = U |Te,ϕ�D|
be the polar decomposition of Te,ϕ�D. Since Te,ϕ�D has a densely defined
inverse, U is a unitary operator on H. Here, we put fn = U∗en, n = 0, 1, . . ..
Then, it follows that {fn} is an ONB in H and:

|Te,ϕ�D|fn = |Te,ϕ�D|U∗en = (Te,ϕ�D)∗en = ϕn, n = 0, 1, . . . ,

which implies that (Ff , |Te,ϕ�D|) is a constructing pair for Fϕ. Hence:

Tϕ,f ⊆ |Te,ϕ�D| ⊆ Tf ,ϕ,

and so Tf ,ϕ�D = |Te,ϕ�D|. This completes the proof. �

Similarly, we have the following.

Proposition 4.5. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis. Then, there
exists an ONB Fg := {gn} in H, such that Tg ,ψ�E is a positive self-adjoint
operator in H and (Fg , Tg ,ψ�E) is a constructing pair for the generalized
Riesz system Fψ. Furthermore, (Fg , (Tg ,ψ�E)−1) is a constructing pair for
the generalized Riesz system Fϕ.
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We now consider a CCR-algebra-like structure for non-self-adjoint
Hamiltonians, and generalized lowering and raising operators by taking a
good domain for their operators. For that, the notion of unbounded operator
algebras is relevant [5,10,11]. Let D be a dense subspace in a Hilbert space
H. We denote by L(D) the set of all linear operators from D to D. Then,
L(D) is an algebra equipped with the usual operations: X +Y , αX and XY .

Theorem 4.6. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis, and Ff = {fn}
and Fg = {gn} in Proposition 4.4 and Proposition 4.5. Here, we denote by
Tϕ the constructing operator Tf ,ϕ�D of Fϕ and Tψ the constructing operator
Tg ,ψ�E of Fψ. Then, we have the following:
(1) If Hα

f D ⊆ D for some α = {αn} ⊂ C, then the linear span of TϕD is
dense in H and the non-self-adjoint Hamiltonian TϕHα

f T−1
ϕ for Fϕ is

contained in L(TϕD).
(2) If Hα

g E ⊆ E for some α = {αn} ⊂ C, then the linear span of TψE is
dense in H and the non-self-adjoint Hamiltonian T−1

ψ Hα
g Tψ for Fψ is

contained in L(TψE).
Here, Hα

f and Hα
g are the standard Hamiltonians for the ONB Ff and Fg ,

respectively.

Proof. (1) Since D is a core for Tϕ and Tϕ has the inverse, TϕD is dense in
H. By assumption, it is clear that TϕHα

f T−1
ϕ ∈ L(TϕD).

(2) This is shown similarly to (1).
�

Next, to consider the generalized lowering and raising operators defined
by (D, E)-quasi bases, we assume that:

0 ≤ α0 < αn < αn+1 and αn+1 ≤ αn + r, n = 1, . . . , for some r > 0. (4)

Then, we have the following.

Theorem 4.7. Suppose that (Fϕ,Fψ) is a (D, E)-quasi basis, and Tϕ, Tψ,
Ff = {fn} and Fg = {gn} as in Theorem 4.6. Then. we have the follow-
ing statements.
(1) Suppose that D∞(Hα

f ) := ∩n∈ND((Hα
f )n) ⊆ D and Tf ,ϕD∞(Hα

f ) is
dense in H. Then, (Ff , T 0

ϕ := Tf ,ϕ�D∞(Hα
f )) is a constructing pair for

Fϕ and the non-self-adjoint Hamiltonian H0
ϕ := T 0

ϕHα
f (T 0

ϕ)−1 for Fϕ,
the generalized lowering operator A0

ϕ := T 0
ϕAα

f (T 0
ϕ)−1 for Fϕ, and the

generalized raising operator B0
ϕ := T 0

ϕBα
f (T 0

ϕ)−1 for Fϕ are contained
in L(T 0

ϕD∞(Hα
f )).

(2) Suppose that D∞(Hα
g ) ⊆ E and Tg ,ψD∞(Hα

g ) is dense in H. Then,
(Fg , T 0

ψ := Tg ,ψ�D∞(Hα
g )) is a constructing pair for Fψ and the non-self-

adjoint Hamiltonian H0
ψ := T 0

ψHα
g (T 0

ψ)−1 for Fψ, the generalized low-
ering operator A0

ψ := T 0
ψAα

g (T 0
ψ)−1 for Fψ, and the generalized raising

operator B0
ψ := T 0

ψBα
g (T 0

ψ)−1 for Fψ are contained in L(T 0
ψD∞(Hα

g )).
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Proof. At first, we show that (Ff , T 0
ϕ) is a constructing pair for Fϕ. Since

D(T 0
ϕ) ⊇ D∞(Hα

f ) ⊇ Ff , T 0
ϕ is a densely defined closed operator in H.

Furthermore, since T 0
ϕ ⊆ Tϕ = Tf ,ϕ�D and Tϕ has the inverse, T 0

ϕ has the
inverse. By assumption, we have:

D((T 0
ϕ)−1) ⊇ T 0

ϕD(T 0
ϕ) ⊇ T 0

ϕD∞(Hα
f ) = Tf ,ϕD∞(Hα

f ),

which implies that T 0
ϕ has a densely defined inverse. Furthermore, we have

the following:

T 0
ϕfn = Tϕfn = ϕn, n = 0, 1, . . . .

Hence, we have (Fϕ, T 0
ϕ) is a constructing pair for Fϕ.

Next, we consider the non-self-adjoint Hamiltonian H0
ϕ for Fϕ, the gen-

eralized lowering operator A0
ϕ for Fϕ, and the generalized raising operator

for B0
ϕ for Fϕ. Since we have:

(Hα
f )nx =

∞∑

k=0

αn
k 〈x, fk〉 fk, x ∈ D((Hα

f )n),

(Aα
f )nx =

∞∑

k=0

αk+1αk+2 · · · αk+n 〈x, fk+1〉 fk, x ∈ D((Aα
f )n),

(Bα
f )nx =

∞∑

k=0

αk+1αk+2 · · · αk+n 〈x, fk〉 fk+1, x ∈ D((Bα
f )n),

it follows that:

x ∈ D((Hα
f )n) iff

∞∑

k=0

α2n
k | 〈x, fk〉 |2 < ∞,

x ∈ D((Bα
f )n) iff

∞∑

k=0

(αk+1 · · · αk+n)2| 〈x, fk+1〉 |2 < ∞,

x ∈ D((Bα
f )n) iff

∞∑

k=0

(αk+1 · · · αk+n)2| 〈x, fk〉 |2 < ∞.

By (4), we have:
∞∑

k=0

α2n
k+1| 〈x, fk+1〉 |2 ≤

∞∑

k=0

(αk+1 · · · αk+n)2| 〈x, fk+1〉 |2

≤
∞∑

k=0

(αk + (n − 1)r)2n| 〈x, fk〉 |2,

and
∞∑

k=0

α2n
k | 〈x, fk〉 |2 ≤

∞∑

k=0

(αk+1 · · · αk+n)2| 〈x, fk〉 |2

≤
∞∑

k=0

(αk + nr)2n| 〈x, fk〉 |2.
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Hence, it follows that x ∈ D((Hα
f )n) iff x ∈ D((Aα

f )n) iff x ∈ D((Bα
f )n),

which implies that D∞(Hα
f ) = D∞(Aα

f ) = D∞(Bα
f ). Furthermore, it is clear

that H0
ϕ, A0

ϕ, B0
ϕ ∈ L(T 0

ϕD∞(Hα
f )). This completes the proof.

(2) This is shown similarly to (1). �

Conclusions

This paper continues our (joint, and separate) analysis of biorthogonal sets
of vectors of different nature, and their interest in quantum mechanics. In
particular, we have shown that the extension of the notion of D-quasi basis
can be technically useful and may be of some interest in applications. How-
ever, more should be done, mainly on this aspect, and we plan to focus more
on physics in a future paper.
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