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Positive Solutions for Some Semi-positone
Problems with Nonlinear Boundary
Conditions via Bifurcation Theory
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Abstract. Bifurcation theory is used to prove the existence of posi-
tive solutions of some classes of semi-positone problems with nonlinear
boundary conditions

⎧
⎨

⎩

−u′′ = λf(t, u), t ∈ (0, 1),

u(0) = 0, u′(1) + c(u(1))u(1) = 0,

where c : [0, ∞) → [0, ∞) is continuous, f : [0, ∞) → R is continuous
and f(t, 0) < 0 for t ∈ [0, 1].

Mathematics Subject Classification. 34B18, 34B10, 47H11.

Keywords. Eigenvalues, positive solutions, topological degree, con-
nected set, bifurcation from infinity.

1. Introduction

Consider the boundary value problem
⎧
⎪⎪⎨

⎪⎪⎩

− Δu = λK(|x|)f(u) in Ω,

∂u

∂n
+ c̃(u)u = 0 on |x| = r0,

u(x) → 0 as |x| → ∞,

where Ω = {x ∈ R
N : |x| > r0 > 0}, N > 2, K : [r0,∞) → (0,∞),

c̃ : [0,∞) → [0,∞) and f : (0,∞) → R are continuous, and λ is a positive
parameter. Here, n denotes the outer unit normal vector on ∂Ω.

It is well known that a nontrivial radial function u(t), where t = |x|, is a
solution of the above problem if and only if u(t) is a solution of the problem

{− u′′ = λf(t, u), 0 < t < 1,

u(0) = 0, u′(1) + c(u(1))u(1) = 0.
(1.1)
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In this paper, we deal with the existence of positive solutions of (1.1). We
assume that f ∈ C([0, 1] × R

+,R) and c ∈ C(R,R) satisfy
(f1) f(t, 0) < 0, t ∈ [0, 1];
(c1) c : [0,∞) → (0,∞) is nondecreasing, and c(0) ≤ c(s) ≤ c(∞) < ∞

for s ∈ [0,∞).
If f(t, 0) ≥ 0, then (1.1) is called a positone problem and has been

extensively studied, see the survey papers of Amamm [1] and Loins [17].
On the contrary, we deal here with the so called semi-positone prob-

lem, when f satisfies (f1). Existence, uniqueness and multiplicity of positive
solutions of semi-positone problems have been studied by several authors,
see [2–4,6,7,9–14] for semi-positone problems with linear boundary condi-
tions, and [8,15,16,21] for semi-positone problems with nonlinear boundary
conditions.

With the exception of Ambrosetti et al. [2] that deals with semi-positone
problems with linear boundary conditions via bifuraction method, the com-
mon feature of the papers mentioned above is that their main results are
obtained by fixed point theorems in cone, sub- and super-solutions, time-
map estimation in ODE case, and hence they provide no information about
the global behavior of the set of positive solutions.

The main purpose of the present paper is to show that bifurcation theory
can be easily used to study semi-positone problems with nonlinear boundary
conditions. The same abstract setting is employed to handle both superlinear
as well as sublinear problems with nonlinear boundary conditions.

After some notation and preliminaries listed in Sect. 2, we deal in Sect. 3
with superlinear problems. A ‘blow-up’ argument jointly with some a priori
estimates allows one to show that (1.1) possesses positive solutions for 0 <
λ < λ∗. Similar arguments can be used in the sublinear case, discussed in
Sect. 4, to show that (1.1) has positive solutions, provided λ is large enough.

2. Notation and Preliminaries

Standard notation will be used for Lebesgue and Sobolev spaces. The norm
in Lr(0, 1) will be denoted by | · |r and the scalar product in L2(0, 1) by (·, ·).
We will work in X = C[0, 1] or Y = {u ∈ C1[0, 1] : u(0) = 0}, the space of
continuous, C1 with continuous first derivative, respectively, functions. The
usual norm in such spaces will be denoted by || · ||∞ and || · ||C1 ; we also set
Br = {u ∈ X : ||u|| < r}. The first eigenvalue of the linear problem

{− u′′ = λa(t)u, 0 < t < 1,

u(0) = 0, u′(1) + βu(1) = 0,

is denoted by λ1[a(·);β]. We also set R
+ = [0,∞). The Green function of

linear problem
{− u′′ = e, 0 < t < 1,

u(0) = 0, u′(1) + βu(1) = 0,
(2.1)
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(e ∈ X), is explicitly given by

Hβ(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 + β − βt

1 + β
s, 0 ≤ s ≤ t ≤ 1,

t
1 + β − βs

1 + β
, 0 ≤ s ≤ t ≤ 1.

Obviously, for given (t, s) ∈ [0, 1]× [0, 1], Hβ(t, s) is decreasing in β ∈ [0,∞).
Let us define a linear operator Tβ : X → X by

u = Tβ e,

where u is the unique solution of (2.1).

Lemma 2.1. Let (c1) hold. Then, for every e ∈ X, the problem
{− v′′(t) = e(t), 0 < t < 1,

v(0) = 0, v′(1) + c(v(1))v(1) = 0,
(2.2)

has a unique solution v ∈ C2[0, 1].

Proof. We first show that (2.2) has at least one solution.
In fact, (2.1) is equivalent to

v(t) = A(v)(t),

where

A(v)(t) :=
∫ 1

0

Hc(v(1))(t, s)e(s).

Since

Hc(∞)(t, s) ≤ Hc(v(1))(t, s) ≤ Hc(0)(t, s) (t, s) ∈ [0, 1] × [0, 1],

it is easy to check that A : X → X is completely continuous and A(X) ⊆ Bρ,
where

ρ := max{Hc(0)(t, s) : (t, s) ∈ [0, 1] × [0, 1]} · ||e||∞.

By Schauder fixed point theorem, A has a fixed point in Bρ, and accordingly,
(2.2) has a solution.

Next, we show (2.2) has a unique solution in C2[0, 1].
Assume on the contrary that u and v are two different solutions of (2.2).

Then,
{− (u − v)′′(t) = 0, 0 < t < 1,

(u − v)(0) = 0, (u − v)′(1) + [c(u(1))u(1) − c(v(1))v(1)] = 0.

Since

(c(x)x)′ = c′(x)x + c(x) ≥ c(0) > 0, (2.3)

and

c(u(1))u(1) − c(v(1))v(1) = [c′(ξ)ξ + c(ξ)](u(1) − v(1))
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for some ξ ∈ [
min{u(1), v(1)}, max{u(1), v(1)}]. Thus,

{− (u − v)′′(t) = 0, 0 < t < 1,

(u − v)(0) = 0, (u − v)′(1) + [c′(ξ)ξ + c(ξ)](u(1) − v(1)) = 0.

This together with (2.3) implies that

u(t) − v(t) ≡ 0, t ∈ [0, 1].

�

In view of Lemma 2.1, we may define a nonlinear operator K : X →
C2[0, 1] by

u := Ke,

where u ∈ C2[0, 1] is the unique solution of the problem (2.2). It is easy to
check that K : X → Y is completely continuous.

By a solution of (1.1), we mean a u ∈ C2[0, 1], which solves (1.1). With
the above notation, problem (1.1) is equivalent to

u − K(
λf(·, u)

)
= 0, u ∈ X. (2.4)

Hereafter, we will use the same symbol to denote both the function and the
associated Nemitski operator.

We say that λ∞ is a bifurcation from infinity for (2.4) if there exist
μn → λ∞ and un ∈ X, such that un − K(

μnf(·, un)
)

= 0 and ||un||∞ → ∞.
Extending the preceding definition, we will say that λ∞ = ∞ is a bifurcation
from infinity for (2.4) if solutions (μn, un) of (2.4) exist with μn → ∞ and
||un||∞ → ∞. This is the case we will meet in Sect. 4.

In some situations, like the specific ones we will discuss later, an appro-
priate rescaling permits one to find bifurcation from infinity by means of
Leray–Schauder topological degree deg(·, ·, ·). Recall that K : X → X is
continuous and compact, and hence it makes sense to consider the topologi-
cal degree of I − K(

λf
)
, I identity map.

3. Superlinear Problems

In this section, we deal with the existence of positive solutions of nonlinear
boundary value problems like

{ − u′′ = λf(t, u), 0 < t < 1,

u(0) = 0, u′(1) + c(u(1))u(1) = 0,
(3.1)

when f(t, ·) is superlinear. Precisely, we suppose that f ∈ C([0, 1] × R
+,R)

satisfies (f1) and
(f2) there exists b ∈ X with b(t) > 0 in [0, 1], such that

lim
u→+∞

f(t, u)
up

= b uniformly in t ∈ [0, 1]

for some constant p > 1.
We will study the existence of positive solutions of problem (3.1). Our

main result is
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Theorem 3.1. Let (f1), (f2) and (c1) hold. Then, there exists λ∗ > 0 such
that (3.1) has positive solutions for all 0 < λ ≤ λ∗. More precisely, there
exists a connected set of positive solutions of (3.1) bifurcating from infinity
at λ∞ = 0.

First of all, we extend f(t, ·) to all of R by setting

F (t, u) = f(t, |u|). (3.2)

Let

G(t, u) = F (t, u) − b|u|p. (3.3)

For the remainder of the proof, we will omit the dependence with respect to
t ∈ [0, 1]. To prove that λ∞ = 0 is a bifurcation from infinity for

u − K(λF (u)) = 0, (3.4)

we use the rescaling

w = γu, λ = γp−1, γ > 0. (3.5)

A direct calculation shows that (λ, u) is a solution of (3.4) if and only if

w = KF̃ (γ,w), (3.6)

where

F̃ (γ,w) := b|w|p + γpG(γ−1w), γ > 0. (3.7)

We can extend F̃ to γ = 0 by setting

F̃0(w) = F̃ (0, w) = b|w|p (3.8)

and, by (f2), such an extension is continuous. We set

S(γ,w) = w − KF̃ (γ,w), γ ∈ R
+. (3.9)

Let us point out explicitly that S(γ, ·) = I − KF̃ (γ, ·), with K compact. For
γ = 0, solutions of S0(w) := S(0, w) = 0 are nothing but solutions of

{ − w′′ = b|w|p, 0 < t < 1,

w(0) = 0, w′(1) + c(∞)w(1) = 0.
(3.10)

It follows from [10, Theorem 1(i)] that (3.10) has at least one positive solution
w. In the following, we are only interested in the positive solution w of (3.10),
although 0 is also a solution of (3.10).

We claim that there exist two constants r,R : R > r > 0, such that

S0(w) 	= 0, ∀ ||w||∞ ≥ R; (3.11)
S0(w) 	= 0, ∀ 0 < ||w||∞ ≤ r; (3.12)
deg(S0(·), BR\B̄r, 0) = −1. (3.13)

Assume on the contrary that (3.11) is not true. Then, there exists a
sequence {wn} of solutions of (3.10) satisfying

||wn||∞ → ∞, n → ∞.
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In fact, we have from (3.10) that
{

− w′′
n =

(
b|wn|p−1

)
wn, t ∈ (0, 1),

wn(0) = 0, w′
n(1) + c(∞)wn(1) = 0.

Since w′′
n(t) < 0 for t ∈ (0, 1), wn is concave down in [0, 1], and subsequently,

wn(t) ≥ ||wn||∞ min{t, 1 − t},

which means that

wn(t) ≥ 1
4
||wn||∞ t ∈

[
1
4
,
3
4

]

.

Thus,

lim
n→∞ b|wn(t)|p−1 = ∞ uniformly in t ∈

[
1
4
,
3
4

]

,

which implies that wn must changes its sign in [14 , 3
4 ]. However, this contra-

dicts wn > 0 in (0, 1].
Therefore, (3.11) is valid.
Assume on the contrary that (3.12) is not true. Then, there exists a

sequence {wn} of solutions of (3.10) satisfying

||wn||∞ → 0, n → ∞. (3.14)

Let vn := wn/||wn||∞. From (3.10), we have
{

− v′′
n =

(
b|wn|p−1

)
vn, t ∈ (0, 1),

vn(0) = 0, v′
n(1) + c(∞)vn(1) = 0.

(3.15)

From (3.14), we have that

lim
n→∞ b|wn(t)|p−1 = 0 uniformly in t ∈ [0, 1].

By the standard argument, after taking a subsequence and relabeling if nec-
essary, it follows that there exists v∗ ∈ X with ||v∗||∞ = 1, such that

vn → v∗, n → ∞
and

{ − v′′
∗ = 0, t ∈ (0, 1),

v∗(0) = 0, v′
∗(1) + c(∞)v∗(1) = 0,

which implies that v∗ = 0. However, this is a contradiction. Therefore, (3.12)
is valid.

To show (3.13) is valid, let us define a cone

K = {u ∈ X : u(t) ≥ 0 for t ∈ [0, 1]}.

Denote

Kρ = {u ∈ K : ||u||∞ ≤ ρ}.

By use [9, Lemma 3.1] and the fact

Hc(∞)(t, s) ≤ Hc(u(1))(t, s) ≤ Hc(0)(t, s) (t, s) ∈ [0, 1] × [0, 1],
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and the similar argument to prove [10, Theorem 1(i)], we may deduce the
following

ind(KF̃ (0, ·),Kr,K) = 1, ind(KF̃ (0, ·),KR,K) = 0,

and subsequently

ind(KF̃ (0, ·),KR\
◦
Kr,K) = −1. (3.16)

Combining this together with the fact S0 : X → KR\
◦
Kr and using (3.11) and

(3.12), it deduces that

deg(S0(·), BR\B̄r, 0) = −1.

Lemma 3.1. There exists γ0 > 0 such that
(1)

deg(S(γ, ·), BR\B̄r, 0) = −1, γ ∈ [0, γ0]. (3.17)

(2) if S(γ,w) = 0, γ ∈ [0, γ0], r ≤ ||w||∞ ≤ R, then w > 0 in (0, 1].

Proof. Clearly, (i) follows if we show that S(γ,w) 	= 0 for all ||w||∞ ∈ {r,R}
and all 0 ≤ γ ≤ γ0. Otherwise, there exists a sequence (γn, wn) with γn → 0,
||wn||∞ ∈ {r,R} and wn = KF̃ (γn, wn). Since K is compact then, up to a
subsequence, wn → w and S0(w) = 0, ||w||∞ ∈ {r,R}, a contradiction with
(3.11) and (3.12).

To prove (ii), we argue again by contradiction. As in the preceding
argument, we find a sequence wn ∈ X, with {x ∈ (0, 1) : wn(x) ≤ 0} 	= ∅,
such that wn → w, ||w||∞ ∈ [r,R] and S0(w) = 0, namely, w solves (3.10).
By the maximum principle w > 0 on (0, 1] and w′(0) > 0. Moreover, without
relabeling, wn → w in C1[0, 1]. Therefore, wn > 0 on (0, 1] for n large, a
contradiction. �

Proof of Theorem 3.1. By Lemma 3.1, (3.6) has a positive solution wγ for all
0 ≤ γ ≤ γ0. As remarked before, for γ > 0, the rescaling λ = γp−1, u = w/γ

gives a solution (λ, uλ) of (3.4) for all 0 < λ < λ∗ = γp−1
0 . Since wγ > 0,

(λ, uλ) is a positive solution of (3.1). Finally, ||wγ ||∞ ≥ r for all γ ∈ [0, γ0]
implies that

||uλ||∞ = ||wγ ||∞/γ → ∞, as γ → 0.

This completes the proof. �

4. Sublinear Problems

In this final section, we deal with sublinear f , namely f ∈ C([0, 1] × R
+,R)

that satisfy (f1) and
(f3) there exists b ∈ X with b(t) > 0 in [0, 1], such that

lim
u→+∞

f(t, u)
uq

= b uniformly in t ∈ [0, 1],

with 0 ≤ q < 1.
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We will show that in this case, positive solutions of (1.1) branch off from
∞ for λ∞ = +∞. First, some preliminaries are in order. It is convenient to
work on Y . Following the same procedure as for the superlinear case, we
employ the rescaling w = γu, λ = γq−1 and use the same notation, with q
instead of p and Y instead of X. As before, (λ, u) solves (3.4) if and only if
(γ,w) satisfies (3.6). Note that now, since 0 ≤ q < 1, one has that

λ → +∞ ⇔ γ → 0. (4.1)

Lemma 4.1. Let q ∈ (0, 1) and β ∈ [0,∞). Then the nonlinear problem
{ − v′′ = b(t)vq, 0 < t < 1,

v(0) = 0, v′(1) + βv(1) = 0,
(4.2)

has a unique positive solution.

Proof. Existence of positive solutions of (4.2) is an immediate consequence
of [10, Theorem 1 (i)].

Assume that u, v are positive solutions of (4.2), i.e.

−u′′ = b(t)uq, u(0) = 0, u′(1) + βu(1) = 0,
−v′′ = b(t)vq, v(0) = 0, v′(1) + βv(1) = 0.

Then, u and v are concave down in [0, 1].
We will show that u ≥ v and v ≥ u.
Suppose on the contrary that u 	≥ v. We consider the elements φr(t) of

the form

φr(t) := u(t) − rv(t) t ∈ [0, 1].

We denote by r0 the value of r such that φr0 ∈ K, φr 	∈ K for r > r0. The
number r0 is positive since u  0, the element φr ∈ K for sufficiently small
positive r.

From the definition of r0, it follows that there exists τ0 ∈ (0, 1] such
that

φr0(τ0) = u(τ0) − r0v(τ0) = 0. (4.3)

On the other hand,

−φ′′
r0

(t) = −(u(t) − r0v(t))′′ = b(t)[uq(t) − r0v
q(t)]

≥ b(t)[rq
0v

q(t) − r0v
q(t)] = b(t)[rq

0 − r0]vq(t) > 0,

φr0(0) = 0, φ′
r0

(1) + βφr0(1) = 0.

Thus,

φr0(t) > 0 t ∈ (0, 1].

However, this contradicts (4.3).
Therefore, u ≥ v in [0, 1].
By the same method, we may prove that u ≤ v in [0, 1]. �
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From Lemma 4.1, the problem
{ − w′′ = bwq, 0 < t < 1,

w(0) = 0, w′(1) + c(0)w(1) = 0,
(4.4)

has a unique positive solution w0. Moreover, letting λ1[bw
q−1
0 ; c(0)] denote

the first eigenvalue of the linearized problem
{

− v′′ = λ[b|w0|q−1]v, 0 < t < 1,

v(0) = 0, v′(1) + c(0)v(1) = 0.
(4.5)

(4.4) implies that v = w0 is an eigenfunction corresponding to

λ1[bw
q−1
0 ; c(0)] = 1. (4.6)

Concerning (4.5), it is worth pointing out that, although 0 ≤ q < 1, the
spectral theory can be carried over; see, for example, a similar version of
Asakawa [5] by Ma and Chang [18].

We set

Dδ = {w ∈ Y : ||w − w0||C1 ≤ δ}
and extend F̃ to γ = 0 by

F̃0(w) = F̃ (0, w) = b|w|q.
Lemma 4.2. There exists δ > 0 such that KF̃ : [0,∞) × Dδ → Y is compact
and continuous.

Proof. When 0 < q < 1, the same arguments used for p > 1 show that F̃
is continuous. Let q = 0 and let δ > 0 be such that w > 0 for all w ∈ Dδ.
Plainly, it suffices to show that KF̃ (γn, wn) → KF̃0(w) whenever γn → 0 and
wn → w in Y . Since w > 0 then γ−1

n wn → +∞ point wise in [0, 1]. Notice
(f3) with q = 0 implies limu→∞ f(x, u) = b, and subsequently

G(γ−1
n wn) → 0 in Lr(0, 1), ∀r ≥ 1.

Then

KF̃ (γn, wn) = KF̃0(wn) + KG(γ−1
n wn) → KF̃0(w)

in the Sobolev space H2,r, ∀r ≥ 1, and the result follows in a standard
way. �

Theorem 4.1. Let (f1), (f3) and (c1) hold. Then, there exists λ∗ > 0 such
that (1.1) has positive solutions for all λ ≥ λ∗. More precisely, there exists a
connected set of positive solutions of (1.1) bifurcating from infinity at λ∞ =
+∞.

Proof. By Lemma 4.2, degree theoretic arguments apply to S(γ,w) = w −
KF̃ (γ,w). Moreover, note that S0(w) = S(0, w) = w − KF̃0(w) is C1 on Dδ

and its Fréchet derivative S′
0(w0) is given by

S′
0(w0)v =

{
v − K′[qbwq−1

0 ]v, if 0 < q < 1
v, if q = 0.
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To estimate the first eigenvalue of the linear operator K′[qbwq−1
0 ], let us

consider the following
{ − (w0 + v)′′ = b(w0 + v)q,

(w0 + v)(0) = 0, (w0 + v)′(1) + c((w0 + v)(1))(w0 + v)(1) = 0,
(4.7)

and
{ − w′′

0 = bwq
0,

w0(0) = 0, w′
0(1) + c(w0(1))w0(1) = 0,

(4.8)

where v ∈ Y . Subtracting (4.7) with (4.8), we get
{ − v′′ = b(w0 + v)q − bwq

0,

v(0) = 0, v′(1) +
[
c((w0 + v)(1))(w0 + v)(1) − c(w0(1))w0(1)

]
= 0.

(4.9)

Since

[c(x)x]′ = c′(x)x + c(x) ≥ c(0),

we deduce that

c((w0+v)(1))(w0+v)(1) − c(w0(1))w0(1)=[c′(ξ)ξ+c(ξ)]v(1) (≥ c(0)v(1) )
(4.10)

for some ξ ∈ [
min{w0(1), (w0 + v)(1)},max{w0(1), (w0 + v)(1)}]. Because

b(w0 + v)q − bwq
0 = bqwq−1

0 v + ◦(||v||∞), as ||v||∞ → 0,

it follows that
{

− v′′ = bqwq−1
0 v,

v(0) = 0, v′(1) + [c′(ξ)ξ + c(ξ)]v(1) = 0,
(4.11)

which is equivalent to the operator equation

v = K′[bqwq−1
0 ]v. (4.12)

Combining this with the facts that Hc(s, t) is decreasing in c ∈ [0,∞) for
(t, s) ∈ (0, 1) × (0, 1) and λ1[bqw

q−1
0 , β] is increasing in β, it concludes that

K′
c′(ξ)ξ+c(ξ)[qbw

q−1
0 ] < K′

c(0)[qbw
q−1
0 ]

and accordingly

λ1(K′[qbwq−1
0 ; c′(ξ)ξ + c(ξ)]) > λ1(K′[bwq−1

0 ; c(0)]) = 1.

Therefore, (4.6) implies that all the characteristic values of I − S′
0(w0) are

greater than 1. Therefore, we infer that

deg(S0,Dδ, 0) = 1, q ∈ [0, 1).

By continuation, we deduce that there exists a connected subset Γ of solutions
of S(γ,w) = 0 (γ > 0), such that (0, w0) ∈ Γ̄. Moreover, there exists γ0 > 0
such that these solutions are positive provided 0 < γ ≤ γ0. By the rescaling
λ = γq−1, u = w/γ, Γ is transformed into a connected subset Σ∞ of solutions
of (1.1). These solutions are indeed positive for all λ > λ∗ := γq−1

0 , and
according to (4.1), Σ∞ bifurcates from infinity for λ∞ = +∞. �
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