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Strong Diameter Two Property and
Convex Combinations of Slices Reaching
the Unit Sphere
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Abstract. We characterise the class of those Banach spaces in which
every convex combination of slices of the unit ball intersects the unit
sphere as the class of those spaces in which every convex combination of
slices of the unit ball contains two points at distance exactly two. Also,
we study when the convex combinations of slices of the unit ball are rel-
atively open or have non-empty relative interior for different topologies,
studying the relationship between them and studying these properties
for L∞-spaces and preduals of L1-spaces.
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1. Introduction

It is a well-known result in geometry of Banach spaces that every non-empty
relatively weakly open subset of the unit ball contains a convex combination
of slices of the unit ball (this result is sometimes known as Bourgain’s lemma,
cf. [6, Lemma II.1], for instance). Although the reverse inclusion does not
hold in general (cf. [6, Remark IV.5]), it may even happen for some Banach
spaces that every convex combination of slices of the unit ball is relatively
weakly open. The main result of [2] shows that this is the case of C(K) when
the compact space K is scattered. To study this phenomenon, the following
properties were introduced in [2, Section 3]:
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(FEDER) Junta de Andalućıa Grant A-FQM-484-UGR18 and Junta de Andalućıa/FEDER
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(W1) Every convex combination of slices of the unit ball is relatively weakly
open.

(W2) The relative weak interior of each convex combination of slices of the
unit ball is not empty.

(CS) Every convex combination of slices of the unit ball intersects the unit
sphere.

These properties had been already studied implicitly in [6], as fundamen-
tal tools to the study of topological properties around the Radon–Nikodým
property in Banach spaces, as regularity and huskability.

Notice that (W1) implies (W2) which in turn implies (CS) for infinite-
dimensional spaces. For finite-dimensional spaces, (CS) never happens while
(W2) always does (see Proposition 2.1). In [2, Section 3], the authors wonder
which class of spaces enjoy the above properties and if such spaces have any
relation with the diameter two properties.

The main aim of this note is to clarify the relations between the above
properties joint with similar properties in the setting of the norm topology
and on the weak-star topology, and to show that there are strong relations
with the big slice phenomena, giving an affirmative answer to the question
above.

Before describing the content of the paper, let us introduce the anal-
ogous properties of (W1), (W2), and (CS) for the norm topology and the
weak-star topology. Given a Banach space X, consider the following proper-
ties:
(N1) Every convex combination of slices of BX is relatively norm open.
(N2) The relative norm interior of each convex combination of slices of BX

is not empty.
Note that an analogous norm topology version of (CS) is the same than the
weak version, as weak-open slices and norm-open slices are the same.

Additionally, if X = Y ∗ is a dual Banach space, we define:
(W∗1) Every convex combination of weak*-slices of BY ∗ is relatively weakly

star open.
(W∗2) The relative weakly star interior of each convex combination of

weak*-slices of BY ∗ is not empty.
(W∗-CS) Every convex combination of weak*-slices of BY ∗ intersects SY ∗ .

We pass now to shortly describe the content of the manuscript.
In Sect. 2, we study the properties (N1) and (N2) and their relations

with the weak versions, clarifying the relation between all these properties.
Among other results, we show that (N2) is satisfied by all Banach spaces and
that strictly convex spaces always satisfy (N1) but always fail (CS).

The aim of Sect. 3 is to characterise the property (CS) in terms of a
“diameter two property” kind condition, which gives solution to some ques-
tions in [2]. Indeed, we show that a Banach space X has the strong diameter
two property (i.e., every convex combination of slices of the unit ball has
diameter two) if, and only if, every convex combination of slices of the unit
ball C contains points arbitrarily close to the unit sphere of the space. The
ideas involving the proof allow us to show that a Banach space X enjoys the
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property (CS) if, and only if, every convex combination of slices of the unit
ball has diameter two and the diameter is attained. We also give an example
of a Banach space with the strong diameter two property but failing (CS).
Besides, we show that the property (CS) is preserved by taking projective
tensor product from both factors but not from only one of them.

Finally, we show in Sect. 4 that the properties (W∗1) and (W∗2) are
equivalent for L∞(μ)-spaces and that they are indeed equivalent to the fact
that the localizable measure μ is purely atomic. We deduce that if a predual
of a L1(μ) space has (W2), then the measure μ has to be purely atomic.

Notation: We will only consider real Banach spaces. Given a Banach space
X, we denote the closed unit ball (respectively, the unit sphere) by BX (re-
spectively SX). We also denote by X∗ the topological dual of X. Given two
Banach spaces X and Y , L(X,Y ) stands for space of all bounded linear op-
erators from X to Y , and X ̂⊗πY is the projective tensor product of X and
Y (see [10] for a detailed treatment of tensor products). Given a subset C of
X, ext (C) stands for the set of extreme points of C. By a slice of BX , we
mean a set of the following form

S(BX , f, α) := {x ∈ BX : f(x) > ‖f‖ − α},

where f ∈ X∗\{0} and α > 0. If X = Y ∗ is a dual Banach space and f
actually belongs to the predual Y of X, then the previous set is called a
weak-star slice. A convex combination of slices of BX is a set of the following
form

n
∑

i=1

λiSi,

where λ1, . . . , λn ∈ [0, 1] satisfy that
∑n

i=1 λi = 1 and each Si is a slice of
BX . In the case that X is a dual space, we consider the analogous concept
of convex combination of weak-star slices of BX .

A Banach space X has the strong diameter two property (SD2P in short)
if every convex combination of slices of the unit ball has diameter two. In the
case that X is a dual space, we say that X has the weak*-strong diameter
two property (weak*-SD2P in short) if every convex combination of weak-star
slices of BX has diameter two. We refer the reader to [3–5] and references
therein for background about diameter two properties.

2. The Relation Between the Norm and the Weak Topology
Versions

The following is the general diagram of implications between the proper-
ties for the norm and for the weak topology for infinite-dimensional Banach
spaces:
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(W1) (W2) (CS)

(N1) (N2)

(3)

(1) (2)

(4)
(5)

(2.1)

Let us show that none of the reverse implications hold. Indeed, the fact
that the reverse implications of (1) and (2) do not hold was proved in [7,
Corollary 2.5 and Corollary 2.9] (a counterexample for (1) is c0 ⊕1 c0 whereas
one for (2) is c0 ⊕∞ �2). In order to prove the corresponding statements for
the implications (3), (4), and (5), let us begin with the following proposition,
from which an easy consequence is that every Banach space satisfies (N2).

Proposition 2.1. Let X be a Banach space and let C :=
∑n

i=1 λiSi be a convex
combination of slices of BX . Then

C ∩ int(BX) =
n

∑

i=1

λi(Si ∩ int(BX)).

In particular, every point of C ∩ int(BX) is norm interior to C.

Proof. The inclusion
∑n

i=1 λi(Si ∩ int(BX)) ⊆ C ∩ int(BX) is clear from an
easy convexity argument. To prove the reverse inclusion, let x ∈ C ∩ int(BX),
so x =

∑n
i=1 λixi for suitable xi ∈ Si for every i ∈ {1, . . . , n}. Since each Si

is a relative norm-open subset of BX , we can find ε > 0 small enough so that
B(xi, 2ε) ∩ BX ⊆ Si holds for every i ∈ {1, . . . , n}. Define

zi := (1 − ε)xi + εx,

which satisfies that
∑n

i=1 λizi = x. It remains to prove that, given i ∈
{1, . . . , n}, zi ∈ Si ∩ int(BX), for which we will prove that zi ∈ B(xi, 2ε) ∩
int(BX). Given i ∈ {1, . . . , n}, we get that

‖zi − xi‖ = ‖ε(xi + x)‖ � ε‖xi + x‖ � 2ε,

which proves that zi ∈ B(xi, 2ε). Moreover,

‖zi‖ � (1 − ε)‖xi‖ + ε‖x‖ � (1 − ε) + ε‖x‖ < (1 − ε) + ε = 1,

where the last inequality is strict because ‖x‖ < 1 by assumption. This proves
that zi ∈ int(BX), which finishes the proof. �

An immediate consequence of the previous proposition is the following
corollary.

Corollary 2.2. Every Banach space X has the property (N2).

In view of the previous corollary, every Banach space X failing (W2)
(e.g., C[0, 1] by [7, Theorem 3.1]) proves that the converse of (4) does not
hold.

For the converse of (3), the following proposition provides a large class
of counterexamples.
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Proposition 2.3. Let X be a strictly convex Banach space. Then, X satisfies
(N1) but fails (CS).

Proof. Let us begin by proving that X fails (CS). Consider two disjoint slices
S1, S2 of BX and C := S1+S2

2 , and we claim that C ∩SX = ∅. Indeed, if there
exists z ∈ C ∩ SX , then there exist x ∈ S1, y ∈ S2 such that z = x+y

2 . Since
z ∈ SX is an extreme point, then x = y = z, which is impossible because S1

and S2 were taken to be disjoint. This proves that C ∩ SX = ∅.
To prove that X satisfies (N1), pick a convex combination of slices

C :=
∑n

i=1 λiSi of BX and x ∈ C, and let us prove that x is an interior point
of C. Now, we have two possibilities:
(a). If ‖x‖ < 1, then x is a norm-interior point of C by Proposition 2.1.
(b). If ‖x‖ = 1 then, since x is an extreme point, we conclude as before that

x ∈ ⋂n
i=1 Si ⊆ C. This again proves that x is a norm-interior point,

since
⋂n

i=1 Si is a relative norm-open set. �

To prove that the converse of (5) in (2.1) does not hold, note that an
easier reformulation of [1, Proposition 3.3 (b)] is that if ext (BX) is not norm
closed, then X fails (W1). The following proposition shows that much more
can be said.

Proposition 2.4. Let X be a Banach space. Then:
(1) If X has (W1), then ext (BX) is weakly closed in BX .
(2) If X is infinite-dimensional and has (W2), then ext (BX) can not be

weakly dense.

Proof. To prove (1), consider a net {xs} of extreme points which is weakly
convergent to some x ∈ BX . We claim that x is an extreme point of BX . In
fact, assume by contradiction the existence of a pair of points y, z ∈ BX such
that x = y+z

2 . By the Hahn–Banach theorem, we can find a pair of slices
S1, S2 of BX satisfying that y ∈ S1, z ∈ S2 and S1 ∩S2 = ∅. Since C = S1+S2

2

is weakly open, we can find an index s such that xs ∈ S1+S2
2 . Since the slices

S1 and S2 are disjoint, there are two different elements ys ∈ S1, zs ∈ S2 such
that xs = ys+zs

2 , getting a contradiction with the fact that xs is an extreme
point. Consequently, x ∈ ext (BX), as desired.

For the proof of (2), notice that Proposition 2.3 implies that X is not
strictly convex, so there exists z ∈ SX which is not an extreme point. Now,
an adaptation of the proof of (1) does the trick. �

Note that similar arguments allow us to derive analogous consequences
for the rest of properties.

Proposition 2.5. Let X be a Banach space. Then,
(1) If X has (N1) then ext (BX) is norm closed.

Moreover, if X is a dual Banach space, then:
(2) If X has (W∗1) then ext (BX) is weakly star closed.
(3) If X has (W∗2) then ext (BX) is not weakly star dense in BX .
(4) If X has (W∗-CS) then X is not strictly convex.
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Example 2.6. Consider X = C[0, 1]. It is obvious that ext (BX) = {±1} is
norm-compact, but X fails (W2) by [7, Theorem 3.1]. This shows that the
converse of (1) and (2) in Proposition 2.4 does not hold.

It is well known that in every Banach space X with dim(X) � 3, there
exists a closed, convex and bounded subset with a non-empty interior C so
that ext (BX) is not closed. Since such C can be seen as an equivalent unit
ball in the space X, we get the following corollary.

Corollary 2.7. Let X be a Banach space such that dim(X) � 3. Then, there
exists an equivalent norm on X failing the property (N1) (and thus failing
(W1)).

In particular, the previous corollary exhibits a large class of examples
which show that the reverse of (5) in (2.1) does not hold.

3. Characterisation of (CS) and Interrelation with the SD2P

In [2, Section 3], it is stated to be unclear whether there is any connection
between having weakly open convex combinations of slices and the diameter
two properties. The following argument shows that the strong diameter two
property is a necessary condition.

Theorem 3.1. Let X be a Banach space. The following assertions are equiv-
alent:
(1) X has the strong diameter two property.
(2) For every convex combination of slices C of BX and every ε > 0, there

exists x ∈ C such that ‖x‖ > 1 − ε.

Proof. (1) ⇒ (2) is obvious, so let us prove (2) ⇒ (1). To this end, pick
a convex combination of slices C :=

∑n
i=1 S(BX , fi, α) of BX and ε > 0.

Define

D :=
1
2

(

n
∑

i=1

λiS(BX , fi, α) +
n

∑

i=1

λiS(BX ,−fi, α)

)

,

which is also a convex combination of slices of BX . Choose

x =
1
2

(

n
∑

i=1

λixi +
n

∑

i=1

λiyi

)

∈ D

with ‖x‖ > 1−ε. Notice that, by the definition of D, we get that −∑n
i=1 λiyi,

∑n
i=1 λixi ∈ C. Consequently,

diam (C) �
∥

∥

∥

∥

∥

n
∑

i=1

λixi −
(

−
n

∑

i=1

λiyi

)∥

∥

∥

∥

∥

= 2‖x‖ > 2(1 − ε).

Since ε > 0 is arbitrary, we get that diam (C) = 2. �

Note that the same proof gives a weak-star version of the previous the-
orem.
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Proposition 3.2. Let X be a Banach space. The following assertions are equiv-
alent:
(1) X∗ has the weak*-strong diameter two property.
(2) For every convex combination of weak*-slices C of BX∗ and every ε > 0,

there exists x∗ ∈ C such that ‖x∗‖ > 1 − ε.

Theorem 3.1 shows that the property (CS) implies the SD2P. The con-
verse, however, is not longer true.

Example 3.3. There exist Banach spaces X with the SD2P failing (CS).

Proof. An example of a strictly convex space being a non-reflexive
M-embedded Banach space (and hence with the SD2P by [3, Theorem 4.10])
X is exhibited in [8, p. 168]. From Proposition 2.3, this Banach space fails
(CS). �

In [2, Question (iii)] it is asked which Banach spaces verify (CS). A
slight modification in the proof of Theorem 3.1 yields a characterisation of
those spaces in terms of the diameter of convex combination of slices.

Theorem 3.4. Let X be a Banach space. The following are equivalent:
(1) X satisfies the property (CS).
(2) For every convex combination of slices C of BX there are x, y ∈ C such

that ‖x − y‖ = 2.

Proof. (2) implies (1) is clear. For (1) implies (2), consider a convex combi-
nation of slices of BX given by C :=

∑n
i=1 S(BX , fi, α). Define

D :=
1
2

(

n
∑

i=1

λiS(BX , fi, α) +
n

∑

i=1

λiS(BX ,−fi, α)

)

,

which is also a convex combination of slices of BX . Choose, from the assump-
tion,

x0 =
1
2

(

n
∑

i=1

λixi +
n

∑

i=1

λiyi

)

∈ D ∩ SX .

Now x :=
∑n

i=1 λixi ∈ C, y := −∑n
i=1 λiyi ∈ C and ‖x − y‖ = 2‖x0‖ =

2. �

As well as happen with Theorem 3.1, a weak-star version of the previous
theorem can be stated for (W∗-CS).

Proposition 3.5. Let X be a Banach space. The following are equivalent:
(1) X∗ satisfies the property (W∗-CS).
(2) For every convex combination of weak-star slices C of BX there are

x∗, y∗ ∈ C satisfying that ‖x∗ − y∗‖ = 2.

Let us conclude with some consequences related to preservance of the
property (CS) by taking projective tensor products. The next proposition
follows similar ideas to the ones of [4, Theorem 3.5].
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Proposition 3.6. Let X and Y be two Banach spaces with the property (CS).
Then, the space X ̂⊗πY also satisfies (CS).

Proof. Consider C :=
∑n

i=1 S(BX ̂⊗πY , Ti, α) to be a convex combination of
slices of BX ̂⊗πY , where Ti ∈ (X ̂⊗πY )∗ ≡ L(X,Y ∗) (we refer to [10, Chap-
ter 2]), and let us prove that C ∩ SX ̂⊗πY �= ∅. Indeed, consider ui ⊗ vi ∈
S(BX ̂⊗πY , Ti, α) ∩ (SX ⊗ SY ) for all i ∈ {1, . . . , n}. Now

ui ⊗ vi ∈ S(BX ̂⊗πY , Ti, α) ⇔ Ti(ui)(vi) > 1 − α ⇔ ui ∈ S(BX , vi ◦ Ti, α).

By assumption, there exists an element
∑n

i=1 λixi ∈ ∑n
i=1 λiS(BX , vi ◦Ti, α)

whose norm is 1. By the Hahn–Banach theorem, we can find a functional
x∗ ∈ SX∗ such that x∗(xi) = 1 holds for all i ∈ {1, . . . , n}. It is obvious that
∑n

i=1 λixi⊗vi ∈ C. Now, by the same procedure we get elements y1, . . . , yn ∈
BY and a functional y∗ ∈ SY ∗ such that y∗(yi) = 1 holds for every i ∈
{1, . . . , n} and such that

∑n
i=1 λixi ⊗ yi ∈ C. Now

∥

∥

∥

∥

∥

n
∑

i=1

λixi ⊗ yi

∥

∥

∥

∥

∥

�
n

∑

i=1

λix
∗(xi)y∗(yi) = 1.

Consequently, C ∩ SX ̂⊗πY �= ∅ as desired. �

Remark 3.7. The assumption of the property on both factors is necessary.
In fact, consider X = �∞ and Y = �3p for some 2 < p < ∞. Note that every
convex combination of slices of BX intersects the unit sphere [2, Example
3.3]. However, this is no longer true for X ̂⊗πY because such space even fails
the strong diameter two property [9, Corollary 3.9], so Theorem 3.1 yields
the existence of a convex combination of slices C in BX ̂⊗πY and a radius
0 < r < 1 such that C ⊆ rBX ̂⊗πY .

4. The Weak-Star Properties for L∞(µ)-Spaces

Note that [7, Theorem 3.1] proves that, given a compact Hausdorff topological
space K, then if C(K) has the property (W2) then K admits an atomless
measure. Our aim is to generalise this result to the context of L1-preduals.
To do so, we will analyse the properties (W∗1) and (W∗2) in L∞(μ) spaces.
More precisely, let (Ω,Σ, μ) be a localizable measure space. We wonder when
L∞(μ) = L1(μ)∗ satisfies that every convex combination of weak-star slices
of BL∞(μ) is a weak-star open subset of BL∞(μ). Let us state the following
result, which gives a complete answer to the previous question.

Theorem 4.1. Let (Ω,Σ, μ) be a localizable measure space. The following as-
sertions are equivalent:
(1) L∞(μ) has (W∗1).
(2) L∞(μ) has (W∗2).
(3) μ is purely atomic.

To prove Theorem 4.1, we will need several preliminary results. We will
start with a pair of results which will provide the in the proof of (2) ⇒ (3)
in Theorem 4.1.
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Lemma 4.2. Let (Ω,Σ, μ) be a finite, positive and atomless measure space.
Then, there exists a convex combination of weak-star slices of BL∞(μ) which
does not contain any weak-star interior point. In other words, if μ is not
purely atomic, then L∞(μ) fails (W∗2).

Proof. The proof is an adaptation of that of [7, Theorem 3.1]. We will assume
with no loss of generality that μ(Ω) = 1. Since μ does not contain any atom,
then we can find three disjoint measurable sets A,B,C ∈ Σ such that A ∪
B ∪ C = Ω and such that μ(A) = μ(B) = μ(C) = 1

3 . Using the previous sets
we define the following functions

f1 := χA + χB − χC , f2 := χA − χB − χC .

It is clear that f1, f2 ∈ L1(μ) are one-norm functions. Pick 0 < ε < 1
12 and

define

S1 = S(BL∞(μ), f1, ε
2), S2 = S(BL∞(μ), f2, ε

2).

Define T := S1+S2
2 . We will prove that T does not have interior points. To

this end, we start by giving a necessary condition for an element of BL∞(μ)

to belong to T . For this we introduce a bit of notation. For a function u ∈
BL∞(μ), we define the following sets:

Bu
1 := {t ∈ B : u(t) � 1 − ε}, Bu

−1 := {t ∈ B : u(t) � −1 + ε},

Bu
0 := {t ∈ B : |u(t)| � ε}.

Claim. If u ∈ T , then μ(Bu
0 ) � 2ε.

Indeed, given u ∈ T then u = x+y
2 for suitable x ∈ S1 and y ∈ S2. We claim

that μ(Bx
1 ) < ε. Indeed, notice that

1 − ε2 < x(f1) =
∫

Ω

xf1 dμ =
∫

A

xdμ +
∫

Bx
1

xdμ +
∫

B\Bx
1

xdμ −
∫

C

xdμ

� 1 − μ(Bx
1 ) + (1 − ε)μ(Bx

1 ) = 1 − εμ(Bx
1 ),

since |x| � 1 on Ω\Bx
1 and x(t) � 1 − ε on Bx

1 by definition. The previous
inequality implies that μ(Bx

1 ) < ε, as desired. Similar computations also
proves that μ(By

−1) < ε. Moreover, notice that (B\Bx
1 ) ∩ (B\By

−1) ⊆ B\Bu
0

or, equivalently, Bu
0 ⊆ Bx

1 ∪ By
−1. From here the claim easily follows.

Now, using the previous claim, we will prove that T does not have any
weak-star interior point. Pick z ∈ T , consider a weak-star neighbourhood U
of z and let us find an element u ∈ U\T . Since U is weak-star open, we can
assume that U is of the form

U =
{

u ∈ BL∞(μ) :
∣

∣

∣

∣

∫

Ω

(u − z)ϕi dμ

∣

∣

∣

∣

< γ, i = 1, . . . , n

}

for suitable n ∈ N, γ > 0 and ϕ1, . . . , ϕn ∈ SL1(μ). To find an element u ∈
U\T , define the sets

E := A ∪ C ∪ Bz
0 and D := B\Bz

0 = B \ E = Ω\E.

By [7, Lemma 3.2] and using an application of Hahn decomposition theorem
similar to the one of the proof of [7, Theorem 3.1], we can find two disjoint
sets D1,D2 ∈ Σ such that D1 ∪ D2 = D and such that
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∣

∣

∣

∣

∫

D1

ϕidμ −
∫

D2

ϕidμ

∣

∣

∣

∣

< δ ∀i ∈ {1, . . . , n}, (4.1)

for 0 < δ < min{ γ
3(1−ε) ,

1
6 − 2ε}. Note that we can assume that μ(D1) > 0

and μ(D2) > 0. Moreover, we can find two sets ̂D1 ⊆ D1 and ̂D2 ⊆ D2 such
that 0 < μ(̂Di) < δ for i = 1, 2. Finally, define u as follows

u(t) :=

⎧

⎨

⎩

z(t) + 1 − ε if t ∈ D1\̂D1,

z(t) − 1 + ε if t ∈ D2\̂D2,
z(t) otherwise.

Finally, let us show that u ∈ U\T . It is clear that u ∈ BL∞(μ) since D =
B\Bz

0 = {t ∈ B : |z(t)| < ε}. Let us prove that u ∈ U . To this end, fix
i ∈ {1, . . . , n}. Then,

∫

ϕi(u − z) dμ =
∫

E\((D1\̂D1)∪(D2\̂D2))

(u − z)ϕidμ

+
∫

D1\̂D1

(u − z)ϕidμ +
∫

D2\̂D2

(u − z)ϕidμ.

Note that the first integral is 0 because u = z on E\((D1\̂D1) ∪ (D2\̂D2)).
On the other hand, u − z � 1 − ε on D1\̂D1 as well as u − z � −1 + ε

on D2\̂D2. Consequently, the remaining two summands can be estimated as
follows

∫

Ω

ϕi(u − z) dμ � (1 − ε)

(

∫

D1\̂D1

ϕidμ −
∫

D2\̂D2

ϕidμ

)

� (1 − ε)
(∫

D1

ϕidμ −
∫

D2

ϕidμ + μ(̂D1) + μ(̂D2)
)

< 3(1 − ε)δ < γ.

Therefore, u ∈ U . To prove that u /∈ T , pick t ∈ (D1\̂D1) ∪ (D2\̂D2) and
notice that

|u(t)| � 1 − ε − |z(t)| > 1 − 2ε > ε,

so t ∈ Bu
0 , which proves that (D1\̂D1) ∪ (D2\̂D2) ⊆ Bu

0 . Consequently, we
get

μ(Bu
0 ) � μ(D1) + μ(D2) − μ(̂D1) − μ(̂D2)

� μ(D) − 2δ = μ(B) − μ(Bz
0) − 2δ

>
1
3

− 2ε − 2δ > 2ε,

where we have used that μ(Bz
0) < 2ε since z ∈ T . Consequently, μ(Bu

0 ) � 2ε
and, according to the claim, u does not belong to T as desired. �

Our aim is now to remove the finiteness assumption from the previous
lemma. To do so, we need the following proposition, which can be seen as a
weak-star version of [7, Proposition 2.7].
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Lemma 4.3. Let X and Y be two Banach spaces and let Z := X ⊕1 Y . If
Z∗ = X∗ ⊕∞ Y ∗ has (W∗2), then X∗ and Y ∗ have (W∗2).

Proof. The proof will be an adaptation of that of [7, Proposition 2.7]. We
will only prove that X∗ has (W∗2). Let C :=

∑n
i=1 λiS(BX∗ , xi, αi) be a

convex combination of w∗-slices of BX∗ , for suitable x1, . . . , xn ∈ SX , and let
x∗ ∈ C. Define

D :=
n

∑

i=1

λiS(BZ∗ , (xi, 0), αi),

which is clearly a convex combination of w∗-slices of BZ∗ . Moreover, it is clear
that (x∗, 0) ∈ D. Since Z∗ has (W∗2), it follows that there exists a weak-star
open subset W of BZ∗ such that (x∗, 0) ∈ W ⊆ D. Since finite-intersections
of weak-star slices are basis of the weak-star topology of BZ∗ we can assume,
with no loss of generality, that

W =
k

⋂

i=1

S(BZ∗ , (ai, bi), βi)

for suitable k ∈ N, ai ∈ X, bi ∈ Y such that ‖ai‖ + ‖bi‖ = 1 and βi > 0 for
every i ∈ {1, . . . , k}. Since (x∗, 0) ∈ W it follows that, given i ∈ {1, . . . , k},
then 1 − βi < x∗(ai) = (x∗, 0)(ai, bi) � ‖ai‖. Now, define

U :=
k

⋂

i=1

{f ∈ BX∗ : f(ai) > 1 − βi}.

It is clear that U is a weak-star open subset of BX∗ and that x∗ ∈ U . To
finish the proof, let us prove that U ⊆ C. To this end, choose u∗ ∈ U . From
the definition of U and W it follows that (u∗, 0) ∈ W . Since W ⊆ D then
we can find, for every i ∈ {1, . . . , n}, an element (a∗

i , b
∗
i ) ∈ S(BZ∗ , (xi, 0), αi)

such that

(u∗, 0) =
n

∑

i=1

λi(a∗
i , b

∗
i ).

This means that u∗ =
∑n

i=1 λia
∗
i . Furthermore, because of the definition of

the norm on Z∗, it follows that ‖a∗
i ‖ � 1. Finally, given i ∈ {1, . . . , n}, we

get

a∗
i (xi) = (a∗

i , b
∗
i )(xi, 0) > 1 − αi

because, by assumptions, (a∗
i , b

∗
i ) ∈ S(BZ∗ , (xi, 0), αi). This proves that u∗ =

∑n
i=1 λia

∗
i ∈ C, which in turn implies that U ⊆ C and finishes the proof. �

Now, we are ready to prove the following result.

Proposition 4.4. Let (Ω, σ, μ) be a localizable measure space. If μ is not purely
atomic, then L∞(μ) fails the property (W∗2).

Proof. Since μ is not purely atomic, we can find a measurable subset A ⊆
Ω such that 0 < μ(A) < ∞ so that μ|A is a non-atomic measure. Notice
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that L1(μ) = L1(μ|A) ⊕1 L1(μ|Ω\A) (via the surjective linear isometry f �−→
(fχA, fχΩ\A)). This raises the following decomposition

L∞(μ) = L∞(μ|A) ⊕∞ L∞(μ|Ω\A).

Since μ|A is a finite, positive and non-atomic measure, Lemma 4.2 implies
that L∞(μ|A) fails the property (W ∗2), so L∞(μ) fails the property (W ∗2)
by Lemma 4.3, as desired. �

In the purely atomic case, the conclusions are dramatically different.
The proof is based on [1, Theorem 5.2].

Proposition 4.5. Let I be a non-empty set. Then every convex combination
of weak-star slices of B�∞(I) is relatively weak*-open. In other words, �∞(I)
has property (W∗1).

Proof. Consider C :=
∑n

i=1 λiS(B�∞(I), fi, α), where λi > 0 with
∑n

i=1 λi =
1 and ‖fi‖ = 1.

Pick z =
∑n

i=1 λixi ∈ C and ε > 0 such that

〈xi, fi〉 > 1 − α + ε.

Since fi ∈ �1(I), we can find a finite set F ⊆ I such that
∑

t∈I\F |fi(t)| < ε
3

for every i ∈ {1, . . . , n}. By [1, Proposition 2.3] there is δ > 0 and contin-
uous functions φt,i := B(z(t), δ) ∩ [−1, 1] −→ [−1, 1] such that, for all u ∈
B(z(t), δ)∩ [−1, 1], we have that u =

∑n
i=1 λiφt,i(u) and |φt,i(u)−xi(t)| < ε

3 .
Define

U := {y ∈ B�∞(I) : |y(t) − z(t)| < δ, t ∈ F}.

For y ∈ U define yi(t) := y(t) for t /∈ F and yi(t) := φt,i(y(t)) for t ∈ F .
Then yi ∈ B�∞(I) and y =

∑n
i=1 λiyi. Now, we have that

〈yi, fi〉 �
∑

t∈F

fi(t)yi(t) − ε

3

=
∑

t∈F

fi(t)xi(t) +
∑

t∈F

fi(t)(yi(t) − xi(t)) − ε

3

� 〈xi, fi〉 − ε

3
− ε

3
− ε

3
> 1 − α,

which proves that yi ∈ S(B�∞(I), fi, α) and finishes the proof. �

Proof of Theorem 4.1. (1) ⇒ (2) is obvious, whereas (2) ⇒ (3) is Proposi-
tion 4.4 and (3) ⇒ (1) is Proposition 4.5. �

To get a consequence for L1 preduals, we will need the following propo-
sition, which connects (W2) in a Banach space with the property (W∗2) in
its bidual.

Proposition 4.6. Let X be a Banach space and assume that every convex
combination of slices of BX has a weakly interior point. Then, every convex
combination of weak-star slices of BX∗∗ contains some weak-star interior
point. In other words, if X has (W2), then X∗∗ has (W∗2).
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Proof. Consider C :=
∑n

i=1 λiS(BX∗∗ , fi, α) to be a convex combination of
weak-star slices in BX∗∗ . Pick 0 < δ < α and define D :=

∑n
i=1 λiS(BX , fi, δ).

By the assumption, we can find x ∈ D and a weakly star open subset O of
X∗∗ such that

x ∈ O ∩ BX ⊆ D.

Then

x ∈ O ∩ BX∗∗ ⊆ O ∩ BX
w∗

⊆ D
w∗

=
n

∑

i=1

λiS(BX∗∗ , fi, δ)
w∗

=
n

∑

i=1

λi{x∗∗ ∈ BX∗∗ : x∗∗(fi) � 1 − δ} ⊆ C,

so x ∈ C is a weakly star interior point, as desired. �

In [7, Theorem 3.1], it is proved that C(K) contains a convex combina-
tion of slices without any weak interior point whenever K admits an atomless
measure. Note that this result can be seen as a part of the following more
general result whose proof is an straightforward application of Proposition 4.6
and Theorem 4.1.

Theorem 4.7. Let X be a predual of L1, that is, X∗ = L1(μ). If every convex
combination of slices of BX contains some weak interior point, then μ is
purely atomic. In other words, if X has (W2), then μ is purely atomic.

Let us end with a brief discussion about the weak and weak-star versions
of the properties in dual Banach spaces. In general, the following diagram
holds:

(W∗1) (W∗2) (W∗-CS)

(W1) (W2) (CS)

(1) (2)

(3)\(4) (4.2)

The implications (1), (2), and (3) are obvious. Let us give an example showing
that (W∗1) does not imply (W2) (this is (4)), and so showing that (W∗1)
does not imply (W1) and (W∗2) does not imply (W2).

Example 4.8. X = �∞ has (W∗1) by Proposition 4.5. However, from the
identification �∞ = C(βN), we deduce that X fails (W2) since βN is not
scattered and we may use [7, Remark 3.1].

Let us now present some examples showing that the implications (1),
(2), and (3) in the diagram (4.2) do not reverse.

Example 4.9. Let us consider the following examples.
(a) �∞ ⊕1 �∞ fails (W∗1) by a weak star version of [7, Proposition 2.1].

However, c0⊕1c0 has (W2) by using [2, Theorem 2.4] and [7, Proposition
2.4]. Hence, (c0 ⊕1 c0)∗∗ = �∞ ⊕1 �∞ has (W∗2) by Proposition 4.6. This
shows that the reverse implication to (1) does not hold.
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(b) X = L∞[0, 1] as dual of L1[0, 1] has (W∗-CS) as it is the dual of a
Banach space with the Daugavet property and we may use [2, Example
3.4]. However, L∞[0, 1] fails (W∗2) by Theorem 4.1. This shows that (2)
does not reverse.

(c) Let X = L1[0, 1]∗∗. Then X fails (CS) since BX has strongly exposed
points. However, X has (W∗-CS) as it is the dual of a Banach space
with the Daugavet property, L∞[0, 1], and we may use [2, Example 3.4].
This shows that the reverse implication to (3) does not hold.

Acknowledgements

The authors are grateful to the anonymous referee for the valuable suggestions
which have improved the exposition of the paper.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Abrahamsen, T.A., Becerra Guerrero, J., Haller, R., Lima, V., Põldvere, M.:
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