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Curvature of C5 ⊕ C12-Manifolds

Salvatore de Candia and Maria Falcitelli

Abstract. The Chinea–Gonzalez class C5 ⊕ C12 consists of the almost
contact metric manifolds that are locally described as double-twisted

product manifolds I ×(λ1,λ2)
̂M , I ⊂ R being an open interval, ̂M a

Kähler manifold and λ1, λ2 smooth positive functions. In this article,
we investigate the behavior of the curvature of C5 ⊕C12-manifolds. Par-
ticular attention to the N(k)-nullity condition is given and some local
classification theorems in dimension 2n + 1 ≥ 5 are stated. This allows
us to classify C5 ⊕ C12-manifolds that are generalized Sasakian space
forms. In addition, we provide explicit examples of these spaces.
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1. Introduction

Double-twisted products play an interesting role in clarifying the interrela-
tion between almost Hermitian (a.H.) and almost contact metric (a.c.m.)
manifolds. In fact, the Chinea–Gonzalez class C1−5 ⊕C12 =

⊕

1≤i≤5Ci ⊕C12

consists of the a.c.m. manifolds that are, locally, double-twisted products
] − ε, ε[×(λ1,λ2)

̂M = (] − ε, ε[×̂M,ϕ, ξ, η, g(λ1,λ2)), ε > 0, (̂M, ̂J, ĝ) being
an a.H. manifold, λ1, λ2 : ] − ε, ε[×̂M → R smooth positive functions and
(ϕ, ξ, η, g(λ1,λ2)) the structure defined in (2.1). The class C5 ⊕ C12 is the
subclass of C1−5 ⊕ C12 consisting of the a.c.m. manifolds that are locally
realized as double-twisted products ] − ε, ε[×(λ1,λ2)

̂M , where (̂M, ̂J, ĝ) is a
Kähler manifold [9]. This points out the interrelation between Kähler and
C5 ⊕ C12-manifolds.

Relevant results involving the behavior of the curvature of Kähler man-
ifolds are well known [13,17].

In this article, we develop a systematic study of the curvature of C5 ⊕
C12-manifolds and obtain some classification theorems for those manifolds
that satisfy suitable curvature conditions. We also recall that, considering
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an a.c.m. manifold (M,ϕ, ξ, η, g) with fundamental 2-form Φ and Levi-Civita
connection ∇, the C5, C12 components of ∇Φ are determined by the codif-
ferential δη and the 1-form ∇ξη, respectively [6]. This allows to specify the
defining conditions for the manifolds which fall in the class C5 ⊕ C12 and in
its proper subclasses C5, C12.

Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold, with dimM = 2n + 1, and
put α = − δη

2n , V = ∇ξξ. For any vector fields X,Y , the “cosymplectic defect”
R(X,Y )◦ϕ−ϕ◦R(X,Y ), R denoting the curvature of ∇, depends on α, dα,
V and ∇V . In Sect. 3, we evaluate the cosymplectic defect and derive several
consequences, involving the Ricci and the ∗-Ricci tensors, also.

We put our attention to the (k, μ)-condition proving that, in the context
of C5 ⊕C12-manifolds, it is equivalent to the N(k)-condition. Considering an
N(k)-manifold of dimension 2n + 1 ≥ 5, the function k is expressed as a
combination of α, ξ(α) and divV . Several properties of N(k)-manifolds are
derived. In particular, we prove that a manifold with constant sectional cur-
vature k either is a C5-manifold and k < 0 or it is flat and falls in the class
C12. Moreover, suitable N(k)-spaces are locally isometric to a warped prod-
uct N ×λ N ′, N being a two-dimensional Riemannian manifold of Gaussian
curvature k and N ′ is endowed with an α-Sasakian structure.

Section 6 deals with C5 ⊕ C12-manifolds that are generalized Sasakian
(g.S.) space forms. These spaces are characterized as the N(k)-manifolds with
pointwise constant ϕ-sectional curvature, say c. Denoting by M2n+1(c, k),
n ≥ 2, a g.S. space form, we prove that the function c+α2 satisfies a suitable
differential equation. This allows us to state a classification theorem. More
precisely, if M2n+1(c, k) is a g.S. space form in the class C5 ⊕C12 and α = 0,
then either M is cosymplectic or it falls in the class C12 and c = 0. If α �= 0,
then either M is locally conformal to C12-manifolds that are g.S. space forms
with zero ϕ-sectional curvature or M is α-Kenmotsu and globally conformal
to a cosymplectic manifold with constant ϕ-sectional curvature.

Finally, in Sect. 7, for any n ≥ 2, we construct a family of C12-manifolds
M2n+1(0, k).

Throughout this article, all manifolds are assumed smooth and con-
nected.

2. Preliminaries

Given an almost Hermitian (a.H.) manifold (̂M, ̂J, ĝ), an open interval I ⊂
R and two smooth positive functions λ1, λ2 : I × ̂M → R, one considers
the almost contact metric (a.c.m.) structure (ϕ, ξ, η, g(λ1,λ2)) on the product
manifold I × ̂M , acting as

ϕ
(

a
∂

∂t
,X

)

= (0, ̂JX), η
(

a
∂

∂t
,X

)

= aλ1,

ξ =
1
λ1

( ∂

∂t
, 0

)

, g(λ1,λ2) = λ2
1π

∗
1(dt ⊗ dt) + λ2

2π
∗
2(ĝ),

(2.1)
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for any a ∈ F(I × ̂M),X ∈ Γ(T ̂M), π1 : I × ̂M → I, π2 : I × ̂M → ̂M denoting
the canonical projections. Note that g(λ1,λ2) is the double-twisted product of
the Euclidean metric g0 and ĝ [16]. The a.c.m. manifold I ×(λ1,λ2)

̂M = (I ×
̂M,ϕ, ξ, η, g(λ1,λ2)) is named the double-twisted product manifold of (I, g0)
and (̂M, ̂J, ĝ) by (λ1, λ2). If λ1 = 1, I ×(1,λ2)

̂M is denoted by I ×λ2
̂M

and is called the twisted product manifold of (I, g0) and (̂M, ̂J, ĝ) by λ2. If
λ2 = 1, the manifold I ×(λ1,1)

̂M is denoted by λ1I × ̂M . In the case that
λ1 is independent of the Euclidean coordinate t and λ2 only depends on t,
I ×(λ1,λ2)

̂M is called a double-warped product manifold, the metric g(λ1,λ2)

being just the double-warped product metric of g0 and ĝ by (λ1, λ2). If λ2

only depends on t, I ×λ2
̂M is said to be a warped product manifold.

Applying the theory developed in [6,9], we are able to specify the
Chinea–Gonzalez class of the mentioned manifolds. In particular, if dim ̂M =
2, then I ×(λ1,λ2)

̂M belongs to the class C5 ⊕C12. In the case that dim ̂M =
2n ≥ 4, ( ̂J, ĝ) is a Kähler structure and the function λ2 is constant on ̂M ,
then I×(λ1,λ2)

̂M is a C5⊕C12-manifold. Furthermore, if λ2 = 1, λ1I× ̂M falls
in the class C12. It is also known that any warped product manifold I ×λ2

̂M ,
where (̂M, ̂J, ĝ) is a Kähler manifold, belongs to the class C5 and is called
an α-Kenmotsu manifold, where α = ξ(log λ2). More generally, any double-
warped product manifold I×(λ1,λ2)

̂M , such that (̂M, ̂J, ĝ) is Kähler and both
the functions λ1, λ2 are non constant, is in the class C5 ⊕ C12\(C5 ∪ C12).
This shows that C5, C12 are proper subclasses of C5 ⊕ C12. Cosymplectic
manifolds set up the class C = C5 ∩ C12.

In Table 1, we list the defining conditions of any a.c.m. manifold (M,ϕ,
ξ, η, g) which falls in C5 ⊕ C12 or in its subclasses. These conditions are
formulated in terms of the covariant derivatives ∇ϕ, ∇η, ∇ denoting the Levi-
Civita connection of M . Note that, since ∇ξξ is the vector field g-associated
to the 1-form ∇ξη, the vanishing of ∇ξξ is equivalent to the condition that the
considered manifold is in the class C5, namely it is an α-Kenmotsu manifold.
Moreover, it is known that any C5 ⊕ C12-manifold satisfies

∇Xξ = α(X − η(X)ξ) + η(X)∇ξξ, X ∈ Γ(TM) (2.2)
dη = η ∧ ∇ξη, d(∇ξη) = −(α∇ξη + ∇ξ(∇ξη)) ∧ η, (2.3)

where dim M = 2n + 1 and α = − δη
2n . Furthermore, if dimM ≥ 5, the Lee

form of M is ω = −αη and it is closed. Applying (2.3), one has

dα = ξ(α)η + α∇ξη. (2.4)

In the sequel, given a C5⊕C12-manifold (M,ϕ, ξ, η, g) we will denote by
D, D⊥ the mutually orthogonal distributions associated with the subbundles
Kerη and span{ξ} of the tangent bundle TM , respectively. These distribu-
tions are both totally umbilical foliations. More precisely, H = −αξ|N is the
mean curvature vector field of any leaf (N, g′) of D, g′ being the metric in-
duced by g. Furthermore, (J = ϕ|TN

, g′) is a Kähler structure on N . For the
sake of simplicity, we will denote by V the vector field ∇ξξ, which represents
the mean curvature vector field of any integral curve of D⊥.
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Table 1. Defining conditions of some Chinea-Gonzalez
classes

Classes Defining conditions

C5 ⊕ C12 (∇Xϕ)Y = α(g(ϕX, Y )ξ − η(Y )ϕX)
−η(X)((∇ξη)ϕY ξ + η(Y )ϕ(∇ξξ))

C5 (∇Xϕ)Y = α(g(ϕX, Y )ξ − η(Y )ϕX)
C12 (∇Xϕ)Y = −η(X)((∇ξη)ϕY ξ + η(Y )ϕ(∇ξξ))
C ∇ϕ = 0

Applying the main results in [9,16], one obtains a local description of a
C5 ⊕ C12-manifold (M,ϕ, ξ, η, g). More precisely, for any point x ∈ M , there
exist an open neighborhood U of x, ε > 0, a Riemannian manifold (F, ĝ), two
smooth positive functions λ1, λ2 : ] − ε, ε[×F → R and an isometry f : (] −
ε, ε[×F, g(λ1,λ2)) → (U, g|U ) such that the canonical foliations of the product
manifold correspond to the distributions D, D⊥. It follows that f∗( 1

λ1

∂
∂t ) =

ξ|U and, for any t ∈] − ε, ε[, ft(F ) is a leaf of D, where ft = f(t, ·). Note
that there exists t0 ∈]− ε, ε[ such that ĝ = f∗

t0(g|U ). Furthermore, considering
the Kähler structure ( ̂J = (f−1

∗ ◦ ϕ ◦ f∗)|TF
, ĝ) on F and the corresponding

a.c.m. manifold ] − ε, ε[×(λ1,λ2)F defined as in (2.1), then the map f : ] −
ε, ε[×(λ1,λ2)F → (U,ϕ|U , ξ|U , η|U , g|U ) is an almost contact isometry.

Finally, if (M,ϕ, ξ, η, g) is a C12-manifold, then D is a totally geodesic
foliation. By [16], it follows that λ2 = 1 so that M is, locally, realized as the
a.c.m. manifold λ] − ε, ε[×F , F being a Kähler manifold.

3. Some Curvature Relations

In this section, we focus on the main properties of the curvature R of the
Levi-Civita connection ∇ of a C5 ⊕ C12-manifold (M,ϕ, ξ, η, g), R(X,Y ) =
[∇X ,∇Y ] − ∇[X,Y ]. For the Riemannian curvature, we adopt the convention
R(X,Y,Z,W ) = g(R(Z,W, Y ),X) = −g(R(X,Y,Z),W ). This allows us to
obtain an explicit expression of the cosymplectic defect, namely the (0, 4)-
tensor field Λ acting as

Λ(X,Y,Z,W ) = R(X,Y,Z,W ) − R(X,Y, ϕZ, ϕW ).

We also state some properties of the Ricci tensor ρ and the ∗-Ricci tensor
ρ∗ and evaluate the mixed sectional curvature, denoted by K(X, ξ), for any
unit vector X orthogonal to ξ.

Proposition 3.1. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold. For any vector
fields X,Y,Z on M one has:

R(X,Y )ϕZ = ϕ(R(X,Y )Z) + α(αg(ϕY,Z) + η(Y )g(ϕV,Z))X
−α(αg(ϕX,Z) + η(X)g(ϕV,Z))Y
+(Y (α)η(Z) + α2g(Y,Z) + αη(Y )g(V,Z))ϕX

−(X(α)η(Z) + α2g(X,Z) + αη(X)g(V,Z))ϕY
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+α(η(X)g(ϕY,Z) − η(Y )g(ϕX,Z))V
+(η(X)(αg(Y,Z) − η(Z)g(V, Y )) − η(Y )(αg(X,Z)
−η(Z)g(V,X)))ϕV

+η(Z)(η(X)∇Y ϕV − η(Y )∇XϕV )
+(X(α)g(ϕY,Z) − Y (α)g(ϕX,Z)
+g(ϕV,Z)(η(X)g(V, Y ) − η(Y )g(V,X))
−η(X)g(∇Y ϕV,Z) + η(Y )g(∇XϕV,Z))ξ.

Proof. Since M is a C5 ⊕ C12-manifold, for any X,Y ∈ Γ(TM) one has

(∇Xϕ)Y = α(g(ϕX, Y )ξ − η(Y )ϕX) − η(X)(g(V, ϕY )ξ + η(Y )ϕV ).
(3.1)

Let X,Y,Z be vector fields on M . By direct calculus, applying (2.2), (3.1),
we have

R(X,Y )ϕZ =ϕ(R(X,Y )Z)+∇X((∇Y ϕ)Z) − ∇Y ((∇Xϕ)Z) − (∇[X,Y ]ϕ)Z

+ (∇Xϕ)(∇Y Z) − (∇Y ϕ)(∇XZ)

=ϕ(R(X,Y )Z) − 2dη(X,Y )(η(Z)ϕV − g(ϕV,Z)ξ)

− αη(Z)(∇XϕY − ∇Y ϕX − ϕ[X,Y ])

+ X(α)(g(ϕY,Z)ξ−η(Z)ϕY ) − Y (α)(g(ϕX,Z)ξ − η(Z)ϕX)

+ α2(g(ϕY,Z)(X − η(X)ξ) − g(ϕX,Z)(Y − η(Y )ξ))

+ α(η(X)g(ϕY,Z) − η(Y )g(ϕX,Z))V

+ η(Z)(η(X)∇Y ϕV − η(Y )∇XϕV )

+ αg(ϕV,Z)(η(Y )X − η(X)Y )

− (∇Xη)Z(αϕY + η(Y )ϕV ) + (∇Y η)Z(αϕX + η(X)ϕV )

+ (α(g(∇XϕY,Z) − g(∇Y ϕX,Z) − g(ϕ[X,Y ], Z))

+ η(Y )g(∇XϕV,Z) − η(X)g(∇Y ϕV,Z))ξ.

(3.2)

By (3.1) we also have

∇XϕY − ∇Y ϕX = ϕ[X,Y ] + (∇Xϕ)Y − (∇Y ϕ)X

= ϕ[X,Y ] + α(η(X)ϕY − η(Y )ϕX)

+ (2αg(ϕX, Y ) + η(X)g(ϕV, Y ) − η(Y )g(ϕV,X))ξ.

Then, substituting into (3.2) and applying (2.2), (2.3), one obtains the state-
ment. �

Corollary 3.1. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold such that dim M =
2n + 1. The following properties hold:
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(i) For any X,Y ∈ Γ(TM), we have

R(X,Y )ξ = X(α)(Y − η(Y )ξ) − Y (α)(X − η(X)ξ) + α2(η(X)Y − η(Y )X)

+ (η(X)g(V, Y ) − η(Y )g(V,X))(V − αξ)

− η(X)∇Y V + η(Y )∇XV

= X(α)(Y − η(Y )ξ) − Y (α)(X − η(X)ξ)

+ η(X)(R(ξ, Y )ξ − ξ(α)Y ) − η(Y )(R(ξ,X)ξ − ξ(a)X).

(ii) For any unit vector X orthogonal to ξ, one has

K(X, ξ) = −(ξ(α) + α2) − g(V,X)2 + g(∇XV,X).

(iii) The Ricci tensor satisfies

ρ(ξ, ξ) = −2n(ξ(α) + α2) − divV,

ρ(X, ξ) = −(2n − 1)(X − η(X)ξ)(α) + η(X)ρ(ξ, ξ).

Proof. Let X,Y be vector fields on M . By Proposition 3.1, we get

R(X,Y )ξ = −ϕ2(R(X,Y )ξ) = (Y (α) + α2η(Y ))ϕ2X

− (X(α) + α2η(X))ϕ2Y

− η(X)(αη(Y ) − g(V, Y ))V

+ η(Y )(αη(X) − g(V,X))V

+ η(X)ϕ(∇Y ϕV ) − η(Y )ϕ(∇XϕV ).

Moreover, using (3.1), we have

η(X)ϕ(∇Y ϕV ) − η(Y )ϕ(∇XϕV ) = − η(X)(∇Y ϕ)ϕV + η(Y )(∇Xϕ)ϕV

− η(X)∇Y V + η(Y )∇XV

= − α(η(X)g(V, Y ) − η(Y )g(V,X))ξ

− η(X)∇Y V + η(Y )∇XV.

Thus, substituting into the previous formula, we obtain the first equality in
(i). The second relation follows by a direct calculus.

To prove property (ii) it is enough to apply (i) observing that, for any
X ∈ TM , X ⊥ ξ, ||X|| = 1, one has K(ξ,X) = −g(R(ξ,X)ξ,X).

Let {e1, . . . , e2n, e2n+1 = ξ} be a local orthonormal frame on M . Since
V is orthogonal to ξ, applying (ii) we have

ρ(ξ, ξ) =
2n
∑

i=1

K(ξ, ei) = − 2n(ξ(α) + α2) − ||V ||2 +
2n
∑

i=1

g(∇eiV, ei)

= − 2n(ξ(α) + α2) +
2n+1
∑

i=1

g(∇eiV, ei).

Thus, the first formula in (iii) is proved. Finally, by (i) we obtain
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ρ(X, ξ) =
2n
∑

i=1

R(X, ei, ξ, ei)

= −2nX(α)+
2n
∑

i=1

ei(α)g(X − η(X)ξ, ei) + η(X)ρ(ξ, ξ) + 2nη(X)ξ(α)

= −(2n − 1)(X − η(X)ξ)(α) + η(X)ρ(ξ, ξ).

�
We recall that, given two (symmetric) (0, 2)-tensor fields P , Q, the

Kulkarni–Nomizu product P ©∧ Q acts as
(P ©∧ Q)(X,Y,Z,W ) =P (X,Z)Q(Y,W ) + P (Y,W )Q(X,Z)

− P (X,W )Q(Y,Z) − P (Y,Z)Q(X,W ).
(3.3)

In particular, for the sake of simplicity, one puts π1 = 1
2g ©∧ g.

Proposition 3.2. Let (M,ϕ, ξ, η, g) be a C5⊕C12-manifold such that dim M =
2n + 1. For any X,Y,Z,W ∈ Γ(TM) one has:

Λ(X,Y,Z,W ) = − α2(π1(X,Y,Z,W ) − π1(X,Y, ϕZ, ϕW ))

− α((g ©∧ (η ⊗ ∇ξη))(X,Y,Z,W )

− (g ©∧ (η ⊗ ∇ξη))(X,Y, ϕZ, ϕW ))

− (g ©∧ (dα ⊗ η))(X,Y,Z,W ) + ((η ⊗ η) ©∧ (∇(∇ξη)

− ∇ξη ⊗ ∇ξη))(X,Y,Z,W ).

Proof. We only outline the proof, which requires a quite long calculation.
Let X,Y,Z,W be vector fields on M . Starting by the equality

Λ(X,Y,Z,W ) = g(R(X,Y )ϕZ − ϕ(R(X,Y )Z), ϕW ) + g(R(X,Y )ξ, Z)η(W ),

one applies Proposition 3.1, Corollary 3.1 and adopts the notation

∇(∇ξη)(X,Y ) = (∇X(∇ξη))Y = g(∇XV, Y ).

Then the statement follows by direct calculation, also applying (3.3). �
Remark 3.1. In [9], the cosymplectic defect of a manifold that belongs to a
class containing C5 ⊕ C12 as a proper subclass was evaluated with respect to
the minimal U(n)-connection. Considering a manifold in the class C5⊕C12, it
is easy to verify that the formulas in Proposition 3.2 and in [9] are equivalent.

Corollary 3.2. Let (M,ϕ, ξ, η, g) be a C5⊕C12-manifold with dim M = 2n+1.
The following properties hold:
(i) For any X,Y ∈ Γ(D), we get

Λ(X,Y,X, Y ) = −α2(||X||2||Y ||2 − g(X,Y )2 − g(X,ϕY )2).

(ii) For any X,Y ∈ Γ(TM), we have

(ρ − ρ∗)(X,Y ) = − ((2n − 1)α2 + ξ(α))g(X,Y ) − α2η(X)η(Y )

− ((2n − 1)X(α) + divV η(X) − αg(V,X))η(Y )

− (2(n − 1)αη(X) + g(V,X))g(V, Y )

+ g(∇XV − η(X)∇ξV, Y ).
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(iii) Denoting by τ , τ∗ the scalar and ∗-scalar curvatures, we get

τ − τ∗ = −2(2n2α2 + 2nξ(α) + divV ).

(iv) The skew-symmetric component of ρ∗ is given by

ρ∗(X,Y ) − ρ∗(Y,X) = (2n − 1)(X(α)η(Y ) − Y (α)η(X))

+ 2(n − 1)α(g(V, Y )η(X) − g(V,X)η(Y )).

Proof. Property (i) is a direct consequence of Proposition 3.2.
Let X,Y be vector fields on M . With respect to a local orthonor-

mal frame {e1, . . . , e2n, ξ}, we write (ρ − ρ∗)(X,Y ) =
∑2n

i=1 Λ(X, ei, Y, ei) −
R(X, ξ, ξ, Y ) and apply Proposition 3.2 and Corollary 3.1. So, we obtain (ii)
and then (iii). Furthermore, since ρ is symmetric, by (ii) we have

ρ∗(X,Y ) − ρ∗(Y,X) = (2n − 1)(X(α)η(Y ) − Y (α)η(X)

− αg(V,X)η(Y ) + αg(V, Y )η(X))

− g(∇XV − η(X)∇ξV, Y ) + g(∇Y V − η(Y )∇ξV,X).

On the other hand, applying (2.3) we get

0 = g(∇XV, Y ) − g(∇Y V,X) + (αg(V,X) + g(∇ξV,X))η(Y )

− (αg(V, Y ) + g(∇ξV, Y ))η(X).

Hence, substituting into the previous formula, we obtain (iv). �

Proposition 3.3. Let (M,ϕ, ξ, η, g) be an a.c.m. manifold with dim M ≥ 5. If
M is α-Kenmotsu or a C12-manifold, then ρ∗ is symmetric.

Proof. Since dim M ≥ 5, by (2.4) and Corollary 3.2, for any X,Y ∈ Γ(TM)
we have

ρ∗(X,Y ) − ρ∗(Y,X) = α(g(V,X)η(Y ) − g(V, Y )η(X)).

�

Proposition 3.4. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold with dim M ≥ 5.
The following properties are satisfied:
(i) For any X,Y,Z,W ∈ Γ(TM), one has

R(X,Y,Z,W ) =R(ϕX,ϕY, ϕZ, ϕW ) − α2(g ©∧ (η ⊗ η))(X,Y,Z,W )

+ (g ©∧ (η ⊗ (dα − α∇ξη)))(X,Y,Z,W )

− (g ©∧ (η ⊗ (dα − α∇ξη)))(X,Y, ϕZ, ϕW )

+ ((η ⊗ η) ©∧ (∇(∇ξη) − ∇ξη ⊗ ∇ξη))(X,Y,Z,W ).

(ii) For any X,Y ∈ Γ(TM), one has

ρ(X,Y ) = ρ(ϕX,ϕY ) − (2nα2 + divV )η(X)η(Y )

− (2(n − 1)α(∇ξη)Y + (∇ξ(∇ξη))Y + Y (α))η(X)

+ (α(∇ξη)X − (2n − 1)X(α))η(Y )

+ (∇X(∇ξη))Y − (∇ξη)X(∇ξη)Y

− (∇ϕX(∇ξη))ϕY + (∇ξη)ϕX(∇ξη)ϕY.



MJOM Curvature of C5 ⊕ C12-Manifolds Page 9 of 23 105

Proof. We observe that, for any X,Y,Z,W ∈ Γ(TM), one has

R(X,Y,Z,W ) − R(ϕX,ϕY, ϕZ, ϕW ) = Λ(X,Y,Z,W ) + Λ(ϕZ,ϕW,X, Y ).

Thus, property (i) follows by Proposition 3.2.
Considering an adapted local orthonormal frame {e1, . . . , en, en+1 =

ϕe1, . . . , e2n = ϕen, ξ} on M , for any X,Y ∈ Γ(TM), we write

ρ(X,Y ) − ρ(ϕX,ϕY ) =
2n
∑

i=1

(R(X, ei, Y, ei) − R(ϕX,ϕei, ϕY, ϕei))

+ g(R(X, ξ)ξ, Y ) − g(R(ϕX, ξ)ξ, ϕY ).

Then, applying (i) and Corollary 3.1, one proves (ii). �

Remark 3.2. We point out that, being ρ symmetric, the tensor field consid-
ered at the right side of formula (ii) in Proposition 3.4 has to be symmetric.
This is equivalent to the condition

0 = 2(n − 1)((X(α) − α(∇ξη)X)η(Y ) − (Y (α) − α(∇ξη)Y )η(X))

+ Q(X,Y ) − Q(Y,X) − Q(ϕX,ϕY ) + Q(ϕY, ϕX),

for any X,Y ∈ Γ(TM), where Q = ∇(∇ξη)+(∇ξ(∇ξη)+α∇ξη)⊗η. In fact,
by (2.3) we know that Q is symmetric. Thus, if dim M = 3, the above equality
reduces to an identity. If dimM ≥ 5, by (2.4) we obtain that (dα−α∇ξη)⊗η
is symmetric, also.

4. The k-Nullity Condition

In contact geometry, the behavior of the tensor field h = 1
2Lξϕ, Lξ denoting

the Lie derivative with respect to ξ, plays an important role for the classifi-
cation of manifolds satisfying suitable curvature conditions [2,3].

The following result shows that the vector field V of any C5 ⊕ C12-
manifold specifies h.

Lemma 4.1. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold. For any X ∈ Γ(TM)
one has h(X) = − 1

2g(V, ϕX)ξ. Therefore, h vanishes if and only if M falls
in the class C5.

Proof. By direct calculation, for any X ∈ Γ(TM) one has

2h(X) = (∇ξϕ)X − ∇ϕXξ + ϕ(∇Xξ) = −(∇ξη)ϕXξ = −g(V, ϕX)ξ.

Since V is orthogonal to ξ, we obtain h = 0 if and only if V = 0. �

Lemma 4.2. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold. Assume the existence
of smooth functions k, μ on M such that

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + μ(η(Y )h(X) − η(X)h(Y )), (4.1)

for any X,Y ∈ Γ(TM). Then one has μh = 0 and dα = ξ(α)η.



105 Page 10 of 23 S. de Candia and M. Falcitelli MJOM

Proof. By Corollary 3.1 and the hypothesis, for any X,Y ∈ Γ(D), we have

X(α)Y − Y (α)X = R(X,Y )ξ = 0.

It follows that X(α) = 0 so that dα = ξ(α)η.
Given X orthogonal to ξ, by Corollary 3.1 and Lemma 4.1, we obtain

−kX +
1
2
μg(V, ϕX)ξ = −R(X, ξ)ξ

= (ξ(α) + α2)X + g(V,X)(V − αξ) − ∇XV.

Taking the inner product by ξ, we get −αg(V,X)−g(∇XV, ξ) = 1
2μg(V, ϕX).

Moreover, applying (2.2) one has g(∇XV, ξ) = −g(∇Xξ, V ) = −αg(V,X). It
follows that μg(V, ϕX) = 0, for any X ∈ Γ(TM). �

Condition (4.1) was first considered in [4] in the context of contact man-
ifolds, k, μ being suitable real numbers. Contact manifolds satisfying (4.1),
also named (k, μ)-manifolds, have been deeply studied ( [3] and References
therein). We call N(k)-space an a.c.m. manifold (M,ϕ, ξ, η, g) admitting a
smooth function k such that

R(X,Y )ξ = k(η(Y )X − η(X)Y ), X, Y ∈ Γ(TM). (4.2)

Lemma 4.2 clarifies that conditions (4.1), (4.2) are equivalent in the case of
a C5 ⊕ C12-manifold.

In [15], the authors proved that the curvature of an α-Kenmotsu man-
ifold always satisfies (4.2), where k = −(ξ(α) + α2). The next results show
that this property does not extend to C5 ⊕ C12-manifolds.

Proposition 4.1. Let (M,ϕ, ξ, η, g) be a C5⊕C12-manifold such that dim M =
2n + 1 ≥ 5. If M is an N(k)-manifold, the following properties hold:

(i) dα = ξ(α)η, αV = 0.
(ii) k = −(ξ(α) + α2) − 1

2ndivV .
(iii) αdivV = 0.
(iv) For any X ∈ Γ(TM), one has

∇XV = − 1
2n

divV (X − η(X)ξ) + g(V,X)V + η(X)∇ξV.

Proof. By Lemma 4.2, we have dα = ξ(α)η and comparing with (2.4) we
obtain αV = 0. Then, also applying Corollary 3.1, for any X ∈ Γ(D) one
gets

kX = R(X, ξ)ξ = −(ξ(α) + α2)X − g(V,X)V + ∇XV. (4.3)

Let {e1, . . . , e2n, e2n+1 = ξ} be a local orthonormal frame on M . By (4.3),
we have

2nk =
2n
∑

i=1

g(R(ei, ξ)ξ, ei) = −2n(ξ(α) + α2) − ||V ||2 +
2n
∑

i=1

g(∇ei
V, ei)

= −2n(ξ(α) + α2) − divV.
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Then, (ii) follows. Moreover, since αV = 0, we get 0 =
∑2n

i=1 g(∇ei
(αV ), ei) =

dα(V ) − αdivV = −αdivV . This proves (iii). Finally, using (4.3), for any X
orthogonal to ξ, we have

∇XV =
(

− 1
2n

divV
)

X + g(V,X)V.

This relation entails (iv). �

We point out that the distribution D on any manifold as in Proposition
4.1 is spherical. In fact, the equation dα = ξ(α)η means that the leaves of D
are extrinsic spheres.

Proposition 4.2. Let (M,ϕ, ξ, η, g) be a C5⊕C12-manifold such that dim M =
2n+1 ≥ 5. Assume that M is an N(k)-manifold. Then, for any U,X ∈ Γ(D),
one has:
(i) R(U,X)V = (U(k) − kg(V,U))X − (X(k) − kg(V,X))U .
(ii) U(k + 1

2ndivV ) = (k + 1
2ndivV )(∇ξη)U .

Proof. Let U,X, Y be vector fields on M . By direct calculation, applying
(2.2) and (4.2), one has

(∇UR)(X,Y )ξ =U(k)(η(Y )X − η(X)Y ) + kη(U)(g(V, Y )X − g(V,X)Y )

+ αk(g(U, Y )X−g(U,X)Y )−αR(X,Y )U−η(U)R(X,Y )V.

(4.4)

Now we consider U,X orthogonal to ξ and apply the second Bianchi identity,
namely

(∇UR)(X, ξ)ξ + (∇XR)(ξ, U)ξ + (∇ξR)(U,X)ξ = 0.

By(4.4) we get

U(k)X − X(k)U + k(g(V,X)U − g(V,U)X) − R(U,X)V = 0.

Hence, (i) follows. Furthermore, applying Proposition 4.1, we have

R(U,X)V = ∇U (∇XV ) − ∇X(∇UV ) − ∇[U,X]V

= − 1
2n

divV (g(V,X)U − g(V,U)X)

− 1
2n

(U(divV )X − X(divV )U).

Thus, comparing with (i), one has

U
(

k +
1
2n

divV
)

X − X
(

k +
1
2n

divV
)

U

=
(

k +
1
2n

divV
)

(g(V,U)X − g(V,X)U).

It follows that (ii) holds. �

Remark 4.1. By Proposition 4.1, it is easy to verify that property (ii) of
Proposition 4.2 is equivalent to the condition

U(ξ(α)) = ξ(α)g(V,U), U ∈ Γ(D).
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Proposition 4.3. Let (M,ϕ, ξ, η, g) be a C5⊕C12-manifold such that dim M =
2n + 1 ≥ 5. Assume that M is an N(k)-manifold. For any X,Y,Z,W ∈
Γ(TM) one has:
(i) R(X,Y )ϕZ = ϕ(R(X,Y )Z) + (k + α2)η(X)(η(Z)ϕY − g(ϕY,Z)ξ)

− (k + α2)η(Y )(η(Z)ϕX − g(ϕX,Z)ξ)

+ α2(g(ϕY,Z)X − g(ϕX,Z)Y

+ g(Y,Z)ϕX − g(X,Z)ϕY ).
(ii) Λ(X,Y,Z,W ) = − α2(π1(X,Y,Z,W ) − π1(X,Y, ϕZ, ϕW ))

+ (k + α2)(g ©∧ (η ⊗ η))(X,Y,Z,W ).

Proof. Let X,Y,Z,W be vector fields on M . By Propositions 3.1, 4.1 we have

R(X,Y )ϕZ =ϕ(R(X,Y )Z) + ξ(α)η(Z)(η(Y )ϕX − η(X)ϕY )

+ α2(g(ϕY,Z)X − g(ϕX,Z)Y + g(Y,Z)ϕX − g(X,Z)ϕY )

+ η(Z)(g(V,X)η(Y ) − g(V, Y )η(X))ϕV

+ η(Z)(η(X)∇Y ϕV − η(Y )∇XϕV )

+ (ξ(α)(η(X)g(ϕY,Z) − η(Y )g(ϕX,Z))

+ g(ϕV,Z)(η(X)g(V, Y ) − η(Y )g(V,X))

− η(X)g(∇Y ϕV,Z) + η(Y )g(∇XϕV,Z))ξ.

Moreover, applying (3.1) and Proposition 4.1, we get

∇XϕV = (∇Xϕ)V +ϕ(∇XV ) = g(V,X)ϕV −
( 1

2n
divV

)

ϕX + η(X)ϕ(∇ξV ).

Substituting into the previous formula and using property (ii) of Proposition
4.1, (i) follows.

Finally, property (ii) is obtained by (i) and the relation

Λ(X,Y,Z,W ) = g(R(X,Y )ϕZ − ϕ(R(X,Y )Z), ϕW )
+kη(W )(η(Y )g(X,Z) − η(X)g(Y,Z)).

�

Theorem 4.1. Let (M,ϕ, ξ, η, g) be a C5⊕C12-manifold such that dim M ≥ 5.
Assume that M has constant sectional curvature k. Then either M is an α-
Kenmotsu manifold and k = −α2 or M is flat and falls in the class C12.

Proof. Let x be a point of M and consider unit vectors X,Y ∈ TxM such
that gx(X,Y ) = gx(X,ϕY ) = ηx(X) = ηx(Y ) = 0. Since M has constant
sectional curvature, we have R = kπ1, so that

Rx(X,Y )ϕxY − ϕx(Rx(X,Y )Y ) = −kϕxX.

On the other hand, by Proposition 4.3, one obtains

Rx(X,Y )ϕxY − ϕx(Rx(X,Y )Y ) = α(x)2ϕxX.

It follows k + α(x)2 = 0. Thus, α is a constant function. Since αV = 0, one
of the following two cases occurs

(i) α �= 0, V = 0, k = −α2,
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(ii) α = 0, k = 0.
In case (i), M falls in the class C5, namely it is α-Kenmotsu, α = constant
and k = −α2 < 0. In case (ii), M is flat and falls in C12. �

We remark that, for any α ∈ R, α �= 0, an α-Kenmotsu manifold with
constant sectional curvature k = −α2 is locally a warped product ]−ε, ε[×λF ,
where F is a flat Kähler manifold and λ(t) = a exp(−|α|t), a = const > 0. On
the other hand, a flat C12-manifold is locally realized as a product λ]−ε, ε[×F ,
F being a flat Kähler manifold and λ : ] − ε, ε[×F → R a smooth positive
function. The action of λ will be specified in Sect. 7.

Proposition 4.4. Let (M,ϕ, ξ, η, g) be a C5⊕C12-manifold such that dim M ≥
5. If M is an N(k)-manifold, the curvature satisfies the following identities:

R(X,Y,Z,W ) =R(X,Y, ϕZ, ϕW ) + R(ϕX, Y, Z, ϕW )

+ R(X,ϕY,Z, ϕW )

+ kη(W )(η(Y )g(X,Z) − η(X)g(Y,Z)),
(4.5)

R(X,Y,Z,W ) = R(ϕX,ϕY, ϕZ, ϕW )
+k(g ©∧ (η ⊗ η))(X,Y,Z,W ), (4.6)

for any X,Y,Z,W ∈ Γ(TM).

Proof. The statement follows by Proposition 4.3 observing that, for any vec-
tor fields X,Y,Z,W on M , one has:

R(X,Y,Z,W ) = R(X,Y, ϕZ, ϕW ) + R(ϕX, Y, Z, ϕW ) + R(X,ϕY,Z, ϕW )

+ Λ(X,Y,Z,W ) − Λ(Z,ϕW,X,ϕY )+η(Y )R(Z,ϕW, ξ, ϕX)

and

R(X,Y,Z,W ) = R(ϕX,ϕY, ϕZ, ϕW ) + Λ(X,Y,Z.W ) + Λ(ϕZ,ϕW,X, Y ).

�

Remark 4.2. If k = const = 1, properties (4.5) and (4.6) correspond to the
identities, called G2, G3 identities, introduced and studied in [14]. Obviously,
the curvature of any α-Kenmotsu manifold satisfies (4.5), (4.6), being k =
−(ξ(α) + α2).

5. Local Description of N(k)-Manifolds

We are going to provide some local descriptions of a C5 ⊕ C12-manifold
(M,ϕ, ξ, η, g) satisfying the N(k)-condition, examining suitable distributions
on M . Assuming that V is nowhere zero, we can consider the rank 2 distribu-
tion D1 = span{ξ, V } and its orthogonal complement D⊥

1 = kerη ∩ ker∇ξη.
By (2.3), one gets that D⊥

1 is integrable. Moreover, Proposition 4.1 entails
that M falls in the class C12. It follows that, if D⊥ = span{ξ} is spherical,
equivalently ∇ξV = −||V ||2ξ, M is, locally, the a.c.m. manifold λ] − ε, ε[×F ,
F being a Kähler manifold and λ : F → R

∗
+ a smooth function [9].
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We recall that a Riemannian submanifold N of an a.c.m. manifold
(M,ϕ, ξ, η, g) is said to be a semi-invariant ξ⊥-submanifold if the vector field
ξ ∈ Γ(T⊥N) and there exist two orthogonal distributions, D and D

⊥
, on N

such that TN = D ⊕ D
⊥

, ϕ(D) = D and ϕD
⊥ ⊆ T⊥N [5].

In the sequel, for the sake of simplicity, by V �= 0 we mean that V is
nowhere zero on M .

Proposition 5.1. Let (M,ϕ, ξ, η, g) be a C12-manifold such that dim M = 2n+
1 ≥ 5, V �= 0 and ∇ξV = −||V ||2ξ. If M is an N(k)-manifold, then the
distribution D1 is totally geodesic and D⊥

1 is spherical. Furthermore, each
leaf of D1 is an anti-invariant submanifold of M with Gaussian curvature k
and each leaf of D⊥

1 is a semi-invariant ξ⊥-submanifold of M admitting a
C6-structure.

Proof. By hypotheses and Proposition 4.1, we have that k = − 1
2ndivV and

∇XV = kX + g(V,X)V − η(X)(||V ||2 + k)ξ, X ∈ Γ(TM). (5.1)

It follows that

d(||V ||2) = 2(||V ||2 + k)∇ξη. (5.2)

By (2.3) and (5.2), we get 0 = d(||V ||2 + k) ∧ ∇ξη − (||V ||2 + k)∇ξ(∇ξη) ∧ η.
Since ∇ξV = −||V ||2ξ, it follows that ∇ξ(∇ξη) ∧ η = 0 and thus

dk =
1

||V ||2 V (k)∇ξη. (5.3)

Applying (2.2) and (5.1), it is easy to verify that the distribution D1 is
totally geodesic. Moreover, considering a leaf N of D1, we have ϕ(TN) ⊆
T⊥N , namely N is anti-invariant, and the Gauss curvature of N is given by
k(x) = Rx(ξ,V,ξ,V )

||V ||2 , x ∈ N .
Let N ′ be a leaf of D⊥

1 . For any X,Y ∈ Γ(TN ′), by (2.2), (5.1), we
obtain g(∇XY, ξ) = 0 and g(∇XY, V ) = −kg(X,Y ). By the Gauss formula,
it follows that N ′ is totally umbilical with mean curvature vector field H =
− k

||V ||2 V . Moreover, denoting by ∇⊥ the normal connection of N ′, we have

∇⊥
XH = −

(

X

(

k

||V ||2
)

V +
k

||V ||2 ∇⊥
XV

)

, X ∈ Γ(TN ′).

On the other hand, by (5.2), (5.3), we get X( k
||V ||2 ) = 0. Moreover, using

(5.1), we have ∇⊥
XV = 0. Substituting into the above equation, it follows

that N ′ is an extrinsic sphere.
Now, we consider the distribution span{ϕV } on N ′ and denote by D

its orthogonal complement on N ′. Since ϕ2V = −V ∈ Γ(T⊥N ′), we have
ϕ(span{ϕV }) ⊆ T⊥N ′. Moreover, for any X ∈ Γ(D) one has g(ϕX,ϕV ) = 0,
namely ϕ(D) = D. This means that N ′ is a semi-invariant ξ⊥-submanifold
of M .

Finally, putting g′ = g|TN′×TN′ , ξ′ = 1
||V ||ϕV , η′ = ξ′b, we consider the

(1,1)-tensor field ϕ′on N ′ such that ϕ′(ξ′) = 0 and ϕ′(X) = ϕX, for any
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X ⊥ ξ′. In particular, for any X ∈ Γ(TN ′) one has

ϕ′(X) = ϕX +
1

||V ||2 g(ϕV,X)V. (5.4)

It is easy to check that (ϕ′, ξ′, η′, g′) is an a.c.m. structure on N ′. Furthermore,
we denote by ∇′ the Levi-Civita connection of (N ′, g′), apply the Gauss
formula and obtain

∇XY = ∇′
XY − k

||V ||2 g(X,Y )V, X, Y ∈ Γ(TN ′).

Then, by direct calculation, also applying (5.1), (5.4), one has

(∇′
Xϕ′)Y = − k

||V || (g
′(X,Y )ξ′ − η′(Y )X), X, Y ∈ Γ(TN ′).

It follows that (N ′, ϕ′, ξ′, η′, g′) is an α-Sasakian manifold, with α = − k
||V || ,

and it falls in the class C6 [3,6]. �

Applying Proposition 5.1 and the decomposition theorem of Hiepko, we
are able to state the following classification theorem.

Theorem 5.1. Let (M,ϕ, ξ, η, g) be a C12-manifold such that dim M = 2n +
1 ≥ 5, V �= 0 and ∇ξV = −||V ||2ξ. If M is an N(k)-manifold, then (M, g)
is locally isometric to a warped product N ×λ N ′, where dim N = 2, N has
Gaussian curvature k and N ′ is an α-Sasakian manifold, α = − k

||V || .

Corollary 5.1. Let (M,ϕ, ξ, η, g) be a C12-manifold such that dim M = 2n +
1 ≥ 5, V �= 0 and ∇ξV = −||V ||2ξ. If M is flat, then (M, g) is locally
isometric to a Riemannian product N × N ′, dim N = 2 and N , N ′ are flat
manifolds. Furthermore, N ′ admits a cosymplectic structure.

Proof. Since M is flat, M is an N(0)-manifold. Hence, using Proposition
5.1, both the distributions D1 and D⊥

1 are totally geodesic. In fact, for any
X ∈ Γ(D⊥

1 ) one has ∇XV = 0 = ∇Xξ. By Theorem 5.1, (M, g) is locally
isometric to a Riemannian product N × N ′, where N is a flat 2-dimensional
manifold and N ′ admits an α-Sasakian structure, with α = 0. �

We end this section considering the distribution D′ = span{ξ, V, ϕV }
on M . As in the previous case, we assume V �= 0 and D⊥ spherical.

Proposition 5.2. Let (M,ϕ, ξ, η, g) be a C12-manifold such that dim M =
2n + 1 ≥ 5, V �= 0 and ∇ξV = −||V ||2ξ. If M is an N(k)-manifold, the
distribution D′ is totally geodesic and each leaf of D′ is an N(k)-manifold
belonging to the class C12.

Proof. By Proposition 4.1, we get k = − 1
2ndivV . Moreover, applying (2.2),

(5.1) and the defining condition of the class C12 (see Table 1), an easy calculus
entails

∇V ξ = 0 = ∇ϕV ξ = ∇ξϕV,

∇V V = (||V ||2 + k)V, ∇V ϕV = (||V ||2 + k)ϕV,

∇ϕV V = kϕV, ∇ϕV ϕV = −kV.
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The above formulas, together with the hypothesis ∇ξV = −||V ||2ξ, imply
that the distribution D′ is totally geodesic.

Let N ′ be a leaf of D′. It is easy to verify that (ϕ′ = ϕ|TN′ , ξ
′ =

ξ|TN′ , η
′ = η|TN′ , g

′ = g|TN′×TN′ ) is an a.c.m. structure on N ′. Since N ′ is
totally geodesic, (N ′, ϕ′, ξ′, η′, g′) is an N(k)-manifold and falls in the class
C12. �

Theorem 5.2. Let (M,ϕ, ξ, η, g) be a C12-manifold such that dim M = 2n +
1 ≥ 5, V �= 0 and ∇ξV = −||V ||2ξ. If M is flat, then (M, g) is locally
isometric to a Riemannian product N ′ ×N ′′, where N ′ is a three-dimensional
C12-manifold, N ′′ is a Kähler manifold and N ′, N ′′ are both flat.

Proof. Since M is flat, M is an N(0)-manifold. Let D′⊥ be the orthog-
onal complement of D′. By (2.2), (5.1), for any X,Y ∈ Γ(D′⊥) we get
g(∇XY, ξ) = 0 = g(∇XY, V ) = g(∇XY, ϕV ). Hence, the distribution D′⊥

is totally geodesic and each leaf N ′′ of D′⊥ is totally geodesic and flat. More-
over, (J ′′ = ϕ|TN′′ , g

′′ = g|TN′′×TN′′ ) is a Kähler structure on N ′′. Then, also
applying Proposition 5.2, we get the statement. �

6. The Case of Generalized Sasakian Space Forms

In this section, we consider a C5 ⊕ C12-manifold (M,ϕ, ξ, η, g) which is a
generalized Sasakian space form (g.S. space form), namely M admits three
smooth functions f1, f2, f3 such that the curvature tensor satisfies

R = f1π1 + f2S + f3T, (6.1)

where π1, S, T are the tensor fields acting as

π1(X,Y,Z) = g(Y,Z)X − g(X,Z)Y,

S(X,Y,Z) = g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ,

T (X,Y,Z) = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ.

This class of a.c.m. manifolds was introduced in [1] and subsequently stud-
ied by a number of mathematicians from several points of view. In partic-
ular, in [8] it was proved that M is a g.S. space form if and only if M
is an N(k)-manifold with pointwise constant ϕ-sectional curvature c and,
for any X,Y ∈ Γ(D), the cosymplectic defect satisfies Λ(X,Y,X, Y ) =
l(||X||2||Y ||2 − g(X,Y )2 − g(X,ϕY )2), l being a smooth function on M .

Now, also applying Corollary 3.2 and Proposition 4.1, it is easy to obtain
the following result.

Proposition 6.1. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold with dim M =
2n + 1 ≥ 5. The following conditions are equivalent:
(i) M is a g.S. space form.
(ii) M is an N(k)-manifold with pointwise constant ϕ-sectional curvature

c.
Moreover, if one of the previous conditions holds, one has k = −(ξ(α)+α2)−
1
2ndivV , f1 = c−3α2

4 , f2 = c+α2

4 , f3 = f1 − k = c+α2

4 + ξ(α) + 1
2ndivV .
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Taking into account Proposition 6.1, we denote by M2n+1(c, k) a g.S.
space form with pointwise constant ϕ-sectional curvature c and satisfying the
k-nullity condition.

Proposition 6.2. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold. If M2n+1(c, k),
n ≥ 2, is a g.S. space form, the following properties hold:

(i) For any point x0 ∈ M , the leaf (N, J, g′) of D through x0 is a Kähler
manifold with constant holomorphic sectional curvature (c + α2)(x0).

(ii) dc = ξ(c)η.
(iii) For any X ∈ Γ(D), one has X(ξ(c)) = ξ(c)g(V,X).
(iv) cV = 0.
(v) dk = ξ(k)η + k∇ξη.

Proof. Let x0 ∈ M and (N, J = ϕ|TN
, g′ = g|TN×TN

) be the leaf of the
distribution D through x0. Since M is a C5 ⊕ C12-manifold, we know that
(J, g′) is a Kähler structure on N and N is totally umbilical with mean
curvature vector field H = −αξ|N . Denoting by R′ the Riemannian curvature
of N and applying the Gauss equation, for any x ∈ N and any unit vector
X ∈ TxN , we get

R′
x(X,JxX,X, JxX) = Rx(X,ϕxX,X,ϕxX) + α(x)2 = (c + α2)(x).

Since dimN ≥ 4, it follows that N has constant holomorphic sectional cur-
vature (c + α2)|N . So, we obtain (i). On the other hand, by Proposition 6.1,
M is an N(k)-manifold. Hence, applying Proposition 4.1, α is constant on N .
This implies that c is constant on N . It follows that the function c is constant
on any leaf of D, that is (ii) holds.

By (ii), we obtain d(ξ(c)η) = 0. So, applying (2.3), one has (dξ(c) −
ξ(c)∇ξη) ∧ η = 0 and (iii) follows.

Finally, using the second Bianchi identity, one has f2V = 0 and dk =
ξ(k)η − f3∇ξη (cf. [7], Section 4). Applying Propositions 4.1, 6.1, we easily
obtain (iv) and (v). �

Remark 6.1. In the same hypotheses of Proposition 6.2, applying the main
results in [9], we have that M is locally almost contact isometric to a double-
twisted product manifold ] − ε, ε[×(λ1,λ2)F , where ε > 0, (F, ̂J, ĝ) is a Kähler
manifold with constant holomorphic sectional curvature (c+α2)|F and λ1, λ2 :
] − ε, ε[×F → R are smooth positive functions.

Proposition 6.3. Let (M,ϕ, ξ, η, g) be a C5 ⊕ C12-manifold. If M2n+1(c, k),
n ≥ 2, is a g.S. space form, then the following differential equation holds:

d(c + α2) = −2(c + α2)αη. (6.2)

Proof. Let U,X, Y be vector fields on M and Z ∈ Γ(D). By (6.1), we have

(∇UR)(X,Y,Z) = U(f1)π1(X,Y,Z) + U(f2)S(X,Y,Z) + U(f3)T (X,Y,Z)

+ f2(∇US)(X,Y,Z) + f3(∇UT )(X,Y,Z),
(6.3)



105 Page 18 of 23 S. de Candia and M. Falcitelli MJOM

where f1, f2, f3 are related to c, k as in Proposition 6.1. Furthermore, it is
easy to verify the following relations:

(∇US)(X,Y,Z) = g(ϕY,Z)(∇Uϕ)X − g((∇Uϕ)Z, Y )ϕX

− g(ϕX,Z)(∇Uϕ)Y + g((∇Uϕ)Z,X)ϕY

+ 2g(ϕY,X)(∇Uϕ)Z + 2g((∇Uϕ)Y,X)ϕZ,

(∇UT )(X,Y,Z) = (η(X)Y − η(Y )X)(∇Uη)Z

+ (g(X,Z)(∇Uη)Y − g(Y,Z)(∇Uη)X)ξ

+ (g(X,Z)η(Y ) − g(Y,Z)η(X))∇Uξ.

To apply the second Bianchi identity, using the above formulas, Propo-
sitions 4.1, 6.1, 6.2 and (2.2), (3.1), a direct calculus entails

U(f1) =
1
4
ξ(c − 3α2)η(U), U(f2) =

1
4
ξ(c + α2)η(U), (6.4)

f2 σ
(U,X,Y )

(∇US)(X,Y,Z)=2αf2

(

σ
(U,X,Y )

(g(ϕX,Z)η(Y )−g(ϕY,Z)η(X))ϕU

+2 σ
(U,X,Y )

g(ϕY,X)η(U)ϕZ
)

, (6.5)

f3 σ
(U,X,Y )

(∇UT )(X,Y,Z) = f3

(

2α σ
(U,X,Y )

(g(X,Z)η(Y ) − g(Y,Z)η(X))U

+ σ
(U,X,Y )

η(U)(η(X)Y − η(Y )X)g(V,Z)

+ σ
(U,X,Y )

(g(X,Z)g(V, Y ) − g(Y,Z)g(V,X))η(U)ξ
)

, (6.6)

where σ represents the cyclic sum over U,X, Y .
Now, choosing U = ξ, Y = Z, X ⊥ U, Y, ϕY , and substituting into

(6.3)–(6.6), the second Bianchi identity gives
(1

4
ξ(c − 3α2) + 2αf3

)

||Z||2X + (X(f3) − f3g(V,X))||Z||2ξ = 0.

This implies ξ(c − 3α2) + 8αf3 = 0. Using (iii) in Proposition 4.1 and
Proposition 6.1, it follows that 0 = ξ(c − 3α2) + 2α(c + α2) + 8αξ(α) =
ξ(c+α2)+2α(c+α2). On the other hand, by Propositions 4.1, 6.2, we know
that d(c + α2) = ξ(c + α2)η. Hence, the statement holds. �

Now, we are able to classify g.S. space forms belonging to the class
C5 ⊕ C12.

Theorem 6.1. Let (M,ϕ, ξ, η, g) be a C5 ⊕C12-manifold. If M2n+1(c, k), n ≥
2, is a g.S. space form, then exactly one of the following cases occurs:
(i) M is cosymplectic and c is constant.
(ii) M falls in the class C12\C and c = 0.
(iii) α �= 0 and c + α2 = 0. Moreover, there exist an open covering {Ui}i∈I

of M and, for any i ∈ I, a smooth function σi : Ui → R such that
(Ui, ϕi = ϕ|Ui

, ξi = exp(−σi)ξ|Ui
, ηi = exp(σi)η|Ui

, gi = exp(2σi)g|Ui
)

is a g.S. space form with zero ϕ-sectional curvature, which falls in the
class C12.
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(iv) M is α-Kenmotsu and the function c + α2, which is nowhere zero, has
constant sign. Moreover, M is globally conformal to a cosymplectic man-
ifold with constant ϕ-sectional curvature sign(c + α2).

Proof. If α = 0, by Proposition 6.3, we get that c is a constant function. If
c �= 0, applying Proposition 6.2, it follows that the vector field V vanishes, so
that M is a cosymplectic manifold. If c = 0, by Proposition 6.1 and (6.1), the
curvature tensor of M is given by R =

(

1
2ndivV

)

T . In this case, if divV �= 0,
then M is a C12-manifold but it is not cosymplectic. If divV = 0, M is flat
and either M is cosymplectic or M falls in the class C12\C. We conclude
that, if α = 0, one of the cases, (i) and (ii), occurs.

Now, we suppose that α �= 0. Since the Lee form ω = −αη is closed,
by Proposition 4.4 in [9], M is a locally conformal C12-manifold, namely
there exist an open covering {Ui}i∈I of M and, for any i ∈ I, a smooth
function σi : Ui → R such that Ui is endowed with the C12-structure (Ui, ϕi =
ϕ|Ui

, ξi = exp(−σi)ξ|Ui
, ηi = exp(σi)η|Ui

, gi = exp(2σi)g|Ui
) and dσi = ω|Ui

.
The Levi-Civita connections of the local metrics gi fit up to the Weyl

connection ∇ acting as

∇XY = ∇XY − αη(X)Y − αη(Y )X + αg(X,Y )ξ, X, Y ∈ Γ(TM).

Furthermore, fixed i ∈ I and denoting by R the (0, 4)-curvature tensor of ∇,
it is well known that in Ui one has

exp(−2σi)R = R − P ©∧ g, (6.7)

where P = ∇ω − ω ⊗ ω + 1
2 ||ω||2g. Applying Proposition 4.1 and (2.2), it is

easy to verify the following relations

P = −ξ(α)η ⊗ η − 1
2
α2g,

(P ©∧ g)(X,Y,Z,W ) = α2g(π1(X,Y,Z),W ) − ξ(α)g(T (X,Y,Z),W ).

Substituting into (6.7) and applying (6.1), Proposition 6.1, it follows that

R =
c + α2

4
(π1 + S) +

(c + α2

4
+

1
2n

divV
)

T. (6.8)

Since ω is closed, by (6.2) and the connectedness of M , one of the following
two cases occurs

(a) c + α2 = 0,
(b) c + α2 �= 0 everywhere.

In case (a), Eq. (6.8) reduces to R =
(

1
2ndivV

)

T . To rewrite this equation

with respect to the metrics gi, i ∈ I, we put Vi = ∇ξiξi and denote by Ti the
tensor field on Ui defined as T . An easy calculation entails

Vi = exp(−2σi)V|Ui
, divVi = exp(−2σi)divV |Ui

, T|Ui
= exp(−2σi)Ti.

It follows that

R|Ui
=

( 1
2n

divVi

)

Ti, i ∈ I.



105 Page 20 of 23 S. de Candia and M. Falcitelli MJOM

Combining the above formula with Proposition 6.1, we get that the C12-
manifolds (Ui, ϕi, ξi, ηi, gi) are g.S. space forms with zero ϕ-sectional curva-
ture. Hence, (iii) holds.

Finally, we examine case (b). Since M is connected, the function c + α2

has constant sign. Moreover, by Propositions 4.1, 6.2, we have (c+α2)V = 0.
This implies that V = 0, namely M is an α-Kenmotsu manifold. On the
other hand, solving (6.2), we get ω = d log

√|c + α2|. Since ω is exact, M is
globally conformal to the a.c.m. manifold (M,ϕ, 1√

|c+α2|ξ,
√|c + α2|η, |c +

α2|g), which is cosymplectic [15]. Furthermore, with respect to the metric
g = |c + α2|g, (6.8) becomes

R =
1
4

c + α2

|c + α2| (π1 + S + T ) =
1
4
sign(c + α2)(π1 + S + T ).

The above equation means that (M,ϕ, 1√
|c+α2|ξ,

√|c + α2|η, |c + α2|g) has

constant ϕ-sectional curvature sign(c + α2). Hence, (iv) occurs. �

Remark 6.2. In [7], the authors gave a local classification of g.S. space forms
M2n+1(f1, f2, f3), n ≥ 2, assuming that for any i = 1, 2, 3, if the function fi

does not vanish, then fi �= 0 everywhere. The authors proved that nine cases
can occur and these cases are not mutually exclusive. Obviously, a restriction
on the Chinea–Gonzalez class of the g.S. space form entails that some of the
mentioned cases have to be excluded. Comparing the result stated in Theorem
6.1 with main Theorem 1.3 in [7], we get that a C5⊕C12-manifold M2n+1(c, k)
has to satisfy one of four cases listed in [7], namely the ones denoted by (a),
(e), (f), (g). We also remark that in our context the hypothesis fi = 0 or
fi �= 0 everywhere is needless.

7. Examples

In Theorem 4.1, we have shown that a C5 ⊕ C12-manifold (M,ϕ, ξ, η, g) with
dim M = 2n+1 ≥ 5 and constant sectional curvature is either an α-Kenmotsu
manifold or a flat C12-manifold. Note that, as remarked in Section 4, in
the first case, it is known that M is locally described as a warped product.
Furthermore, the hyperbolic space H

2n+1(−α2) is the local model of space
forms carrying a non-cosymplectic α-Kenmotsu structure.

More generally, in Theorem 6.1 we have classified g.S. space forms
M2n+1(c, k). Taking into account case (ii), we are going to provide a method
for constructing a whole family of g.S. space forms M2n+1(0, k) falling in the
class C12\C.

Let (J0, g0) be the canonical Kähler structure on R
2n, n ≥ 2, I ⊂ R

an open interval and λ : I × R
2n → R a smooth positive function. We know

that the a.c.m. manifold M = λI ×R
2n, defined as in (2.1), falls in the class

C12\C. According to Proposition 6.1, Theorem 6.1 and formula (6.1), the
condition that M is a g.S. space form M2n+1(0, k) is equivalent to require
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that its curvature tensor satisfies

R =
( 1

2n
divV

)

T = −kT. (7.1)

Using the curvature formulas in [16], we have

R(X, ξ)Z = (g(∇X(grad log λ), Z) + X(log λ)Z(log λ))ξ, X,Z ∈ Γ(D),

where ∇ is the Levi-Civita connection on (M, g = g(λ,1)) and grad is evaluated
with respect to g. By an easy calculation, also considering Corollary 3.1 and
Proposition 4.1, one can check that (7.1) is equivalent to the condition

g(∇X(grad log λ), Z) + X(log λ)Z(log λ) = −kg(X,Z), X, Z ∈ Γ(D).

Considering the orthonormal frame { ∂
∂x1 , . . . , ∂

∂x2n , ξ} on M , the above equa-
tion corresponds to the following PDE’s system:

∂2λ

∂xi∂xj
+ kλδij = 0, i, j = 1, . . . , 2n. (7.2)

Hence, for any i �= j, one has ∂2λ
∂xi∂xj = 0. It follows that λ(t, x1, . . . , x2n) =

∑2n
k=1 ak(t, xk), where ak is a function only depending on t and xk. Substi-

tuting into (7.2) and assuming i = j, we get ∂2ai

∂(xi)2 = −kλ. This implies that
the function kλ only depends on t. Putting −kλ = 2C(t), it follows that
ai(t, xi) = C(t)(xi)2 +Bi(t)xi +Ei(t), for any i = 1, . . . , 2n. We can conclude
that (7.1) is satisfied if and only if

λ(t, x1, . . . , x2n) =
2n
∑

i=1

(C(t)(xi)2 + Bi(t)xi) + E(t), (7.3)

where E(t) =
∑2n

i=1 Ei(t) and C(t) = − 1
2kλ.

We observe that for λ to be a positive function we have to narrow its
domain. Supposing 0 ∈ I, we can assume C(0) ≥ 0, E(0) > 0 and Bi(0) > 0,
i = 1, . . . , 2n. Thus, there exists an open interval J , 0 ∈ J ⊂ I, such that
C(t) ≥ 0, E(t) > 0 and Bi(t) > 0, for any i = 1, . . . , 2n, t ∈ J . Putting
U = R

∗
+ ×· · ·×R

∗
+, the function λ : J ×U → R, defined as in (7.3), is smooth

and positive.
We conclude that the a.c.m. manifolds M = λJ ×U are g.S. space forms

M2n+1(0, k) belonging to the class C12\C.

Remark 7.1. The condition k = 0 is equivalent to require that the a.c.m.
manifolds M = λJ × U are flat and λ(t, x1, . . . , x2n) =

∑2n
i=1 Bi(t)xi + E(t).

Note that the method above described is similar to the procedure used in
Theorem 5.2 in [7]. In our case, the hypothesis that f3 = −k is nowhere zero
is needless.

Finally, we provide an explicit example of a C12-manifold satisfying the
hypotheses of Theorem 5.2.

Example 7.1. Given three non-negative real numbers B1, Bn+1, E such that
(B1, Bn+1) �= (0, 0), one considers the open set W = {(x1, . . . , x2n) ∈ R

2n|x1

> 0, xn+1 > 0} and the smooth positive function λ : R × W → R acting as

λ(t, x1, . . . , x2n) = B1x
1 + Bn+1x

n+1 + E.
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By Remark 7.1, we know that the a.c.m. manifold M = λR × W = (R ×
W,ϕ, ξ = 1

λ
∂
∂t , η = λdt, g = λ2dt ⊗ dt + g0) is flat and falls in the class

C12\C. Note that, for any i = 1, . . . , n, ϕ( ∂
∂xi ) = J0( ∂

∂xi ) = ∂
∂xn+i . Using

the formulas in [16], it is easy to verify that the tensor field V = ∇ξξ =
− 1

λ (B1
∂

∂x1 + Bn+1
∂

∂xn+1 ) satisfies the condition ∇ξV = −||V ||2ξ. Moreover,
considering the distribution D′ = span{ξ, V, ϕV } on M and putting U1 =

∂
∂x1 + ∂

∂xn+1 , U2 = ϕU1, we have D′ = span{λξ, U1, U2}.
Given the open set N ′ = {(t, y, z) ∈ R

3|y > 0,−y < z < y}, (t0, x0) =
(t0, x1

0, . . . , x
2n
0 ) ∈ M , we define the map f : N ′ → R × W acting as

f(t, y, z) =
(

t,
1√
2
(y − z), x2

0, . . . , x
n
0 ,

1√
2
(y + z), . . . , x2n

0

)

.

Putting λ′ = λ ◦ f and g′ = λ′2dt ⊗ dt + dy ⊗ dy + dz ⊗ dz, it is easy to
check that f is an isometric immersion with respect to the metrics g′ and g.
Note that (N ′, g′) is the leaf of D′ through (t0, x0) and, applying Proposition
5.2, (N ′, ϕ′ = − ∂

∂y ⊗ dz + ∂
∂z ⊗ dy, ξ = 1

λ′
∂
∂t , η

′ = λ′dt, g′) is a flat C12-
manifold. Moreover, up to an isometry, the leaf of D′⊥ through (t0, x0) is
R

2n−2 endowed with its canonical Kähler structure. Thus, applying Theorem
5.2, M is locally isometric to the Riemannian product N ′ × R

2n−2.
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