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Abstract. We study Baer–Kaplansky classes in Grothendieck categories.
We apply our results to functor categories, and discuss the transfer of
the Baer–Kaplansky property to finitely accessible additive categories,
exactly definable additive categories and categories σ[M ].
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1. Introduction

The classical Baer–Kaplansky theorem states that any two torsion abelian
groups having isomorphic endomorphism rings are isomorphic [11, Theo-
rem 108.1]. An interesting topic of research has been to find other classes of
abelian groups, and more generally, of modules, for which a Baer–Kaplansky-
type theorem is still true. Such classes have been called Baer–Kaplanksy
classes by Ivanov and Vámos [17]. For instance, the class of finitely generated
abelian groups is Baer–Kaplansky (e.g., see [18, Example 1.3]), but the class
of torsion-free abelian groups is not (e.g., see [21, Example 3.8]). There are
several Baer–Kaplansky classes of modules over commutative rings, but there
have been exhibited relatively few over non-commutative rings. Among them,
Morita showed that the class of all modules over a primary artinian uniserial
ring is Baer–Kaplansky [24, Lemma 7.4], while Ivanov proved that the class
of all modules over a non-singular artinian serial ring is Baer–Kaplansky [16,
Theorem 9]. Noticing that every isomorphism between endomorphism rings
of torsion abelian groups preserves indecomposables, Ivanov [16] introduced
and proposed in the study of Baer–Kaplansky classes of modules the use
of the stronger notion of IP -isomorphism (i.e., indecomposable-preserving
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isomorphism) instead of isomorphism, together with direct sum decomposi-
tions into indecomposables. Recently, Keskin Tütüncü and Tribak have also
studied Baer–Kaplansky classes of modules [18].

These are the motivating and leading ideas in our investigation of Baer–
Kaplansky classes in Grothendieck categories. In particular, they can be used
in functor categories. Let Mod(R) (mod(R)) and (R)Mod ((R)mod) be the
categories of (finitely presented) right R-modules and left R-modules, re-
spectively, for some ring R with identity. It is well known that there is a
fully faithful functor H : Mod(R) → ((mod(R))op,Ab) defined by H(M) =
HomR(−,M), which induces an equivalence between Mod(R) and the full
subcategory of flat functors in the category ((mod(R))op,Ab) of contravari-
ant (additive) functors from mod(R) to the category Ab of abelian groups. In
addition, there is a fully faithful functor T : (R)Mod → (mod(R),Ab) defined
by T (M) = −⊗R M , which induces an equivalence between (R)Mod and the
full subcategory of FP -injective functors in the category (mod(R),Ab) of
covariant (additive) functors from mod(R) to Ab. These functors have been
successfully used by several authors, such as Auslander [1], Gruson and Jensen
[13], or Stenström [28] to relate properties of module categories and of the
corresponding functor categories. Later on, they were extended from module
categories to finitely accessible additive categories [4,25], exactly definable
additive categories [19,25] and their associated categories.

We use functor categories techniques to relate Baer–Kaplansky classes
in Grothendieck categories to Baer–Kaplansky classes in finitely accessible
additive categories (in particular, the category of torsion-free abelian groups),
exactly definable categories (in particular, the category of divisible abelian
groups) and categories σ[M ] (in particular, the category of comodules over
a coalgebra over a field). Even if our results in these categories are somehow
similar to each other, we point out that the above three types of categories
are independent in general.

In Sect. 2, we study Baer–Kaplansky classes in Grothendieck categories.
We recall that fully faithful functors preserve Baer–Kaplansky classes. We
show that if M and N are objects of a Grothendieck category C, such that
M has a direct sum decomposition into indecomposable objects and there
exists an IP -isomorphism Φ : EndC(M) → EndC(N), then M is (isomorphic
to) a pure subobject of N . If, moreover, (A,B) is a cotorsion pair in C, M ∈ B
and N/M ∈ A, then M and N are isomorphic. For a class M of objects of a
Grothendieck category C closed under summands, such that every object of
M has a direct sum decomposition into indecomposable summands and the
finite embedding property, we prove that M is Baer–Kaplansky if and only
if the class of indecomposable objects of M is Baer–Kaplansky.

In Sect. 3, we consider finitely accessible additive categories. If X and
Y are objects of such a category C, such that X has a direct sum decom-
position into indecomposable subobjects and either Y/X is pure-projective
or X is pure-injective, and such that there exists an IP -isomorphism Φ :
EndC(X) → EndC(Y ), we prove that X and Y are isomorphic. For a Krull–
Schmidt finitely accessible (in particular pure semisimple) additive category
C, we show that the class of finitely presented (indecomposable) objects of C
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is Baer–Kaplansky if and only if so is the class of pure-projective indecom-
posable objects of C. We exhibit an example of a pure semisimple finitely
accessible additive category all of whose objects form a Baer–Kaplasky class.

In Sect. 4, we deal with exactly definable additive categories. We give
some examples of module categories (which are always finitely accessible and
exactly definable), and classes of objects in the associated functor categories
which are Baer–Kaplansky. If X and Y are objects of an exactly definable ad-
ditive category C, such that X has a direct sum decomposition into indecom-
posable subobjects and either Y/X is pure-projective or X is pure-injective,
and such that there exists an IP -isomorphism Φ : EndC(X) → EndC(Y ), we
prove that X and Y are isomorphic. For a pure semisimple exactly definable
additive category C, we show that the class of finitely presented objects of C is
Baer–Kaplansky if and only if the class of finitely presented indecomposable
objects of C is Baer–Kaplansky.

Finally, in Sect. 5, we give some similar results in categories σ[M ], which
are full subcategories of the category of left R-modules consisting of modules
isomorphic to M -generated modules for some left R-module M .

2. Baer–Kaplansky Classes in Grothendieck Categories

Let C be a preadditive category and let M be a class of objects of C. Following
Ivanov and Vámos [17], M is called a Baer–Kaplansky class if for any two
objects M and N of M, such that EndC(M) ∼= EndC(N) (as rings), one has
M ∼= N .

The following result is also given in [7], but we include it for reader’s
convenience. It will be frequently used throughout this paper.

Proposition 2.1. Let F : A → B be a fully faithful covariant functor between
preadditive categories A and B. Then, a class M of objects of A is a Baer–
Kaplansky class if and only if so is the class N = {F (M) | M ∈ M}.
Proof. We first note that since F is fully faithful, we have

EndA(A) ∼= EndB(F (A)) (as rings) (∗)

for every object A of A. Now, let X and Y be objects of M, such that
EndA(X) ∼= EndA(Y ) or EndB(F (X)) ∼= EndB(F (Y )) (as rings). From (∗),
we obtain

EndA(X) ∼= EndB(F (X)) ∼= EndB(F (Y )) ∼= EndA(Y ) (as rings).

Now, the result follows. �

Let C be an abelian category and let M be a class of objects of C.
Denote

M⊥ = {C ∈ C | Ext1C(M,C) = 0 for every M ∈ M},
⊥M = {C ∈ C | Ext1C(C,M) = 0 for every M ∈ M}.

Recall that a pair (A,B) of classes of objects of C is called a cotorsion pair
if A⊥ = B and ⊥B = A.
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Recall that a ring isomorphism Φ : EndC(M) → EndC(N) is called an
IP -isomorphism if for every primitive idempotent e ∈ EndC(M), one has
Φ(e)N ∼= eM [16].

The following theorem is one of the main results of the paper. It is in-
spired by [16, Proposition 1], but the hypotheses on modules to be finitely
embedded and generated by indecomposable summands, respectively, are re-
placed by conditions involving a cotorsion pair in a Grothendieck category.

Theorem 2.2. Let M and N be objects of a Grothendieck category C, such
that M has a direct sum decomposition into indecomposable objects and there
exists an IP -isomorphism Φ : EndC(M) → EndC(N). Then
(1) M is (isomorphic to) a pure subobject of N .
(2) If (A,B) is a cotorsion pair in C, M ∈ B and N/M ∈ A, then M and

N are isomorphic.

Proof. (1) Let M =
⊕

k∈K Mk be a direct sum decomposition of M into
indecomposable subobjects. For every k ∈ K, denote by pk : M → Mk the
canonical projection, by ik : Mk → M the inclusion monomorphism and con-
sider the idempotent ek = ikpk ∈ EndC(M). Since Φ is an IP -isomorphism,
Φ(ek)N ∼= ekM = Mk is an indecomposable subobject of N for every k ∈ K.
Since C has split idempotents, it follows that M ∼= ekM ⊕(1−ek)M for every
k ∈ K. For every k ∈ K, let fk : Mk → Φ(ek)N be an isomorphism. Consider
Ψ′ =

⊕
k∈K fk :

⊕
k∈K Mk → ⊕

k∈K Φ(ek)N and j :
⊕

k∈K Φ(ek)N → N
the inclusion monomorphism. Since each Φ(ek)N is a summand of N , j is a
pure monomorphism. Hence, Ψ = jΨ′ : M → N is a pure monomorphism
and Im(Ψ) generates a direct sum of indecomposable subobjects of N , say
Im(Ψ) =

⊕
k∈K Nk.

(2) Suppose that Im(Ψ) �= N . The induced (pure) exact sequence 0 →
M → N → N/M → 0 splits, because M ∈ B and N/M ∈ A. Hence,
N = Im(Ψ) ⊕ P for some non-zero subobject P of N . Then, there exists
an idempotent f ∈ EndC(N), such that P = fN . Then, f is orthogonal to
every idempotent Φ(ek) of N for k ∈ K, and therefore, Φ−1(f) is orthogonal
to every idempotent ek of M for k ∈ K, a contradiction. Hence, Ψ is an
isomorphism. �

The first part of the following corollary generalizes [16, Proposition 2].

Corollary 2.3. Let C be a Grothendieck category. Let M and N be objects of
C such that M has a direct sum decomposition into indecomposable objects
and there exists an IP -isomorphism Φ : EndC(M) → EndC(N). If one of the
following conditions holds:
(1) M is injective;
(2) N/M is projective;
then M and N are isomorphic.

Proof. (1) Use Theorem 2.2 for the cotorsion pair (A,B), where A = C and
B is the class of injective objects of C.

(2) Use Theorem 2.2 for the cotorsion pair (A,B), where A is the class
of projective objects of C and B = C. �
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Let C be a Grothendieck category. Recall that an object M of C is called:
(i) flat if every epimorphism C → M is pure.
(ii) FP -injective if every monomorphism M → C is pure.
(iii) cotorsion if Ext1C(F,M) = 0 for every flat object F of C [30].
(iv) FP -projective if Ext1C(M,F ) = 0 for every FP -injective object F of C

[22].

Corollary 2.4. Let C be a Grothendieck category. Let M and N be objects of C,
such that M is cotorsion and N is flat. Assume that M has a direct sum de-
composition into indecomposable objects and there exists an IP -isomorphism
Φ : EndC(M) → EndC(N). Then, M and N are isomorphic.

Proof. Consider the cotorsion pair (A,B), where A is the class of flat objects
of C and B is the class of cotorsion objects of C (see [22, Theorem 2.14], whose
proof works in our setting). We have seen in the proof of Theorem 2.2 that
there is a pure exact sequence 0 → M → N → N/M → 0. Since the class
of flat objects of C is closed under pure factor objects, we have N/M ∈ A.
Now, use Theorem 2.2. �

Corollary 2.5. Let C be a locally coherent Grothendieck category. Let M and
N be objects of C, such that N is FP -injective and N/M is FP -projective.
Assume that M has a direct sum decomposition into indecomposable objects
and there exists an IP -isomorphism Φ : EndC(M) → EndC(N). Then, M
and N are isomorphic.

Proof. Consider the cotorsion pair (A,B), where A is the class of
FP -projective objects of C and B is the class of FP -injective objects of C
(see [22, Theorems 2.12 and 2.14], whose proofs work in our setting). We
have seen in the proof of Theorem 2.2 that there is a pure exact sequence
0 → M → N → N/M → 0. Since the class of FP -injective objects of C is
closed under pure subobjects, we have M ∈ B. Now, use Theorem 2.2. �

Next, we recall and generalize to categories some needed terminology
from [16]. Let C be a category and let M be an object of C. Let M =⊕

k∈K Mk be a direct sum decomposition into indecomposable summands. A
subobject L of M is called finitely embedded in M with respect to the above
direct sum decomposition of M if L ⊆ ⊕

k∈F Mk for some finite F ⊆ K.
Then, M has the finite embedding property if every indecomposable sum-
mand of M is finitely embedded in M with respect to the above direct sum
decomposition. Clearly, every finitely generated subobject is finitely embed-
ded.

Proposition 2.6. Let C be a Grothendieck category. Let M be an object of C
having the finite embedding property with respect to a direct sum decompo-
sition into indecomposable summands, and let N be an object of C gener-
ated by indecomposable summands. If there exists an IP -isomorphism Φ :
EndC(M) → EndC(N), then M and N are isomorphic.

Proof. The proof of [16, Proposition 1] immediately generalizes to
Grothendieck categories. �
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Theorem 2.7. Let C be a Grothendieck category. Let M be a class of objects
of C closed under summands such that every object of M has a direct sum
decomposition into indecomposable summands and the finite embedding prop-
erty. Then, M is Baer–Kaplansky if and only if the class of indecomposable
objects of M is Baer–Kaplansky.

Proof. Assume that the class of indecomposable objects of M is Baer–
Kaplansky. Let M and N be objects of M, such that there exists a ring
isomorphism Φ : EndC(M) → EndC(N). Let e ∈ EndC(M) be a primitive
idempotent. Then, Φ restricts to a ring isomorphism between EndC(eM) and
EndC(Φ(e)N). However, eM is an indecomposable summand of M and Φ(e)N
is an indecomposable summand of N . Since eM,Φ(e)N ∈ M, it follows by
hypothesis that eM and Φ(e)N are isomorphic. This shows that Φ is an IP -
isomorphism. Now, M ∼= N by Proposition 2.6. Hence, M is Baer–Kaplansky.

The converse is clear. �

Recall that a module M over a ring (with enough idempotents) is called
local if M has a proper submodule which contains all other proper submodules
(e.g., see [29, p. 351]).

Corollary 2.8. Let R be a ring with enough idempotents.
(1) [18, Proposition 2.12] The class of semisimple right R-modules is Baer–

Kaplansky if and only if the class of simple right R-modules is Baer–
Kaplansky.

(2) Assume that R is semiperfect. Then the class of finitely generated pro-
jective right R-modules is Baer–Kaplansky if and only if the class of
projective local right R-modules is Baer–Kaplansky.

(3) Assume that R is right noetherian. Then the class of finitely generated
injective right R-modules is Baer–Kaplansky if and only if the class
of finitely generated indecomposable injective right R-modules is Baer–
Kaplansky.

Proof. (1) This is clear by Theorem 2.7.
(2) If R is semiperfect, then every finitely generated projective right

R-module is a direct sum of local right R-modules [29, 49.10]. In addition,
note that every local right R-module is finitely generated (e.g., see [29, 41.4]).
Then, use Theorem 2.7.

(3) If R is right noetherian, then it is well known that every finitely
generated injective right R-module is a direct sum of finitely generated inde-
composable injective right R-modules. Then use Theorem 2.7. �

Remark 2.9. In general, the classes of simple right R-modules and indecom-
posable projective right R-modules are not Baer–Kaplansky by [18, Exam-
ple 2.16].

3. Baer–Kaplansky Classes in Finitely Accessible Categories

Following Crawley-Boevey [4] and Prest [25], we recall some terminology
on finitely accessible additive categories. An additive category C is called
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finitely accessible if it has direct limits, the class of finitely presented objects is
skeletally small, and every object is a direct limit of finitely presented objects.
The category of unitary modules over a ring with enough idempotents, the
category of torsion abelian groups [25, Example 10.2] and the category of
torsion-free abelian groups [25, Examples 10.5] are typical examples of finitely
accessible additive categories.

Finitely accessible additive categories offer a suitable framework for
defining purity. Let C be a finitely accessible additive category. By a se-
quence 0 → X

f→ Y
g→ Z → 0 in the additive category C we mean a pair of

composable morphisms f : X → Y and g : Y → Z such that gf = 0. The
sequence is called pure exact if it induces an exact sequence of abelian groups
0 → HomC(P,X) → HomC(P, Y ) → HomC(P,Z) → 0 for every finitely pre-
sented object P of C. This implies that f and g form a kernel–cokernel pair,
that f is a monomorphism and g an epimorphism. In such a pure exact se-
quence, f is called a pure monomorphism and g a pure epimorphism. An
object M of C is called pure-injective if every pure exact sequence in C with
the first term M splits, and pure-projective if every pure exact sequence in C
with the third term M splits.

Proposition 3.1 ([4, Theorem 1.4 and Lemma 3.1], [9, Theorem 1.1], [15,
Lemma 3]). Let C be a finitely accessible additive category. Then, there is
a Grothendieck category A(C) (uniquely determined up to equivalence) and
a fully faithful functor H : C → A(C) (naturally isomorphic to the inclusion
functor), which induces an equivalence between C and the full subcategory of
flat objects of A(C). Moreover, a sequence in C is pure exact if and only if H
takes it into an exact sequence in A(C).

The above equivalence restricts to equivalences between:

(1) Pure-projective objects of C and projective objects of A(C).
(2) Finitely presented objects of C and finitely generated projective objects

of A(C).
(3) Pure-injective objects of C and flat cotorsion objects of A(C).

Remark 3.2. Let C be a finitely accessible additive category. Then A(C) is
equivalent to any of the following categories:

(1) The category (fp(C)op,Ab) of all contravariant additive functors from
the full subcategory fp(C) of finitely presented objects of C to the cate-
gory Ab of abelian groups [4, Theorem 1.4].

(2) The category Mod(A) of unitary right A-modules, where A is the functor
ring (with enough idempotents) of C [9, Theorem 1.1].

(3) The right Freyd category Fpproj(C), where pproj(C) is the full subcat-
egory of pure-projective objects of C (see [3, Corollary 3.16] and [10,
Theorem 1.4]).

Remark 3.3. For C = Mod(R), there are further restricted equivalences in-
volving flat or FP -injective right R-modules and corresponding objects in
the associated functor category [5,23].
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Theorem 3.4. Let C be a finitely accessible additive category. Let X and Y be
objects of C, such that X has a direct sum decomposition into indecomposable
subobjects and there exists an IP -isomorphism Φ : EndC(X) → EndC(Y ). If
one of the following conditions holds:
(1) Y/X is pure-projective.
(2) X is pure-injective.
then X and Y are isomorphic.

Proof. Consider the above functor H : C → A(C).
(1) Since H preserves direct sums and indecomposables, H(X) has a di-

rect sum decomposition into indecomposable subobjects in A(C). In addition,
H(Y/X) is projective in A(C) by Proposition 3.1. Since H is fully faithful,
we have the ring isomorphisms

EndA(C)(H(X)) ∼= EndC(X)
Φ∼= EndC(Y ) ∼= EndA(C)(H(Y )).

Denote by Δ : EndA(C)(H(X)) → EndA(C)(H(Y )) their composition. Since
H preserves indecomposables and Φ is an IP -isomorphism, so is Δ. By
Theorem 2.2, there is a pure exact sequence 0 → H(X) → H(Y ) → N → 0.
Since H(Y ) is flat, so is N . Write N ∼= H(Z) for some object Z of C. Then, we
have an induced sequence 0 → X → Y → Z → 0 in C with Z pure-projective.
It follows that N ∼= H(Y )/H(X) is projective in A(C) by Proposition 3.1.
Then, H(X) ∼= H(Y ) by Corollary 2.3, and so, X ∼= Y .

(2) As in the proof of (1), there exists an IP -isomorphism

Δ : EndA(C)(H(X)) → EndA(C)(H(Y )).

Then, H(X) ∼= H(Y ) by Corollary 2.4. Since H is fully faithful, we have
X ∼= Y . �

Corollary 3.5. Let C be a finitely accessible additive category. Let X and
Y be objects of C, such that X is Σ-pure-injective. If there exists an IP -
isomorphism Φ : EndC(X) → EndC(Y ), then X and Y are isomorphic.

Proof. Consider the above functor H : C → A(C). Then, H(X) and H(Y )
are flat objects of A(C) by Proposition 3.1. Since X is a Σ-pure-injective
object of C, H(X) is a flat Σ-cotorsion object of A(C). Then, H(X) has
an indecomposable decomposition by [14, Proposition 7]. Since H is fully
faithful, it follows that X has an indecomposable decomposition in C. Hence,
X ∼= Y by Theorem 3.4. �

Recall that a finitely accessible additive category C is called Krull–
Schmidt if every finitely presented object of C has a finite direct sum de-
composition into subobjects with local endomorphism rings (e.g., see [2]).

The following result is known for finitely accessible additive categories
with products [2, Proposition 4.1.15]. Its proof works in any finitely accessible
additive category and we include it for reader’s convenience.

Proposition 3.6. Let C be a finitely accessible additive category. Then C is
Krull–Schmidt if and only if A(C) is semiperfect.
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Proof. An object X of C is finitely presented if and only if H(X) is a finitely
generated projective object of A(C) by Proposition 3.1. Then, C is Krull–
Schmidt if and only if every finitely generated projective object of A(C) has
a finite direct sum decomposition into finitely generated projective objects
of A(C) with local endomorphism ring, equivalently projective local objects
of A(C) (e.g., see [2, Lema 4.1.13]). But this is equivalent to A(C) being
semiperfect [29, 49.10]. �

Theorem 3.7. Let C be a Krull–Schmidt finitely accessible additive category.
The following are equivalent:
(1) The class of finitely presented objects of C is Baer–Kaplansky.
(2) The class of pure-projective indecomposable objects of C is Baer–

Kaplansky.
(3) The class of finitely presented indecomposable objects of C is Baer–

Kaplansky.

Proof. We use Propositions 2.1 and 3.1 repeatedly. The class of finitely pre-
sented objects of C is Baer–Kaplansky if and only if so is the class of finitely
generated projective objects of A(C). However, C is Krull–Schmidt if and only
if A(C) is semiperfect by Proposition 3.6. Then, the class of finitely generated
projective objects of A(C) is Baer–Kaplansky if and only if so is the class of
projective local objects of A(C) (by Corollary 2.8) if and only if so is the class
of projective indecomposable objects of A(C) (e.g., see [2, Lema 4.1.13]). The
class of pure-projective indecomposable objects of C is Baer–Kaplansky if and
only if so is the class of projective indecomposable objects of A(C). The class
of finitely presented indecomposable objects of C is Baer–Kaplansky if and
only if so is the class of finitely generated projective indecomposable objects
of A(C). Now, the conclusion follows. �

Recall that a finitely accessible additive category C is called pure semi-
simple if every pure exact sequence in C splits [3]. Note that C is pure semisim-
ple if and only if every object of C is pure-injective if and only if every object
of C is pure-projective. In addition, a finitely accessible additive category C
with products is pure semisimple if and only if every object of C is isomorphic
to a direct sum of indecomposable objects [12, Theorem 3.2].

The following result is known for finitely accessible additive categories
with products [2, Proposition 4.1.4]. Its proof works in any finitely accessible
additive category and we include it for reader’s convenience. It implies that
every pure semisimple finitely accessible category is Krull–Schmidt.

Proposition 3.8. Let C be a finitely accessible additive category. Then, C is
pure semisimple if and only if A(C) is perfect.

Proof. Assume that C is pure semisimple. Let N ∼= H(Z) be a flat object of
A(C) for some object Z of C. Since Z is pure-projective, N is projective by
Proposition 3.1. Hence, A(C) is perfect.

Conversely, assume that A(C) is perfect. Let Z be an object of C. Then,
the flat object H(Z) of A(C) must be projective. Then, Z is pure-projective
by Proposition 3.1. Hence, C is pure semisimple. �
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Corollary 3.9. Let C be a pure semisimple finitely accessible additive category.
Then, the class of finitely presented objects of C is Baer–Kaplansky if and
only if the class of (finitely presented) indecomposable objects of C is Baer–
Kaplansky.

Proof. This follows by Propositions 3.6, 3.8 and Theorem 3.7. �

Example 3.10. (1) Let C be a finitely accessible additive category. Assume
that the functor ring R of C is local artinian with radical W , such that W 2 =
0, Q = R/W is commutative, dim(QW ) = 1 and dim(WQ) = 2. Consider the
functor H ′ = FH : C → Mod(R), where H : C → A(C) is the above functor
and F : A(C) → Mod(R) is an equivalence of categories. By [18, Example 2.3],
the class of projective right R-modules (and the class of injective right R-
modules) is Baer–Kaplansky. By Proposition 3.1, an object X of C is pure-
projective if and only if H ′(X) is projective in Mod(R). Hence, the class of
pure-projective objects of C is Baer–Kaplansky. On the other hand, since R
is right perfect, C is pure semisimple by Proposition 3.8. Therefore, every
object of C is pure-projective. This shows that the class of all objects of C is
Baer–Kaplansky.

(2) Let F be a field and R =
[

F 0
0 F

]

. Consider C = Mod(R), which

is (pure) semisimple. Let e1 =
[

1 0
0 0

]

, e2 =
[

0 0
0 1

]

∈ R. Then, e1R =
[

F 0
0 0

]

and e2R =
[

0 0
0 F

]

are (finitely presented) indecomposable. By [18,

Example 2.16], e1R and e2R are not isomorphic, but EndR(e1R) ∼= e1Re1
∼=

e2Re2
∼= EndR(e2R). Hence, the class of (finitely presented) indecomposable

right R-modules is not Baer–Kaplansky.

4. Baer–Kaplansky Classes in Exactly Definable Categories

Following Krause [19] and Prest [25], we recall some terminology on exactly
definable additive categories. An additive category C is called exactly defin-
able if it is equivalent to the category Ex(Aop,Ab) of exact contravariant
additive functors from A to the category Ab of abelian groups for some
skeletally small abelian category A. Every finitely accessible additive cate-
gory with products is exactly definable [4, 3.3]. More generally, an additive
category is exactly definable if and only if it is a definable subcategory (in
the sense that it is closed under products, direct limits and pure subobjects)
of a finitely accessible additive category with products [25, Proposition 11.1].
The category of unitary modules over a ring with enough idempotents, the
category of torsion abelian groups [25, Example 10.2], and the category of
torsion-free abelian groups [25, Examples 10.5] are not only finitely accessible
categories, but also exactly definable. Note that a Grothendieck category is
exactly definable if and only if it is finitely accessible [26, Theorem 3.6]. In
general, exactly definable additive categories need not be finitely accessible.
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For instance, the category of divisible abelian groups is a definable subcate-
gory of the category of abelian groups; hence, it is exactly definable, but not
finitely accessible [25, Example 10.3].

Purity may also be defined in exactly definable additive categories. Let
C be an exactly definable additive category. An object M of C is called pure-
injective if for every set I the summation morphism M (I) → M factors
through the canonical morphism M (I) → M I [19]. A sequence 0 → X

f→
Y

g→ Z → 0 in C is called pure exact if it induces an exact sequence of abelian
groups 0 → HomC(Z,Q) → HomC(Y,Q) → HomC(X,Q) → 0 for every pure-
injective object Q of C. This implies that f and g form a kernel–cokernel
pair, that f is a monomorphism and g an epimorphism. In such a pure exact
sequence, f is called a pure monomorphism and g a pure epimorphism. An
object M of C is called pure-projective if every pure exact sequence in C with
the third term M splits.

Proposition 4.1. Let C be an exactly definable additive category. Then there
is a locally coherent Grothendieck category D(C) (uniquely determined up to
equivalence) and a fully faithful functor T : C → D(C) (naturally isomorphic
to the inclusion functor), which induces an equivalence between C and the
full subcategory of FP -injective objects of D(C). Moreover, a sequence in C
is pure exact if and only if T takes it into an exact sequence in D(C).

The above equivalence restricts to equivalences between:

(1) Pure-injective objects of C and injective objects of D(C).
(2) Pure-projective objects of C and FP -projective FP -injective objects of

D(C).
(3) Finitely presented objects of C and finitely presented FP -injective objects

of D(C).

Proof. The equivalence and (1) follow by [19, Theorem 2.8], while (3) follows
by [4, Lemma 3.3] and [2, Proposition 1.6.4].

(2) Let Z be a pure-projective object of C. Let K be an FP -injective
object of D(C), and let 0 → K → M → T (Z) → 0 be a short exact se-
quence in D(C). Since the class of FP -injective objects of D(C) is closed
under extensions, M is also FP -injective. Hence, the short exact sequence
becomes 0 → T (X) → T (Y ) → T (Z) → 0, which yields a pure exact se-
quence 0 → X → Y → Z → 0 in C. But this splits, since Z is pure-projective.
Hence, the initial short exact sequence splits, which shows that T (Z) is FP -
projective.

Now, let T (Z) be an FP -injective FP -projective object of D(C) for
some object Z of C. Let 0 → X → Y → Z → 0 be a pure exact sequence
in C. This induces a short exact sequence 0 → T (X) → T (Y ) → T (Z) → 0
in D(C), which splits, because T (Z) is FP -projective. Then, the initial pure
exact sequence 0 → X → Y → Z → 0 splits, which shows that Z is pure-
projective. �

Remark 4.2. Let C be an exactly definable additive category. Then D(C) is
equivalent to any of the following categories:
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(1) The category Lex(Aop,Ab) of left exact contravariant additive functors
from A to the category Ab of abelian groups for some skeletally small
abelian category A [19, Lemma 1.1].

(2) The category Flat(Mod(B)) of flat unitary right B-modules, where B
is a two-sided panoramic ring (with enough idempotents) [6, Proposi-
tion 2.1].

(3) The left Freyd category Fpinj(C), where pinj(C) is the full subcategory of
pure-injective objects of C (see [3, Corollary 3.8] and [10, Theorem 1.4]).

Remark 4.3. For C = Mod(Rop), there are further restricted equivalences
involving flat or FP -injective left R-modules and corresponding objects in
the associated functor category [5,23].

Example 4.4. (1) Consider C = Ab. The class of finitely generated (equiva-
lently, finitely presented) abelian groups is Baer–Kaplansky [18, Example 1.3
(i)]. Then, the class of finitely generated projective objects of A(C) is Baer–
Kaplansky by Propositions 2.1 and 3.1. In addition, the class of finitely pre-
sented FP -injective objects of D(C) is Baer–Kaplansky by Propositions 2.1
and 4.1.

(2) Consider C = Mod(R), where R is a primary uniserial artinian ring.
The class of all objects of the module category Mod(R) is Baer–Kaplansky
by [24, Lemma 7.4]. Then, the class of flat objects of A(C) is Baer–Kaplansky
by Propositions 2.1 and 3.1. In addition, the class of FP -injective objects of
D(C) is Baer–Kaplansky by Propositions 2.1 and 4.1.

(3) Consider C = Mod(R), where R = Z/2Z⊕Z/3Z. Then R is semisim-
ple, and so A(C) and D(C) are regular (e.g., see [29, 52.8] and [22, p. 1671]).
It follows that every object of A(C) is flat and every object of D(C) is FP -
injective (see [28, Theorem 4] and [29, 37.6]). The class of all objects of the
module category Mod(R) is Baer–Kaplansky by [18, Example 2.15]. Then,
the class of all objects of A(C) is Baer–Kaplansky by Propositions 2.1 and 3.1.
In addition, the class of all objects of D(C) is Baer–Kaplansky by Proposi-
tions 2.1 and 4.1.

Theorem 4.5. Let C be an exactly definable additive category. Let X and Y be
objects of C, such that X has a direct sum decomposition into indecomposable
subobjects and there exists an IP -isomorphism Φ : EndC(X) → EndC(Y ). If
one of the following conditions hold:
(1) X is pure-injective.
(2) Y/X is pure-projective.
then X and Y are isomorphic.

Proof. Consider the above functor T : C → D(C).
(1) Since T preserves direct sums and indecomposables, T (X) has a di-

rect sum decomposition into indecomposable subobjects in D(C). In addition,
T (X) is injective in D(C) by Proposition 4.1. Since T is fully faithful, we have
the ring isomorphisms

EndD(C)(T (X)) ∼= EndC(X)
Φ∼= EndC(Y ) ∼= EndD(C)(T (Y )).
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Denote by Δ : EndD(C)(T (X)) → EndD(C)(T (Y )) their composition. Since
T preserves indecomposables and Φ is an IP -isomorphism, so is Δ. Then,
T (X) ∼= T (Y ) by Corollary 2.3, and so, X ∼= Y .

(2) As in the proof of (1), there exists an IP -isomorphism

Δ : EndD(C)(T (X)) → EndD(C)(T (Y )).

By Theorem 2.2, there is a pure exact sequence 0 → T (X) → T (Y ) → N →
0. Since T (Y ) is FP -injective and D(C) is locally coherent, N is also FP -
injective. Write N ∼= T (Z) for some object Z of C. Then, we have an induced
sequence 0 → X → Y → Z → 0 in C with Z pure-projective. It follows
that N ∼= T (Y )/T (X) is FP -projective in D(C) by Proposition 4.1. Then,
T (X) ∼= T (Y ) by Corollary 2.5, and so X ∼= Y . �

Corollary 4.6. Let C be an exactly definable additive category. Let X and
Y be objects of C, such that X is Σ-pure-injective. If there exists an IP -
isomorphism Φ : EndC(X) → EndC(Y ), then X and Y are isomorphic.

Proof. Consider the above functor T : C → D(C). Then, T (X) and T (Y ) are
injective objects of D(C) by Proposition 4.1. Since X is a Σ-pure-injective
object of C, T (X) is a Σ-injective object of D(C). Then, T (X) has an inde-
composable decomposition. Since T is fully faithful, it follows that X has an
indecomposable decomposition in C. Hence, X ∼= Y by Theorem 4.5. �

An exactly definable additive category C is called pure semisimple if
every pure exact sequence in C splits. Note that C is pure semisimple if and
only if every object of C is pure-injective if and only if every object of C is
pure-projective. In addition, the proof of [12, Theorem 3.2] implies that an
exactly definable additive category C is pure semisimple if and only if every
object of C is isomorphic to a direct sum of indecomposable objects.

Proposition 4.7. Let C be an exactly definable additive category. Then, C is
pure semisimple if and only if D(C) is locally noetherian.

Proof. Assume that C is pure semisimple. Let K be an FP -injective object
of D(C). Then K ∼= T (X) for some object X of C. Since X is pure-injective,
K is injective by Proposition 4.1. Hence, D(C) is locally noetherian (e.g., see
[20, Proposition A.11]).

Conversely, assume that D(C) is locally noetherian. Let X be an object
of C. Then, the FP -injective object T (X) of D(C) must be injective (e.g., see
[20, Proposition A.11]). Then, X is pure-injective by Proposition 4.1. Hence,
C is pure semisimple. �

Theorem 4.8. Let C be a pure semisimple exactly definable additive category.
Then, the class of finitely presented objects of C is Baer–Kaplansky if and
only if the class of finitely presented indecomposable objects of C is Baer–
Kaplansky.

Proof. Consider the above functor T : C → D(C). By Propositions 4.1 and 4.7,
C is equivalent to the full subcategory of injective objects of D(C). The func-
tor T preserves and reflects finitely presented objects by Proposition 4.1.



90 Page 14 of 17 S. Crivei and D. Keskin Tütüncü MJOM

By Corollary 2.8, the class of finitely generated injective objects of D(C) is
Baer–Kaplansky if and only if the class of finitely generated indecomposable
injective objects of D(C) is Baer–Kaplansky. Now, the conclusion follows by
Proposition 2.1. �

5. Baer–Kaplansky Classes in Categories σ[M ]

Let R be a ring with identity and M a left R-module. Then, the category
σ[M ] is the full subcategory of the category of left R-modules consisting of
modules isomorphic to M -generated modules [29, Section 15]. It is the small-
est Grothendieck category containing M . For instance, when M = R, σ[M ]
is the category of left R-modules. In addition, when C is a coalgebra over a
field k, C is a left C∗-module, where C∗ = Homk(C, k), and σ[C∗C] is the
category of right C-comodules [8]. Since it is a Grothendieck category, all
properties on Baer–Kaplansky classes in Grothendieck categories established
earlier in the paper are valid in σ[M ]. However, let us note that in general
σ[M ] need not be finitely accessible [27, Example 1.7]. In addition, since a
Grothendieck category is exactly definable if and only if it is finitely accessi-
ble [26, Theorem 3.6], in general, σ[M ] need not be exactly definable. Hence,
one cannot apply to σ[M ] the results on finitely accessible and exactly defin-
able given earlier in the paper. Nevertheless, we shall see that there are some
similar results. Let us note that one may define purity, pure-injectivity and
pure-projectivity in categories σ[M ] in a similar way as for a usual module
category [29, Section 34]. If (Ui)i∈I is a representing set of all finitely pre-
sented objects of σ[M ], then one may construct a certain ring with enough
idempotents associated to σ[M ], called the functor ring of σ[M ] (see [29,
Section 52]).

Proposition 5.1 ([29, 52.2]). Let R be a ring with identity, M a left R-module
and T the functor ring of σ[M ]. Let (Ui)i∈I be a representing set of all finitely
presented objects of σ[M ] and U =

⊕
i∈I Ui. Assume that U is a generator

in σ[M ]. Then, there is a fully faithful functor F : σ[M ] → (T )Mod, which
induces an equivalence between σ[M ] and the full subcategory of flat left T -
modules. Moreover, a sequence in σ[M ] is pure exact if and only if F takes
it into a (pure) exact sequence in (T )Mod.

The above equivalence restricts to equivalences between:

(1) Pure-projective objects of σ[M ] and projective left T -modules.
(2) Finitely presented objects of σ[M ] and finitely generated projective left

T -modules.

Theorem 5.2. Let R be a ring with identity and let M be a left R-module.
Let X and Y be objects of σ[M ], such that X has a direct sum decomposition
into indecomposable subobjects and Y/X is pure-projective. If there exists an
IP -isomorphism Φ : EndR(X) → EndR(Y ), then X and Y are isomorphic.

Proof. This follows in a similar way as Theorem 3.4, using Proposition 5.1.
�
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Recall that a left R-module M is called pure semisimple if every pure
exact sequence in σ[M ] splits. Note that M is pure semisimple if and only if
every object of σ[M ] is pure-injective if and only if every object of σ[M ] is
pure-projective. In addition, M is pure semisimple if and only if every object
of σ[M ] is isomorphic to a direct sum of (finitely presented) indecomposable
objects [29, 53.4].

Proposition 5.3 ( [29, 53.4]). Let R be a ring with identity, M a left R-
module and T the functor ring of σ[M ]. Let (Ui)i∈I be a representing set of
all finitely presented objects of σ[M ] and U =

⊕
i∈I Ui. Then, M is pure

semisimple if and only if U is a generator in σ[M ] and T is left perfect if and
only if U is a generator in σ[M ] and every indecomposable object is finitely
presented in σ[M ].

Corollary 5.4. Let R be a ring with identity and let M be a pure semisimple
left R-module. Then the class of finitely presented objects of σ[M ] is Baer–
Kaplansky if and only if the class of (finitely presented) indecomposable ob-
jects of σ[M ] is Baer–Kaplansky.

Proof. This follows in a similar way as Theorem 4.8, using Propositions 5.1
and 5.3. �
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[3] Cárceles, A.I., Garćıa, J.L.: Embeddings of exactly definable and finitely acces-
sible additive categories into Freyd categories. Commun. Algebra 37, 3525–3547
(2009)

[4] Crawley-Boevey, W.: Locally finitely presented additive categories. Commun.
Algebra 22, 1641–1674 (1994)

[5] Crivei, S.: Flat weakly FP -injective and FP -projective weakly flat functors.
Results Math. 71, 1031–1045 (2017)
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