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Existence and Regularity Results for Some
Elliptic Equations with Degenerate
Coercivity and Singular Quadratic
Lower-Order Terms

Rezak Souilah

Abstract. In this paper, we study the existence and regularity results
for some elliptic equations with degenerate coercivity and singular qua-
dratic lower-order terms with natural growth with respect to the gradi-
ent. The model problem is{

−div
(

∇u
(1+|u|)γ

)
+ |∇u|2

uθ = f + ur in Ω,

u = 0 on ∂Ω,
(0.1)

where Ω is a bounded open subset in R
N , 0 < θ < 1, γ > 0 and

0 < r < 2−θ. We will prove existence results for solutions under various
assumptions on the summability of the source f .

Mathematics Subject Classification. 35J62, 35J70, 35J75.

Keywords. Nonlinear elliptic equations, singular quadratic lower-order
terms, degenerate coercivity.

1. Introduction

This paper will deal with the following problem{
−div (M(x, u)∇u) + b(x) |∇u|2

uθ = λur + f in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded open subset in R
N (N > 2), and M : Ω × R → R

N2
is

symmetric Carathéodory matrix function satisfying for almost every x ∈ Ω,
for every (s, ξ) ∈ R × R

N , and for some real number γ > 0

|M(x, s)| ≤ β, M(x, s)ξ · ξ ≥ α

(a(x) + |s|)γ |ξ|2, (1.2)
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where α > 0, β > 0 and a(x) is measurable function verifying for some
positive numbers ζ, ρ the condition

0 < ζ ≤ a(x) ≤ ρ. (1.3)

We furthermore suppose that

0 < θ < 1, 0 < r < 2 − θ, λ ≥ 0, (1.4)
f ≥ 0, f �≡ 0, (1.5)
f ∈ Lm(Ω), m ≥ 1, (1.6)

and that b(x) is measurable function satisfying for some positive numbers μ,
ν the condition

0 < μ ≤ b(x) ≤ ν. (1.7)
When the singular lower-order term does not appear in (1.1) (i.e., b(x) ≡ 0),
and the nonlinear right-hand term is not present (i.e., λ = 0), the exis-
tence and regularity of solutions to problem (1.1) are proved in [9] under the
hypothesis M(x, s) = a(x, s)IN×N , where a : Ω × R → R is a Carathéodory
function satisfying the following condition:

α

(1 + |s|)γ
≤ a(x, s) ≤ β, with 0 ≤ γ ≤ 1.

The extension of this work to nonlinear case is investigated in [5]. Other
authors studied the regularizing effects of some lower-order terms, see, among
others, [8,15,17]. If λ = 1, 0 ≤ γ < 1, and 0 ≤ r < 1 − γ, the problem (1.1),
have been treated in [24], under the hypothesis

|M(x, t) − M(x, s)| ≤ L(t − s), for a.e. x ∈ Ω and for every s, t ∈ R,

where L : R → R is a non-decreasing function, such that L(0) = 0, and∫
0+

dt
L(t) = +∞. Existence and regularity results for the problem (1.1) have

been obtained in [16] provided λ = 0, and M(x, s) = a(x)
(1+|s|)γ IN×N , where a :

Ω −→ R is a measurable function such that α ≤ a(x) ≤ β a.e. x ∈ Ω, for some
positive constants α and β. In the coercive case (i.e., γ = 0), the problem (1.1)
is studied recently by many researchers under various assumptions on θ, λ,
f , and the singular lower-order term. Starting from the classical reference [6],
where the author considered the problem (1.1), under the conditions λ = 0,
with a singular quadratic lower-order term has the form Q(x,u)∇u·∇u

uθ , where
Q : Ω × R → R

N2
is symmetric Carathéodory matrix function satisfying

a|ξ|2 ≤ Q(x, s)ξξ ≤ b|ξ|2, a.e. x ∈ Ω, for every(s, ξ) ∈ R × R
N . (1.8)

In [1], the authors showed the existence of positive solutions for θ < 2 and
non-existence for θ ≥ 2. When λ = 1, and M(x, s) = A(x), in [14], existence
and regularity results for the problem (1.1) were proved. For a deeper insight
on the subject of elliptic problems with singular quadratic lower-order terms,
we refer the readers to [2–4,11,18–21,23,25] and references therein.

In the study of problem (1.1), there are two difficulties, the first one
is the fact that, due to hypothesis (1.2), the differential operator A(u) =
−div (M(x, u)∇u) though well defined between H1

0 (Ω) and its dual H−1(Ω),
but it fails to be coercive on H1

0 (Ω) when u is unbounded. Due to the lack of
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coercivity, the classical theory for elliptic operators acting between spaces in
duality (see [22]) can not be applied even if the data f are sufficiently regular
(see [27]). The second difficulty comes from the lower-order term: the qua-
dratic dependence with respect to the gradient and the singular dependence
with respect to u. We overcome these difficulties by replacing operator A by
another one defined by means of truncations, and approximating the singular
term by nonsingular one in such a way that the corresponding approximated
problems have finite energy solutions.

2. Statement of Main Results

The first result deals with a given f which yields unbounded solutions in
energy space H1

0 (Ω).

Theorem 2.1. Let us assume that (1.2)–(1.5), and (1.7) hold true and that
f ∈ Lm(Ω), with

2N

2N − θ(N − 2)
≤ m <

N

2
. (2.1)

Then, there exists at least a solution u of (1.1), i.e., a function u ∈ H1
0 (Ω)∩

L(2−θ)m∗∗
(Ω) such that u > 0 in Ω, |∇u|2

uθ is in L1(Ω), and∫
Ω

M(x, u)∇u · ∇φ +
∫

Ω

b(x)
|∇u|2

uθ
φ =

∫
Ω

(λur + f) φ, (2.2)

for every φ in H1
0 (Ω) ∩ L∞(Ω).

The next result considers the case where f has a high summability.

Theorem 2.2. Suppose that assumptions (1.2)–(1.5), and (1.7) hold, and fur-
thermore suppose that f ∈ Lm(Ω), with m ≥ N

2 . Then, there exists at least a
solution u of (1.1), i.e., a function u ∈ H1

0 (Ω) ∩ L∞(Ω) such that u > 0 in
Ω, |∇u|2

uθ is in L1(Ω), and∫
Ω

M(x, u)∇u · ∇φ +
∫

Ω

b(x)
|∇u|2

uθ
φ =

∫
Ω

(λur + f) φ, (2.3)

for every φ in H1
0 (Ω) ∩ L∞(Ω).

The next result deals with the case when the summability of f gives
the existence of an infinite energy solution, belonging to u ∈ W 1,q

0 (Ω), with
1 < q < 2.

Theorem 2.3. Let us assume that (1.2)–(1.5), and (1.7) hold true and that
f ∈ Lm(Ω), with

1 < m <
2N

2N − θ(N − 2)
. (2.4)

Then, there exists at least a solution u of (1.1), verifying u ∈ W 1,q
0 (Ω) ∩

L(2−θ)m∗∗
(Ω), with q = Nm(2−θ)

N−mθ , in the sense that u > 0 in Ω, |∇u|2
uθ belongs

to L1(Ω), and∫
Ω

M(x, u)∇u · ∇φ +
∫

Ω

b(x)
|∇u|2

uθ
φ =

∫
Ω

(λur + f) φ, (2.5)
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for every φ ∈ C1
0(Ω).

The last result deals with the case where the source f belongs to L1(Ω).

Theorem 2.4. If hypotheses (1.2)–(1.5), and (1.7) hold and f ∈ L1(Ω), then
there exists at least a solution u of (1.1), satisfying u ∈ W 1,δ

0 (Ω), with δ =
N(2−θ)

N−θ , in the sense that u > 0 in Ω, |∇u|2
uθ belongs to L1(Ω), and∫

Ω

M(x, u)∇u · ∇φ +
∫

Ω

b(x)
|∇u|2

uθ
φ =

∫
Ω

(λur + f) φ, (2.6)

for every φ ∈ C1
0(Ω).

Remark 2.5. Notice that the results of previous theorems do not depend on
γ and are similar to those obtained in the coercive case (i.e., γ = 0), see [14],
while, in [9] under the hypotheses λ = 0, 0 ≤ γ < 1 and b(x) ≡ 0 (i.e., the
lower-order term does not exist), the authors proved that

1. if f ∈ Lm(Ω) with 2N
N+2−γ(N−2) ≤ m < N

2 , then the problem (1.1)
admits a solution u belonging to H1

0 (Ω) ∩ Lm∗∗(1−γ)(Ω).
2. if f ∈ Lm(Ω) with N

N+1−γ(N−1) < m < 2N
N+2−γ(N−2) , then the problem

(1.1) admits a solution u belonging to W 1,q
0 (Ω), with q = Nm(1−γ)

N−m(1+γ) < 2.

3. if f ∈ Lm(Ω) with 1 ≤ m ≤ max
[
1, N

N+1−γ(N−1)

]
, then the problem

(1.1) admits only an entropy solution u beloging to Marcinkiewicz space

Mm∗∗(1−γ)(Ω) with |∇u| ∈ M
Nm(1−γ)

N−m(1+γ) (Ω).
If we compare these results with those of previous theorems, we can easily
see that the singular lower-order term improves the regularity of solutions of
problem (1.1).

Remark 2.6. In the case where γ = 0, f belongs to L1(Ω) and the lower-
order term does not exist (i.e., b(x) ≡ 0), the solution u of problem (1.1)
belongs only to W 1,s

0 (Ω) for every s < N
N−1 , see [10,26]. Once again, the

lower-order term improves the regularity of solutions of problem (1.1), since
N

N−1 < N(2−θ)
N−θ (due to the fact that 0 < θ < 1). In [24], under the conditions

b(x) ≡ 0, 0 ≤ γ < 1 and 0 ≤ r < 1−γ, the authors proved only the existence
of renormalized solutions for the problem (1.1).

To prove our main results, we will use a standard approximation pro-
cedure similarly to [6,13,14,16]. First, we approximate the problem (1.1) by
a sequence of non-degenerate and non-singular quasilinear quadratic prob-
lems. Then, we prove both a priori estimates and convergence results on the
sequence of approximating solutions. Next, by the strong maximum principle,
we prove that the weak limit of the approximate solutions is strictly positive
in Ω. In the end, we pass to the limit in the approximate problems.

3. The Approximated Problem

Hereafter, we denote by Tk the truncation function at the level k > 0, defined
by Tk(s) = max{−k,min{s, k}} for every s ∈ R.
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Let 0 < ε < 1, we approximate the problem (1.1) by the following
non-degenerate and non-singular problem{

−div
(
M(x, T 1

ε
(uε))∇uε

)
+ b(x) uε|∇uε|2

(|uε|+ε)θ+1 = λ|uε|r
1+ε|uε|r + fε in Ω,

uε = 0 on ∂Ω,
(3.1)

where fε = T 1
ε
(f). The problem (3.1) admits at least one solution uε ∈

H1
0 (Ω)∩L∞(Ω) by [13, Theorem 2]. Due to the fact that fε ≥ 0 (since f ≥ 0),

and that the quadratic lower-order term has the same sign of the solution,
it is easy to prove by taking u−

ε as test function in the weak formulation of
problem (3.1) that uε ≥ 0. Therefore, uε solves{

−div
(
M(x, T 1

ε
(uε))∇uε

)
+ b(x) uε|∇uε|2

(uε+ε)θ+1 = λur
ε

1+εur
ε

+ fε in Ω,

uε = 0 on ∂Ω,
(3.2)

in the sense that uε satisfies∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇φ +

∫
Ω

b(x)
uε|∇uε|2

(uε + ε)θ+1
φ

=
∫

Ω

λur
ε

1 + εur
ε

φ +
∫

Ω

fε φ,

for every φ in H1
0 (Ω) ∩ L∞(Ω).

4. A Priori Estimates

We are now going to prove some a priori estimates on the sequence of approx-
imated solutions uε. The following lemma gives a control of the lower-order
term.

Lemma 4.1. Let uε be the solutions to problems (3.2). Then it results∫
Ω

b(x)
uε|∇uε|2

(uε + ε)θ+1
≤ λ

∫
Ω

ur
ε +

∫
Ω

f. (4.1)

Proof. Following [11,14], for any fixed h > 0, let us consider Th(uε)
h as a test

function in the approximated problem (3.2). Dropping the nonnegative first
term, we obtain∫

Ω

b(x)
uε|∇uε|2

(uε + ε)θ+1

Th(uε)
h

≤ λ

∫
Ω

ur
ε

Th(uε)
h

+
∫

Ω

fε
Th(uε)

h
. (4.2)

Using the fact that fε ≤ f and Th(uε)
h ≤ 1, then∫

Ω

b(x)
uε|∇uε|2

(uε + ε)θ+1

Th(uε)
h

≤ λ

∫
Ω

ur
ε +

∫
Ω

f. (4.3)

Letting h tend to 0, we deduce (4.1) by Fatou’s Lemma. �

In the sequel, we will need the following lemma
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Lemma 4.2. Let η > 0 and let 0 < ε < 1; then there exists C0 > 0 such that

αη(t + ε)θ−1

(ρ + t)γ
+

μt

t + ε
≥ C0.

for every t ≥ 0.

Proof. Clearly, if t ≥ ε we have μt
t+ε ≥ μ

2 , while if t < ε we have αη(t+ε)θ−1

(ρ+t)γ ≥
αη

(ρ+ε)γ(2ε)1−θ ≥ αη
21−θ(ρ+1)γ , since ε < 1; therefore, the claim is proved. �

Lemma 4.3. Assume that m satisfies (2.1), let f belongs to Lm(Ω), and let
uε be a solution of (3.2). Then, the sequence uε is bounded in H1

0 (Ω) ∩
Lm∗∗(2−θ)(Ω).

Proof. Choosing now η = N(m−1)(2−θ)
N−2m = m∗∗(2−θ)

m′ . Note that by (2.1) and
(1.4), we have η > 0. Testing (3.2) with (uε + ε)η − εη, we get

η

∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇uε(uε + ε)η−1 +

∫
Ω

b(x)
uε(uε + ε)η|∇uε|2

(uε + ε)θ+1

= εη

∫
Ω

b(x)
uε|∇uε|2

(uε + ε)θ+1
+

∫
Ω

[
λur

ε

1 + εuε
+ fε

]
[(uε + ε)η − εη] .

Using (1.2), (1.3), (1.7), and dropping the nonpositive term on the right-hand
side, we get ∫

Ω

|∇uε|2(uε + ε)η−θ

[
αη(uε + ε)θ−1

(ρ + uε)γ
+

μuε

uε + ε

]

≤ εη

∫
Ω

b(x)
uε|∇uε|2

(uε + ε)θ+1
+

∫
Ω

(λur
ε + fε)(uε + ε)η.

Recalling Lemma 4.2, we have

C0

∫
Ω

|∇uε|2(uε + ε)η−θ ≤ εη

∫
Ω

b(x)
uε|∇uε|2

(uε + ε)θ+1
+

∫
Ω

(λur
ε + fε)(uε + ε)η.

Using (4.1), we get

C0

∫
Ω

|∇uε|2(uε +ε)η−θ ≤ εη

∫
Ω

(λur
ε +fε)+

∫
Ω

λur
ε(uε +ε)η +

∫
Ω

fε(uε +ε)η.

Using the fact that ur
ε ≤ (uε + ε)r, 0 < εη < (uε + ε)η (since uε ≥ 0, 0 < ε <

1, r > 0, and η > 0) and that fε ≤ f , we obtain

C0

∫
Ω

|∇uε|2(uε + ε)η−θ ≤ 2λ

∫
Ω

(uε + ε)η+r + 2
∫

Ω

f(uε + ε)η. (4.4)

Observe that the first term that appears in the left-hand side of the previous
inequality can be rewritten as

C1

∫
Ω

∣∣∣∣∇ [
(uε + ε)

η−θ+2
2 − ε

η−θ+2
2

] ∣∣∣∣
2

, (4.5)
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(4.4) and (4.5) imply

C1

∫
Ω

∣∣∣∣∇ [
(uε + ε)

η−θ+2
2 − ε

η−θ+2
2

] ∣∣∣∣
2

≤ 2λ

∫
Ω

(uε + ε)η+r + 2
∫

Ω

f(uε + ε)η.

(4.6)

Using Sobolev’s inequality (on the left-hand side), and Hölder’s inequality
(on the right-hand side), we obtain(∫

Ω

∣∣(uε + ε)
η−θ+2

2 − ε
η−θ+2

2
∣∣2∗

) 2
2∗

≤ C2

∫
Ω

(uε + ε)η+r

+C3‖f‖Lm(Ω)

[∫
Ω

(uε + ε)ηm′
] 1

m′
.

Since |(t + ε)s − εs|2∗ ≥ C4(t + ε)2
∗s − C4, for every t ≥ 0 (and for suitable

constant C4 independent on ε) we then have(∫
Ω

[
C4(uε + ε)

2∗(η−θ+2)
2 − C4

]) 2
2∗

≤ C2

∫
Ω

(uε + ε)η+r

+C3‖f‖Lm(Ω)

[∫
Ω

(uε + ε)ηm′
] 1

m′
.

(4.7)

Thanks to the choice of η, we have 2∗(η−θ+2)
2 = ηm′ = (2 − θ)m∗∗. Since

2 − θ > r, we have 1 < 2∗
2 = (2−θ)m∗∗

η+2−θ < (2−θ)m∗∗

η+r . Thus, using Hölder
inequality in the first term of the right-hand side of (4.7), we have(∫

Ω

[
(uε + ε)(2−θ)m∗∗ − 1

]) 2
2∗

≤ C5

(∫
Ω

(uε + ε)(2−θ)m∗∗
) η+r

(2−θ)m∗∗

+C6‖f‖Lm(Ω)

[∫
Ω

(uε + ε)(2−θ)m∗∗
] 1

m′
.

(4.8)

Now we point out that 2
2∗ > 1

m′ , since m < N
2 , and that 2

2∗ > η+r
(2−θ)m∗∗ , since

2−θ > r. Therefore, from (4.8), it follows the boundedness of the sequence uε

in L(2−θ)m∗∗
(Ω), which implies that the right-hand side of (4.4) is bounded.

Thus, from (4.4) and the fact that η ≥ θ (since m ≥ 2N
2N−θ(N−2) ), it follows

that ∫
{uε≥1}

|∇uε|2 ≤
∫

Ω

|∇uε|2(uε + ε)η−θ ≤ C. (4.9)

On the other hand, the use of T1(uε) as test function in (3.2) yields∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇T1(uε) +

∫
Ω

b(x)
uε|∇uε|2

(uε + ε)θ+1
T1(uε)

=
∫

Ω

λur
ε

1 + εur
ε

T1(uε) +
∫

Ω

fε T1(uε).
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Dropping the nonnegative lower-order term, using (1.2), (1.3), and the bound-
edness of the sequence uε in L(2−θ)m∗∗

(Ω) (recall that r < (2 − θ)m∗∗), we
obtain

α

(1 + ρ)γ

∫
{uε<1}

|∇T1(uε)|2 ≤ λ

∫
Ω

ur
ε +

∫
Ω

f ≤ C4. (4.10)

From (4.9) and (4.10), we deduce that the sequence uε is bounded in
H1

0 (Ω). �

Lemma 4.4. Assume that m ≥ N
2 , let f belongs to Lm(Ω), and let uε be

a solution of problem (3.2). Then, the sequence uε is bounded in H1
0 (Ω) ∩

L∞(Ω).

Proof. Since 2 − θ > 0, then there exists � > 1 such that

Nr

2(2 − θ + r)
< � <

N

2
. (4.11)

Since f belongs also to L
(Ω), by Lemma 4.3 the sequence uε is bounded in
L(2−θ)
∗∗

(Ω). From (4.11), we have (2−θ)
∗∗

r > N
2 . Hence, the right-hand side

of (3.2) is bounded in Ls(Ω), with s > N
2 . Let k > 0, let us define for t ≥ 0,

the functions

Gk(t) = t − Tk(t), H(t) =

t∫
0

dτ

(ρ + τ)γ
.

Note that the function H is well defined since ρ > 0. Taking Gk(H(uε)) as
test function in (3.2), we get∫

{H(uε)>k}
M(x, T 1

ε
(uε))∇uε · ∇H(uε)

+
∫

{H(uε)>k}
b(x)

uε|∇uε|2
(uε + ε)θ+1

Gk(H(uε))

=
∫

Ω

[
λur

ε

1 + εur
ε

+ fε

]
Gk(H(uε)).

Using (1.2), (1.3), the fact that fε ≤ f , and dropping the nonnegative lower-
order term, we obtain

α

∫
Ω

|∇Gk(H(uε))|2 ≤
∫

Ω

(λur
ε + f)Gk(H(uε)). (4.12)

Since the right-hand side of (4.12) is bounded in Ls(Ω), with s > N
2 , the

inequality (4.12) is exactly the starting point of Stampacchia’s L∞-regularity
proof (see [28]), so that there exists a constant c1 independent of ε such
that 0 ≤ H(uε) ≤ c1. Therefore, the strict monotonicity of H implies the
boundedness of the sequence uε in L∞(Ω). The estimate of the sequence uε

in H1
0 (Ω) is now very easy. In fact, by taking uε as test function in (3.2), we

get
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∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇uε +

∫
Ω

b(x)
|uε|2|∇uε|2
(uε + ε)θ+1

=
∫

Ω

(
λur

ε

1 + εur
ε

+ fε

)
uε.

Using (1.2), (1.3), the boundedness of the sequence uε in L∞(Ω), and drop-
ping the nonnegative lower-order term, we obtain∫

Ω

|∇uε|2 ≤ C
(
‖uε‖r

L∞(Ω) + ‖f‖Lm(Ω)

)
,

so that the sequence uε is bounded in H1
0 (Ω). �

Lemma 4.5. Assume that m satisfies (2.4), let f belongs to Lm(Ω), and let
uε be a solution of (3.2). Then, the sequence uε is bounded in W 1,q

0 (Ω) ∩
Lm∗∗(2−θ)(Ω), where q = Nm(2−θ)

N−mθ . Furthermore, the sequence Tk(uε) is
bounded in H1

0 (Ω) for every k > 0.

Proof. The proof is identical to the one of Lemma 4.3 up to the a priori
estimate of uε in Lm∗∗(2−θ)(Ω), since the assumption m > 1 implies that η >
0. From (4.4), and the fact that the sequence uε is bounded in Lm∗∗(2−θ)(Ω),
we obtain ∫

Ω

|∇uε|2
(uε + ε)θ−η

≤ C, (4.13)

where C is a positive constant independent of ε. Thanks to (2.4) and the
choice of η as in the proof of Lemma 4.3, it is easy to check that θ − η > 0,
and that 1 < q = Nm(2−θ)

N−mθ < 2. Therefore, by Hölder’s inequality, we obtain∫
Ω

|∇uε|q =
∫

Ω

|∇uε|q
(uε + ε)

q(θ−η)
2

(uε + ε)
q(θ−η)

2

≤
[∫

Ω

|∇uε|2
(uε + ε)θ−η

] q
2

[∫
Ω

(uε + ε)
q(θ−η)
2−q

] 2−q
2

≤ C1

[∫
Ω

(uε + ε)
q(θ−η)
2−q

] 2−q
2

. (4.14)

Sobolev inequality on the left-hand side, we get[∫
Ω

|uε|q∗
] q

q∗

≤ C2

[∫
Ω

(uε + ε)
q(θ−η)
2−q

] 2−q
2

. (4.15)

The choice of q, implies that q∗ = q(θ−η)
2−q . Therefore, we have

[∫
Ω

|uε|q∗
] q

q∗

≤ C3

[∫
Ω

(uε + ε)q∗
] θ−η

q∗

+ C4. (4.16)

Since θ − η < 1 < q, then from (4.16), we deduce that the sequence uε

is bounded in Lq∗
(Ω). Going back to (4.14), this in turn implies that the
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sequence uε is bounded in W 1,q
0 (Ω). Moreover, taking Tk(uε) as test function

in (3.2) yields∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇Tk(uε) +

∫
Ω

b(x)
uε|∇uε|2

(uε + ε)θ+1
Tk(uε)

=
∫

Ω

λur
ε

1 + εur
ε

Tk(uε) +
∫

Ω

fε Tk(uε).

Using (1.2), (1.3), the boundedness of the sequence uε in L(2−θ)m∗∗
(Ω) (recall

that r < (2−θ)m∗∗), fε ≤ f , and dropping the nonnegative lower-order term,
we obtain

α

(ρ + k)γ

∫
Ω

|∇Tk(uε)|2 ≤
∫

Ω

[λur
ε + f ] Tk(uε) ≤ C,

so that the sequence Tk(uε) is bounded in H1
0 (Ω) for every k > 0. �

Lemma 4.6. Let f belongs to L1(Ω), and let uε be a solution of (3.2). Then
the sequence uε is bounded in W 1,δ

0 (Ω), where δ = N(2−θ)
N−θ . Moreover, the

sequence Tk(uε) is bounded in H1
0 (Ω) for every k > 0.

Proof. In this proof, C denotes a generic constant independent of ε, whose
value might change from line to line. Going back to (4.1), and using (1.7),
we have

μ

2θ+1

∫
{uε≥1}

|∇uε|2
uθ

ε

≤ μ

∫
{uε≥1}

b(x)
uε|∇uε|2

(uε + ε)θ+1

≤ λ‖ur
ε‖L1(Ω) + ‖f‖L1(Ω). (4.17)

Let s any positive real number such that 1 < s < 2. Using Hölder’s
inequality, we obtain∫

Ω

|∇G1(uε)|s ≤
∫

{uε≥1}

|∇G1(uε)|s
u

θs
2

ε

u
θs
2

ε

≤
[∫

{uε≥1}

|∇uε|2
uθ

ε

] s
2

[∫
{uε≥1}

u
θs

2−s
ε

] 2−s
2

. (4.18)

Setting
L = λ‖ur

ε‖L1(Ω) + ‖f‖L1(Ω). (4.19)
Choosing now s = 2 − θ, then we have 1 < s < 2. Therefore, using (4.17)–
(4.19), we get

∫
Ω

|∇G1(uε)|s ≤ CL
s
2

[∫
{uε≥1}

us
ε

] θ
2

≤ CL
s
2

(∫
{uε≥1}

[G1(uε) + 1]s
) θ

2

≤ C

[
L

s
2

(∫
Ω

G1(uε)s

) θ
2

+ L
s
2

]
. (4.20)
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Using Poincaré’s inequality on the left-hand side of (4.20), Young’s inequality
on the right-hand side, we obtain∫

Ω

G1(uε)s ≤ C
[
L + L

s
2
]
. (4.21)

Using Minkowski’s inequality, the fact that |T1(uε)| ≤ 1), and the convexity
of the real function t �→ ts (since s > 1), we get∫

Ω

us
ε ≤ C

[
1 +

∫
Ω

G1(uε)s

]
. (4.22)

From (4.21) and (4.22), it follows that∫
Ω

us
ε ≤ C

[
L + L

s
2 + 1

]
. (4.23)

Since r < s (by (1.4)), then, using Hölder’s inequality, we get∫
Ω

ur
ε ≤ C

[∫
Ω

us
ε

] r
s

. (4.24)

From (4.19), (4.23), and (4.24), it follows that

L − ‖f‖L1(Ω) ≤ C
[
L

r
s + L

r
2 + 1

]
(4.25)

Since r < s < 2, then we deduce from the last inequality that L ≤ C.
Therefore, by (4.19), the sequence ur

ε is bounded in L1(Ω). Choosing now
δ = N(2−θ)

N−θ . Since 0 < θ < 1, then we have 1 < δ < 2. Taking s = δ in (4.18)
and using the boundedness of sequence ur

ε in L1(Ω), we obtain

∫
Ω

|∇G1(uε)|δ ≤
∫

{uε≥1}

|∇G1(uε)|δ
u

θδ
2

ε

u
θδ
2

ε ≤ C

[∫
{uε≥1}

u
δθ

2−δ
ε

] 2−δ
2

. (4.26)

The choice of δ implies that δ∗ = δθ
2−δ . By Sobolev’s inequality on the first

term of (4.26), we get
[∫

Ω

G1(uε)δ∗
] δ

δ∗

≤ C

[∫
{uε≥1}

uδ∗
ε

] θ
δ∗

≤ C

[∫
Ω

G1(uε)δ∗
] θ

δ∗

+ C. (4.27)

Since θ < 1 < δ, the inequality (4.27) implies that G1(uε), hence uε,
is bounded in Lδ∗

(Ω). From (4.26), it follows the boundedness of G1(uε) in
W 1,δ

0 (Ω). Using T1(uε) as test function in (3.2), we deduce that T1(uε) is
bounded in H1

0 (Ω), hence in W 1,δ
0 (Ω). Since uε = G1(uε) + T1(uε), then we

deduce that uε is bounded in W 1,δ
0 (Ω). Moreover, testing (3.2) by Tk(uε), it

follows that Tk(uε) is bounded in H1
0 (Ω) for every k > 0. �

5. Proof of Main Results

5.1. Proof of Theorem 2.1

By Lemma 4.3, the sequence of approximated solutions uε is bounded in
H1

0 (Ω)∩Lm∗∗(2−θ)(Ω). Therefore, there exists a function u belongs to H1
0 (Ω)∩

Lm∗∗(2−θ)(Ω) such that, up to subsequences, uε converges to u weakly in
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H1
0 (Ω), and almost everywhere in Ω. Now, we are going to prove the almost

everywhere convergence of ∇uε to ∇u.

Lemma 5.1. The sequence ∇uε(x) converges a.e. to ∇u(x).

Proof. The proof is in the spirit of [6, Lemma 2.3] and also [7, Lemma 2.6],
we fix h, k > 0. Plugging Th(uε −Tk(u)) as a test function in (3.2), and using
the estimate (4.1), we get∫

Ω

M(x, T 1
ε
(uε))(∇uε − Tk(u)) · ∇Th(uε − Tk(u))

≤ −
∫

Ω

M(x, T 1
ε
(uε))∇Tk(u) · ∇Th(uε − Tk(u)) + 2h

∫
Ω

(λur
ε + f).

Using the fact that the sequence uε is bounded in L(2−θ)m∗∗
(Ω) (recall

that r < m∗∗(2 − θ)), we get∫
Ω

M(x, T 1
ε
(uε))(∇uε − Tk(u)) · ∇Th(uε − Tk(u))

≤ −
∫

Ω

M(x, T 1
ε
(uε))∇Tk(u) · ∇Th(uε − Tk(u)) + 2Ch,

where C is a positive constant depend only of λ, ‖f‖L1(Ω) and
‖uε‖L(2−θ)m∗∗ (Ω). Using hypothesis (1.2), we obtain∫

{|uε−Tk(u)|≤h}

α|∇Th(uε − Tk(u))|2
(ρ + uε)γ

≤ −
∫

Ω

M(x, T 1
ε
(uε))∇Tk(u) · ∇Th(uε − Tk(u)) + 2Ch.

Since uε ≤ h + k on the set {|uε − Tk(u)| ≤ h}, we get∫
Ω

|∇Th(uε − Tk(u))|2

≤ − (ρ + h + k)γ

α

∫
Ω

M(x, T 1
ε
(uε))∇Tk(u) · ∇Th(uε − Tk(u))

+ 2Ch
(ρ + h + k)γ

α
.

Thus it follows

lim sup
ε→0

∫
Ω

|∇Th(uε − Tk(u))|2 ≤ 2Ch
(ρ + h + k)γ

α
.

Now, we fix s such that 1 < s < 2. Then, we have∫
Ω

|∇(uε − u)|s =
∫

{|uε−u|≤h, |u|≤k}
|∇(uε − u)|s

+
∫

{|uε−u|≤h, |u|>k}
|∇(uε − u)|s

+
∫

{|uε−u|>h}
|∇(uε − u)|s (5.1)
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Since the sequence uε − u is bounded in W 1,s
0 (Ω) (since s < 2), then using

Hölder’s inequality with exponent 2
s on the two last terms of right-hand side

of (5.1), we obtain∫
Ω

|∇(uε − u)|s ≤
∫

Ω

|∇Th(uε − Tk(u))|2

+ 2s Rsmeas{|u| > k}1− s
2 + 2sRsmeas{|uε − u| > h}1− s

2 ,

where R is a positive constant such that ‖uε‖H1
0 (Ω) ≤ R. Thus, for every

h > 0,

lim sup
ε→0

∫
Ω

|∇(uε − u)|s ≤ 2Ch (ρ+h+k)γ

α + C1meas{|u| > k}1− s
2 .

That is, letting h → 0 and then k → +∞,∫
Ω

|∇(uε − u)|s → 0, for all s < 2.

In consequence, we conclude (up to a subsequence) that ∇uε(x) converges
almost everywhere to ∇u(x). �

Now, we are going to prove the strict positivity of the weak limit u of
the sequence of approximated solutions uε.

Lemma 5.2. Let u the weak limit of the sequence of approximated solutions
uε. Then,

u > 0 in Ω.

Proof. Following the ideas in [11, Lemma 2.3]. We define, for t ≥ 0,

Hε(t) =

t∫
0

(ρ + τ)γ

(τ + ε)θ
dτ, H0(t) =

t∫
0

(ρ + τ)γ

τθ
dτ, (5.2)

and
Φε(t) = e−ν Hε(t)

α , Φ0(t) = e−ν
H0(t)

α . (5.3)
Note that the function H0 is well defined since θ < 1. Let v be fixed in
H1

0 (Ω) ∩ L∞(Ω), with v ≥ 0, and taking v Φε(uε) as test function in (3.2)
(which is admissible since it belongs to H1

0 (Ω) ∩ L∞(Ω)), and using (1.2),
(1.3), (1.7), and the fact that

Φ′
ε(t) =

−ν

α

(ρ + t)γ

(t + ε)θ
Φε(t),

we obtain∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇v Φε(uε) −

∫
Ω

[
λur

ε

1 + εur
ε

+ fε

]
Φε(uε)v

≥ ν

∫
Ω

(ρ + uε)γ

(uε + ε)θ(ρ + T 1
ε
(uε))γ

|∇uε|2Φε(uε)v − ν

∫
Ω

uε|∇uε|2
(uε + ε)θ+1

Φε(uε)v

≥ νε

∫
Ω

|∇uε|2
(uε + ε)θ+1

Φε(uε)v

≥ 0.
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Since uε ≥ 0 and fε ≥ T1(f) (being ε < 1), we have∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇v Φε(uε) ≥

∫
Ω

T1(f)Φε(uε)v, (5.4)

for all v in H1
0 (Ω) ∩ L∞(Ω), with v ≥ 0.

Taking into account (1.5) and the fact that uε ≥ 0, we can assure that
for some h ≥ 1, we have that f �≡ 0 in {0 ≤ u ≤ h}. We assume without loss
of generality that h = 1. Now, let us define for σ > 0, the function

ψσ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 ≤ t < 1,

− 1
σ (t − 1 − σ) if 1 ≤ t < σ + 1,

0 if σ + 1 ≤ t,

(5.5)

and fix a function ϕ in H1
0 (Ω) ∩ L∞(Ω), with ϕ ≥ 0. Taking v = ψσ(uε)ϕ in

(5.4) and using (1.2), we obtain∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇ϕψσ(uε)Φε(uε)

≥
∫

Ω

T1(f)Φε(uε)ψσ(uε)ϕ +
α

σ

∫
{1≤uε<σ+1}

Φε(uε)
|∇uε|2

(ρ + uε)γ
ϕ,

and thus, dropping the nonnegative term,∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇ϕψσ(uε)Φε(uε) ≥

∫
Ω

T1(f)Φε(uε)ψσ(uε)ϕ.

Then, letting σ tend to 0, and using the fact that T 1
ε
(T1(uε)) = T1(uε) (since

ε < 1), we get∫
Ω

M(x, T1(uε))∇T1(uε) · ∇ϕ Φε(T1(uε)) ≥
∫

{0≤uε≤1}
T1(f)Φε(T1(uε))ϕ.

(5.6)

Since the sequence M(x, T1(uε))∇T1(uε), up to subsequences, converges
almost everywhere to M(x, T1(u))∇T1(u) in Ω , and it is bounded in
(L2(Ω))N (by (4.10) and the boundedness of the matrix M), then using the
Vitali’s theorem we can conclude that M(x, T1(uε))∇T1(uε) converges weakly
in (L2(Ω))N to M(x, T1(u))∇T1(u). Letting ε tend to the zero in (5.6), we
obtain∫

Ω

M(x, T1(u))∇T1(u) · ∇ϕ Φ0(T1(u)) ≥
∫

{0≤u≤1}
T1(f)Φ0(T1(u))ϕ, (5.7)

for all ϕ in H1
0 (Ω) ∩ L∞(Ω), with ϕ ≥ 0, and then, by density, for every

nonnegative ϕ in H1
0 (Ω). Now, we define the function

P (t) =

t∫
0

Φ0(τ) dτ.
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If we set w = P (T1(u)), we have that w belongs to H1
0 (Ω); furthermore, since

Φ0(T1(u)) ≥ Φ0(1) = e
−ν
α H0(1) > 0,

we deduce from (5.7) that∫
Ω

M̃(x,∇w) · ∇ϕ ≥
∫

Ω

g(x)ϕ,

where we have set

M̃(x, ξ) = M(x, T1(u(x))ξ, and g(x) = T1(f) e
−ν
α H0(1)χ{0≤u(x)≤1}. (5.8)

The comparison principle in H1
0 (Ω) says that w(x) ≥ z(x), where z is the

bounded weak solution of{
z ∈ H1

0 (Ω),

−div
(
M̃(x,∇z)

)
= g(x).

Using (1.2), it is easy to verify that the vector-valued function M̃ satisfies
for almost every x ∈ Ω, for every ξ, ξ′ ∈ R

N , with ξ �= ξ′

M̃(x, ξ)ξ ≥ α

(ρ + 1)γ
|ξ|2,

|M̃(x, ξ)| ≤ β|ξ|,[
M̃(x, ξ) − M̃(x, ξ′)

]
· [ξ − ξ′] >

α

(ρ + 1)γ
|ξ − ξ′|2.

Since g is nonnegative and not identically zero, the weak Harnack inequality
[29, Theorem 1.2] yields z > 0 in Ω and so w > 0. Since T1(u) ≥ w (due to
the fact that Φ0(t) ≤ 1), we conclude that T1(u) > 0 in Ω, which then implies
that u > 0 in Ω, since u ≥ T1(u). �

In the sequel, we need the following corollary.

Corollary 5.3. Let u the weak limit of the sequence of approximated solutions
uε. Then,

|∇u|2
uθ is in L1(Ω).

Proof. Thanks to (4.1), and (1.7), we have �

μ

∫
Ω

uε|∇uε|2
(uε + ε)θ+1

≤ λ

∫
Ω

ur
ε +

∫
Ω

f. (5.9)

Using Fatou’s lemma as well as the weak convergence of uε to u in H1
0 (Ω),

and the strict positivity of u, we obtain

μ

∫
Ω

|∇u|2
uθ

≤ λ

∫
Ω

ur +
∫

Ω

f ≤ C. (5.10)

Hence, the Corollary is proved. To complete the proof of the Theorem 2.1, it
remains to prove that u is a weak solution of the problem (1.1). This is the
aim of the following lemma.
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Lemma 5.4. Let u be the weak limit of the sequence uε. Then u satisfies∫
Ω

M(x, u)∇u · ∇ϕ +
∫

Ω

b(x)|∇u|2
uθ

φ =
∫

Ω

(λur + f) φ, (5.11)

for every φ in H1
0 (Ω) ∩ L∞(Ω).

Proof. The proof of this lemma is based on the particular choice of test
functions and the use of Fatou’s lemma. We proceed as in [14, Theorem 2.6].
For every k > 0, let us define

Rk(s) =

⎧⎪⎨
⎪⎩

1 if s ≤ k,

k + 1 − s if k < s ≤ k + 1,

0 if s > k + 1.

(5.12)

Let φ ∈ H1
0 (Ω) ∩ L∞(Ω), with φ ≥ 0, and consider the function

vε = e
−νHε(uε)

α e
νH1/j(Tj(u))

α Rk(uε)φ. (5.13)

The function vε belongs also to H1
0 (Ω) ∩ L∞(Ω), so it is a legitimate test

function for (3.2), and upon using it, we obtain∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇φ e

−νHε(uε)
α e

νH1/j(Tj(u))

α Rk(uε)

+
ν

α

∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇Tj(u)

(Tj(u) + 1/j)θ(ρ + Tj(u))−γ
e

−νHε(uε)
α e

νH1/j(Tj(u))

α Rk(uε)φ

=
∫

Ω

[
λur

ε

1 + εur
ε

+ fε

]
e

−νHε(uε)
α e

νH1/j(Tj(u))

α Rk(uε)φ

+
∫

Ω

[
ν

α

M(x, T 1
ε
(uε))∇uε · ∇uε

(uε + ε)θ(ρ + uε)−γ

− b(x)
uε|∇uε|2

(uε + ε)θ+1

]
e

−νHε(uε)
α e

νH1/j(Tj(u))

α Rk(uε)φ

+
∫

{k<uε<k+1}
M(x, T 1

ε
(uε))∇uε · ∇uε e

−νHε(uε)
α e

νH1/j(Tj(u))

α φ.

(5.14)

Note that by (1.2), (1.3), and (1.7), the function in the second integral of the
right-hand side is nonnegative. Dropping the last term (which is nonnegative),
and using Fatou’s lemma as well the weak convergence of uε to u in H1

0 (Ω)
in the right-hand side, and the weak convergence of M(x, T 1

ε
(uε))∇uε to

M(x, u)∇u in (L2(Ω))N (recall that the matrix M is bounded) in the left-
hand side, we can pass to limit as ε tends to 0 in (5.14) to get∫

Ω

M(x, u)∇u · ∇φ e
−νH0(u)

α e
νH1/j(Tj(u))

α Rk(u)

+
ν

α

∫
Ω

M(x, u)∇u · ∇Tj(u)
(Tj(u) + 1/j)θ(ρ + Tj(u))−γ

e
−νH0(u)

α e
νH1/j(Tj(u))

α Rk(u)φ
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≥
∫

Ω

(λur + f) e
−νH0(u)

α e
νH1/j(Tj(u))

α Rk(u)φ

+
∫

Ω

[
ν

α

M(x, u)∇u · ∇u

uθ(ρ + u)−γ
− b(x)

|∇u|2
uθ

]
e

−νH0(u)
α e

νH1/j(Tj(u))

α Rk(u)φ.

(5.15)

Using (1.7), (5.10), the fact that e
−νH0(u)

α e
νH1/j(Tj(u))

α ≤ 1 (since H1/j(Tj(u)) ≤
H1/j(u) ≤ H0(u)) and Rk(u) = 0 if u > k + 1, so by Lebesgue’s convergence
theorem, we can pass to the limit in (5.15) as j tends to infinity to obtain∫

Ω

M(x, u)∇u · ∇φ Rk(u) +
ν

α

∫
Ω

M(x, u)∇u · ∇u

uθ(ρ + u)−γ
Rk(u)φ

≥
∫

Ω

(λur + f)Rk(u)φ +
∫

Ω

[
ν

α

M(x, u)∇u · ∇u

uθ(ρ + u)−γ
− b(x)

|∇u|2
uθ

]
Rk(u)φ.

(5.16)

Then, since M(x,u)∇u·∇u
uθ(ρ+u)−γ Rk(u) belongs to L1(Ω) (by (1.2), (5.10), and the

fact that Rk(u) = 0, when u > k + 1), we have∫
Ω

M(x, u)∇u · ∇φ Rk(u) +
∫

Ω

b(x)
|∇u|2

uθ
Rk(u)φ ≥

∫
Ω

(λur + f)Rk(u)φ.

(5.17)
Letting k tend to infinity (observing that Rk(u) tends to 1), we obtain∫

Ω

M(x, u)∇u · ∇φ +
∫

Ω

b(x)
|∇u|2

uθ
φ ≥

∫
Ω

(λur + f)φ. (5.18)

To prove the opposite inequality, we choose φ ∈ H1
0 (Ω) ∩ L∞(Ω) with φ ≥ 0,

as test function in (3.2), to obtain∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇φ +

∫
Ω

b(x)
uε|∇uε|2
(uε + ε)θ

φ ≤
∫

Ω

(λur
ε + fε) φ, (5.19)

Passing to the limit in (5.19), using the weak convergence of sequence
M(x, T 1

ε
(uε))∇uε to M(x, u)∇u in (L2(Ω))N , Fatou’s lemma, and the

strong convergence of uε in Lr(Ω) (due to the fact that uε is bounded in
Lm∗∗(2−θ)(Ω) and r < m∗∗(2 − θ)), it follows that∫

Ω

M(x, u)∇u · ∇φ +
∫

Ω

b(x)
|∇u|2

uθ
φ ≤

∫
Ω

(λur + f)φ. (5.20)

Combining (5.18) and (5.20), we deduce that∫
Ω

M(x, u)∇u · ∇φ +
∫

Ω

b(x)
|∇u|2

uθ
φ =

∫
Ω

(λur + f)φ,

for every φ in H1
0 (Ω)∩L∞(Ω), with φ ≥ 0. Thus, we have that (2.2) holds for

every nonnegative test function. The case of a general test function φ is then
obtained by choosing φ+ and φ−, and then adding up the two equalities. �
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5.2. Proof of Theorem 2.2

In virtue of the Lemma 4.4, the sequence of approximated solutions uε is
bounded in H1

0 (Ω) ∩ L∞(Ω). Therefore, there exists a function u belongs to
H1

0 (Ω)∩L∞(Ω) such that, up to subsequences, uε converges weakly in H1
0 (Ω)

to u, which satisfies u > 0 in Ω, and |∇u|2
uθ is in L1(Ω) (by the Lemma 5.2 and

the Corollary 5.3. Thanks to Lemma 5.1, we have that ∇uε converges almost
everywhere to ∇u in Ω. To prove that u is a weak solution of problem (1.1),
it suffices to proceed as in the proof of Lemma 5.4, by testing (3.2) with the
function e

−νHε(uε)
α e

BHε(u)
α φ, instead of the test function given in (5.13), since

in this case, the function u is bounded.

Remark 5.5. Taking into account the boundedness of uε in L∞(Ω), then the
degenerate coercivity of the operator Au = −div (M(x, u)∇u) disappears.
Therefore, we can apply the result of [12] to prove the almost everywhere
convergence of ∇uε to ∇u, since both lower-order term and right one are
bounded in L1(Ω).

5.3. Proof of Theorem 2.3

According to the Lemma 4.5, the sequences uε and Tk(uε) (for every k > 0)
are bounded, respectively, in W 1,q

0 (Ω)∩Lm∗∗(2−θ)(Ω), and H1
0 (Ω). Therefore,

there exists a function u belonging to W 1,q
0 (Ω) ∩ Lm∗∗(2−θ)(Ω) such that, up

to subsequences, uε and Tk(uε) converge weakly, respectively, in W 1,q
0 (Ω) and

H1
0 (Ω), and almost everywhere in Ω, respectively, to u and Tk(u). Moreover,

by repeating the argument in the proof of Lemma 5.2, it follows that u > 0
in Ω. The Corollary 5.3 ensures that |∇u|2

uθ belongs to L1(Ω). The argument
in the proof of Lemma 5.1 is still valid and gives the almost everywhere
convergence of the sequence ∇uε to ∇u in Ω. To finish the proof of the
Theorem 2.3, it remains to prove that u is a distributional solution of the
problem (1.1). This is the goal of the next lemma.

Lemma 5.6. Let u be the weak limit of the sequence uε. Then u satisfies∫
Ω

M(x, u)∇u · ∇φ +
∫

Ω

b(x)
|∇u|2

uθ
φ =

∫
Ω

(λur + f) φ, (5.21)

for every φ ∈ C1
0(Ω).

Proof. To prove Lemma 5.6, we repeat the proof of Lemma 5.4, obtaining
two inequalities; the second one can be obtained exactly as before, while for
the first one we have to slightly modify the test function, since we no longer
have the estimate of uε in H1

0 (Ω). So, we take in (3.2) the test function

e
−νHε(uε)

α e
νH1/j(Tj(u))

α Rk(uε)φ, with φ ∈ C1
0(Ω), φ ≥ 0, we obtain∫

Ω

M(x, T 1
ε
(uε))∇uε · ∇φ e

−νHε(uε)
α e

νH1/j(Tj(u))

α Rk(uε)

+
ν

α

∫
Ω

M(x, T 1
ε
(uε))∇uε · ∇Tj(u)

(Tj(u) + 1/j)θ(ρ + Tj(u))−γ
e

−νHε(uε)
α e

νH1/j(Tj(u))

α Rk(uε)φ

=
∫

Ω

[
λur

ε

1 + εur
ε

+ fε

]
e

−νHε(uε)
α e

νH1/j(Tj(u))

α Rk(uε)φ
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+
∫

Ω

[
ν

α

M(x, T 1
ε
(uε))∇uε · ∇uε

(uε + ε)θ(ρ + uε)−γ

− b(x)
uε|∇uε|2

(uε + ε)θ+1

]
e

−νHε(uε)
α e

νH1/j(Tj(u))

α Rk(uε)φ

+
∫

{k<uε<k+1}
M(x, T 1

ε
(uε))∇uε · ∇uε e

−νHε(uε)
α e

νH1/j(Tj(u))

α φ.

(5.22)

Dropping the last term (which is nonnegative), and using Fatou’s lemma as
well as the weak convergence of uε to u in W 1,q

0 (Ω), and of M(x, T 1
ε
(uε))∇

Tk+1(uε) to M(x, u)∇Tk+1(u) in (L2(Ω))N for the first term, we obtain∫
Ω

M(x, u)∇u · ∇φ e
−νH0(u)

α e
νH1/j(Tj(u))

α Rk(u)

+
ν

α

∫
Ω

M(x, u)∇u · ∇Tj(u)
(Tj(u) + 1/j)θ(ρ + Tj(u))−γ

e
−νH0(u)

α e
νH1/j(Tj(u))

α Rk(u)φ

≥
∫

Ω

(λur + f) e
−νH0(u)

α e
νH1/j(Tj(u))

α Rk(u)φ

+
∫

Ω

[
ν

α

M(x, u)∇u · ∇u

uθ(ρ + u)−γ
− b(x)

|∇u|2
uθ

]
e

−νH0(u)
α e

νH1/j(Tj(u))

α Rk(u)φ.

(5.23)

We conclude the proof, as in Lemma 5.4, letting first j tend to infinity, and
then k tend to infinity. �

5.4. Proof of Theorem 2.4

Lemma 4.6 asserts that the sequence uε is bounded in W 1,δ
0 (Ω), and the

sequence Tk(uε) is bounded in H1
0 (Ω) for every k > 0. Therefore, there exists

a function u belonging to W 1,δ
0 (Ω) such that, up to subsequences, uε con-

verges weakly in W 1,δ
0 (Ω), and almost everywhere in Ω to u, and Tk(uε)

weakly converges in H1
0 (Ω), and almost every in Ω to Tk(u) for every k > 0.

Furthermore, by the same technique used in the proof of Lemma 5.1, we
have ∇uε converges almost everywhere in Ω to ∇u. The technique used in
the proof of Lemma 5.2 can be still applied, yielding that u > 0 in Ω. By
the Corollary 5.3, we have |∇u|2

uθ ∈ L1(Ω). Since Tk(uε) weakly converges
in H1

0 (Ω), almost everywhere in Ω to Tk(u), and uε strongly converges to u

in Lr(Ω) (due to the fact that the sequence uε is bounded in W 1,δ
0 (Ω) and

r < 2 − θ < δ) then, we can pass to the limit in (3.2) exactly as in the proof
of Theorem 2.3 to conclude that u is a distributional solution of the problem
(1.1).

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–
258 (1965)

[29] Trudinger, N.S.: On Harnack type inequalities and their application to quasi-
linear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)

Rezak Souilah
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