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Abstract. In this paper, we are mainly concerned with a one-dimensional
wave control system. We assert the existence of non-orthogonal fusion
frames by extending this problem to a theoretical one introduced by Sz.
Nagy (Acta Sci Math Szeged 14, 1951). The key idea of this work is
based on the estimate inspired from Sz. Nagy (1951) using the spectral
analysis method. More precisely, we prove that if the eigenvalues of the
unperturbed operator are isolated and with finite multiplicity, we can
construct non-orthogonal fusion frames.
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1. Introduction

In the present paper, we consider the following one-dimensional string equa-
tion

wtt(x, t) − wxx(x, t) = 0, 0 < x < 1, t > 0, (1.1)
where w(x, t) denotes the transversal displacement of the string depart from
its equilibrium position at x and time t. The initial conditions are given by

w(x, 0) = w0(x), wt(x, 0) = w1(x),

whereas the Neumann boundary conditions are{
wx(0, t) = u1(t)
wx(1, t) = u2(t),

where uj(t), j = 1, 2 designate the control input. To stabilize Eq. (1.1), many
authors such as Kobayashi [15] and Xu [17] used various control strategies.
For instance, we adopt the following general linear controllers from [17,19]{

u1(t) = k1wt(0, t) + γw(0, t)
u2(t) = −k2wt(1, t) − δw(1, t), (1.2)
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where

γ ≥ 0, δ ≥ 0, k1 ≥ 0, k2 ≥ 0 and k1 + k2 �= 0, γ + δ �= 0.

The abstract formulation of the problem is obtained by considering the fol-
lowing Hilbert space

X := H1(0, 1) × L2(0, 1),

where H1(0, 1) is the usual Sobolev space order 1 and is equipped with the
inner product

(u, v)H1 :=
∫ 1

0

u′(x)v′(x)dx + γu(0)v(0) + δu(1)v(1).

The inner product of two elements F = (f1, f2), G = (g1, g2) ∈ X is defined
by

〈F,G〉X :=
∫ 1

0

f ′
1(x)g′

1(x)dx + γf1(0)g1(0) + δf1(1)g1(1) +
∫ 1

0

f2(x)g2(x)dx.

Here and hereafter we use the notation u′(x) = du
dx = ux(x).

Define the operator A in X by

D(A) :=
{
(u, v) ∈ H2(0, 1) × H1(0, 1) such that u′(0) = γu(0) + k1v(0),

u′(1) = −δu(1) − k2v(1)} , (1.3)
A(u, v) := (v, u′′), (u, v) ∈ D(A). (1.4)

With the help of these notations, we can rewrite Eq. (1.1) into an evolutionary
equation in X : {

d
dtW (t) = AW (t), t > 0,

W (0) = W0,

where W (t) := (w(x, t), wt(x, t)) and W0 := (w0(x), w1(x)).
It is interesting to note that in control and transport theory, it is very

difficult to show that a system satisfies the spectrum determined growth con-
dition. So, using the spectrum of the system operator to verify this property
becomes an attractive alternative. The authors in literatures achieved this
aim by studying the asymptotic behavior of the spectrum such as in [12,13]
or by proving the Riesz basis property of the eigenvectors of the system op-
erator (see [11,17,18]).

However, the Riesz basis property is not always verified. For instance, in
Eqs. (1.2) and (1.3) if we assume that k1 = 1 and k2 ≥ 0 then the eigenvectors
of the system operator (1.4) fail to form a basis since supn ‖Pn‖ = ∞, where
Pn is the eigenprojection corresponding to the isolated eigenvalue λn of A.
So, can we extend the Riesz basis property to the notion of non-orthogonal
fusion frame?

The motivations for studying such a generalization are various and
meaningful. In fact, the concept of non-orthogonal fusion frame was initially
motivated by Cahill et al. [4] as a slight modification of the fusion frame (or
frame of subspaces) which has been established by Casazza and Kutyniok
[5] as a natural generalization of frame theory. The relevance of this notion,
as remarked in [5], is that it gives criteria for constructing a frame for H
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by joining sequences of frames for subspaces of H. This notion has been in-
tensely studied during the last years and several new applications has been
discovered. The difference between the non-orthogonal fusion frames and the
fusion frames is the use of the non-orthogonal projections instead of orthog-
onal projections.

Among this direction and in order to provide a positive answer, we are
interested in this paper by an analytic operator investigated in some valuable
papers such as [3,7–10,16]. More precisely, we deal with the following operator

T (ε) := T0 + εT1 + ε2T2 + · · · + εkTk + · · · , (1.5)

where ε ∈ C, T0 is a closed densely defined linear operator on a separable
Hilbert space H with domain D(T0) while T1, T2, . . . are linear operators on
H having the same domain D ⊃ D(T0) and satisfying

‖Tkϕ‖ ≤ qk−1(a‖ϕ‖ + b‖T0ϕ‖)

for all ϕ ∈ D(T0) and for all k ≥ 1, where a, b and q are positive constants.
Motivated by a classical work due to Sz. Nagy [16], we study the exis-

tence of non-orthogonal fusion frames related to the perturbed operator (1.5).
Indeed, in [16] the author proved that if we designate by Pn the eigenprojec-
tion of T0 related to the eigenvalue λn then for |ε| enough small there exists
a sequence of eigenprojections {Pn(ε)}n∈N∗ of T (ε) that can be developed as
entire series of ε as follow:

Pn(ε) = Pn + εPn,1 + ε2Pn,2 + · · · . (1.6)

Based on the estimates given in [16], we establish, under sufficient conditions,
the existence of a sequence of complex numbers (εn)n∈N∗ and a sequence of
eigenprojections {Pn(εn)}n∈N∗ of (T (εn))n∈N∗ having the form (1.6) such
that the system {Pn(εn), vn}n∈N∗ is a non-orthogonal fusion frame for H,
where (vn)n∈N∗ is a family of weight.

Note here that Eq. (1.6) plays a crucial role in the existence of the non-
orthogonal fusion frame related to the perturbed operator (1.5). In fact, it
allows us to get a considerable improvement to the results developed in [3]
and [10] since the eigenvalue λn of T0 is not necessarily with multiplicity one.

However, the non-orthogonal fusion frame {Pn(εn), vn}n∈N∗ depends on
(εn)n∈N∗ . Further, it is related to a sequence of operators (T (εn))n∈N∗ and
not to the operator (1.5).

In this context and in order to get such improvements, we study the
existence of a fixed ε for which the families {Pn(ε), vn}N

1 ∪ {Pn(εn), vn}∞
N+1

and {Pn(ε), vn}N
1 ∪ {Pn, vn}∞

N+1 (N > 1) form non-orthogonal fusion frames
for H. More precisely, we show that for |ε| enough small the first N projections
coincide with a sequence of eigenprojections (Pn(ε))1≤n≤N of T (ε) that can
be developed as an entire series of ε.

Again, these families more or less rely on ε. Indeed, it is clear here that
either the first N projections are associated to the perturbed operator T (ε)
or all the projections are related to a sequence of operators (T (εn))n∈N∗ . So,
can we assure the existence of a fixed complex number ε so that the family
{Pn(ε), vn}n∈N∗ is a non-orthogonal fusion frame for H?
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In order to get a positive answer, we provide sufficient conditions assur-
ing the existence of a non-orthogonal fusion frame for a fixed complex number
ε. In fact, based on the spectral analysis developed in [16], we show that for
|ε| enough small the family {Pn(ε), vn}n∈N∗ associated to the perturbed op-
erator (1.5) forms a non-orthogonal fusion frame for H. Here the sequence
of eigenprojection (Pn(ε))n is associated to T (ε) and can be developed as an
entire series of ε.

The content of the present paper is as follows: In the next section, we
state some definitions and preliminary results concerning the concept non-
orthogonal fusion frames and function of finite order. We advise that section
3 contributes to the main body of this paper. In this section, we prove the
existence of non-orthogonal fusion frames where the eigenvalues of T0 are not
necessarily simple. In the last section, an application to a one-dimensional
controlled wave system is presented.

2. Preliminaries

The objective of this section is to present some definitions and basic properties
concerning the notion of fusion frames and non-orthogonal fusion frames that
will be needed in the sequel. To this interest, let H denotes a separable Hilbert
space and I a countable index set.

We begin this part by introducing the concept of frames of subspaces
which have been renamed, recently, as fusion frames. This new concept can
be considered as a generalization of frames (see [5]).

Definition 2.1. An operator P ∈ L(H) is called a projection if P 2 = P . If in
addition we have P ∗ = P then P is called an orthogonal projection. ♦
Definition 2.2 [5]. Let {Wi}i∈I be a family of closed subspaces in H and
let {wi}i∈I be a family of weights, i.e., wi > 0 for all i ∈ I. Then, we
say that {Wi}i∈I is a frame of subspaces with respect to {wi}i∈I for H
(or {(Wi, wi)}i∈I is a fusion frame), if there exist constants 0 < A ≤ B < ∞
such that

A‖f‖2 ≤
∑
i∈I

w2
i ‖πWi

(f)‖2 ≤ B‖f‖2, for all f ∈ H,

where πWi
is the orthogonal projection onto the subspace Wi. The numbers

A,B are called the fusion frame bounds. ♦
Now, we give a formal definition of non-orthogonal fusion frames which

are a modification of fusion frames with a sequence of non-orthogonal pro-
jections operators.

Definition 2.3 [4]. Let {Wi}i∈I be a sequence of closed subspaces in H and let
{wi}i∈I be a family of weights, i.e., wi > 0 for all i ∈ I. For each i ∈ I let PWi

be a projection onto Wi. Then, we say that {PWi
, wi}i∈I is a non-orthogonal

fusion frame for H, if there exist constants 0 < A ≤ B < ∞ such that
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A‖f‖2 ≤
∑
i∈I

w2
i ‖PWi

(f)‖2 ≤ B‖f‖2, for all f ∈ H.

The numbers A,B are called the non-orthogonal fusion frame bounds. ♦
The following Theorem is an extension of [2, Proposition 2.4] to the

case of non-orthogonal fusion frame.

Theorem 2.1. Let {PWi
, wi}i∈I be a non-orthogonal fusion frame for H with

frame bounds A and B, {Zi}i∈I a family of closed subspaces in H and {vi}i∈I

a family of weights such that 0 < wi ≤ vi ≤ √
2wi. Suppose that there exists

an 0 < R < A such that∑
i∈I

v2
i ‖PWi

(f) − PZi
(f)‖2 ≤ R‖f‖2, for all f ∈ H,

where PWi
(respectively, PZi

) denotes the non-orthogonal projection onto Wi

(respectively, Zi). Then {PZi
, vi}i∈I is a non-orthogonal fusion frame with

frame bounds A
(
1 −

√
R
A
)2

and B
(√

2 +
√

R
B
)2

. ♦

Proof. Let f ∈ H. Using Minkowski’s inequality, we have

(∑
i∈I

v2
i ‖PWi

(f)‖2

) 1
2

≤
(∑

i∈I

v2
i ‖PWi

(f) − PZi
(f)‖2

) 1
2

+

(∑
i∈I

v2
i ‖PZi

(f)‖2

) 1
2

.

Hence, we obtain

(∑
i∈I

v2
i ‖PZi

(f)‖2

) 1
2

≥
(∑

i∈I

v2
i ‖PWi

(f)‖2

) 1
2

−
(∑

i∈I

v2
i ‖PWi

(f) − PZi
(f)‖2

) 1
2

≥
(∑

i∈I

w2
i ‖PWi

(f)‖2

) 1
2

−
(∑

i∈I

v2
i ‖PWi

(f) − PZi
(f)‖2

) 1
2

≥
(√A − √

R
)

‖f‖.

Therefore,

∑
i∈I

v2
i ‖PZi

(f)‖2 ≥ A
(

1 −
√

R

A

)2

‖f‖2.

Similarly, we have

∑
i∈I

v2
i ‖PZi

(f)‖2 ≤ B
(√

2 +

√
R

B

)2

‖f‖2.

Indeed, it follows from Minkowski’s inequality that

(∑
i∈I

v2
i ‖PZi

(f)‖2

) 1
2

≤
(∑

i∈I

v2
i ‖PWi

(f) − PZi
(f)‖2

) 1
2

+

(∑
i∈I

v2
i ‖PWi

(f)‖2

) 1
2

.
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Since wi ≤ vi ≤ √
2wi, we get

(∑
i∈I

v2i ‖PZi
(f)‖2

) 1
2

≤
(∑

i∈I

v2i ‖PWi
(f) − PZi

(f)‖2
) 1

2

+

(
2
∑
i∈I

w2
i ‖PWi

(f)‖2
) 1

2

≤
(√

R +
√

2B
)

‖f‖.

Consequently, {PZi
, vi}i∈I is a non-orthogonal fusion frame with frame bo-

unds A
(
1 −

√
R
A
)2

and B
(√

2 +
√

R
B
)2

. �

We close this part by recalling some results from [20] concerning function
of finite order.

Definition 2.4 [20, p. 61]. An entire function f(z) is said to be of exponential
type if the inequality

|f(z)| ≤ AeB|z|, ∀z ∈ C (2.1)

holds for some positive constants A and B.
The smallest of constants B such that (2.1) holds is said to be exponen-

tial type of f . ♦
Definition 2.5 [20, p. 63]. An entire function f(z) is said to be of finite order
if there exists a positive number k such that

M(r) = max{|f(z)| such that |z| = r} ≤ erk

as soon as r is “sufficiently large”, i.e., r > r(k). The greatest lower bound
of all positive numbers k for which this is true is called the order of the
function. ♦
Remark 2.1 [20, p. 64]. An entire function of exponential type is of finite
order at most 1. ♦
Theorem 2.2 [20, Theorem 5, p. 64]. If f(z) is an entire function of finite
order ρ, then

n(r) = O(rρ+ξ)

for every positive number ξ, where n(r) denotes the number of zeros of f(z)
contained in the disk {z ∈ C such that |z| ≤ r}. ♦
Theorem 2.3 [20, Theorem 6, p. 64]. If f(z) is an entire function of finite
order ρ and if z1, z2, z3, . . . are its zeros, other than z = 0, then the series

∞∑
n=1

1
|zn|α

is convergent whenever α > ρ. ♦
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3. Main Results

In this section, we provide some sufficient conditions that ensure the existence
of non-orthogonal fusion frames related to the perturbed operator T (ε) [see
Eq. (1.5)] when the eigenvalues of T0 are not necessarily with multiplicity
one. Let then H be a separable Hilbert space and T0 a linear operator on H
verifying

(H1) T0 is closed with domain D(T0) dense in H.
(H2) The eigenvalues (λn)n∈N∗ are isolated and with finite multiplicity.

Let T1, T2, T3, . . . be linear operators on H having the same domain D and
satisfying the following hypothesis:

(H3) D ⊃ D(T0) and there exist positive constants a, b and q such that
for all k ≥ 1

‖Tkϕ‖ ≤ qk−1(a‖ϕ‖ + b‖T0ϕ‖), for all ϕ ∈ D(T0).

Let ε be a non zero complex number and consider the eigenvalue problem{
T0ϕ + εT1ϕ + ε2T2ϕ + · · · + εkTkϕ + · · · = λϕ
ϕ ∈ D(T0)

Before going further, we state the following result established in [16] assuring
the convergence and the closure of the series

∑
k≥0 εkTk.

Theorem 3.1 [16, Theorem 3]. Assume that assumptions (H1) and (H3) hold.
Then for |ε| < 1

q , the series

T0ϕ + εT1ϕ + ε2T2ϕ + · · · + εkTkϕ + · · ·
converges for all ϕ ∈ D(T0). If T (ε)ϕ denotes its limit, then T (ε) is a linear
operator with domain D(T0) and for |ε| < 1

q+b , the operator T (ε) is closed.♦
Let n ∈ N

∗ and λn the eigenvalue number n of the operator T0. Since (T0 −
zI)−1 is an analytic function of z and ‖(T0 − zI)−1‖ is a continuous function
of z then we designate by:

Mn := max
zn∈Cn

‖(T0 − znI)−1‖,

Nn := max
zn∈Cn

‖T0(T0 − znI)−1‖ = max
zn∈Cn

‖I + zn(T0 − znI)−1‖,

and

αn := aMn + bNn,

where Cn = C(λn, rn) the circle with center λn and with radii rn = dn

2 and
dn = d(λn, σ(T0)\{λn}) is the distance between λn and σ(T0)\{λn}.

Let Pn be the eigenprojection for the eigenvalue λn defined as:

Pn := − 1
2πi

∫
Cn

(T0 − znI)−1dzn.

Now, we are ready to state the objective of this section.
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Theorem 3.2. Assume that hypotheses (H1)–(H3) hold and the family
{Pn, wn}n∈N∗ is a non-orthogonal fusion frame for H with lower and up-
per non-orthogonal fusion frame bounds A and B, respectively. Then, there
exist a sequence of complex numbers (εn)n and a sequence of projections
{Pn(εn)}n∈N∗ having the form

Pn(εn) = Pn + εnPn,1 + ε2nPn,2 + · · · + εi
nPn,i + · · · ,

such that for |εn| <
√
6A

πnvnrnMnαn+
√
6A(q+αn)

the family {Pn(εn), vn}n∈N∗

forms a non-orthogonal fusion frame for H. Here {wn}n∈N∗ and {vn}n∈N∗

are two families of weights verifying wn ≤ vn ≤ √
2wn. ♦

Remark 3.1. Notice that in [3, Theorem 3.2] the author proved the existence
of a Riesz basis associated to the perturbed operator T (εn) using a spec-
tral analysis method based on the fact that the eigenvalues (λn)n∈N∗ of T0

are with multiplicity one. However, due to [6, Theorem 2.13], a frame is a
Riesz basis if and only if it is ω-linearly independent. Further, the concept
of non-orthogonal fusion frame can be viewed as a generalization of the one
of the frame. So, Theorem 3.2 can be considered as an extension of [3, The-
orem 3.2] to the non-orthogonal fusion frame. On the other hand, we assure
the existence of non-orthogonal fusion frame by assuming that (λn)n∈N∗ are
not necessarily simple. ♦
Proof of Theorem 3.2. Let n ∈ N

∗ and zn ∈ Cn. We have

T (ε) − znI = T0 − znI + εT1 + ε2T2 + . . .

=
(
I + εT1(T0 − znI)−1 + ε2T2(T0 − znI)−1 − . . .

)
(T0 − znI)

= (I + S)(T0 − znI), (3.1)

where

S :=
∞∑

k=1

εkTk(T0 − znI)−1.

Let ϕ ∈ H such that ϕ �= 0. It follows from hypothesis (H3) that

‖Sϕ‖ ≤
∞∑

k=1

|ε|k‖Tk(T0 − znI)−1ϕ‖

≤ ‖ϕ‖
∞∑

k=1

|ε|kqk−1(a‖(T0 − znI)−1‖ + b‖zn(T0 − znI)−1 + I‖)

≤ ‖ϕ‖
∞∑

k=1

|ε|kqk−1αn.

Hence,

‖S‖ ≤
∞∑

k=1

|ε|kqk−1αn.

Then, for |ε| < 1
q we have

‖S‖ ≤ αn|ε|
1 − |ε|q .
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So, for |ε| < 1
q+αn

we get ‖S‖ < 1 and I − S is invertible with bounded
inverse. Thus, Eq. (4.17) implies that T (ε) − zn is invertible with bounded
inverse. Consequently, for |ε| < 1

q+αn
we obtain Cn ⊂ ρ(T (ε)). Hence, let

Pn(ε) be the eigenprojection on Wn,ε = R(Pn(ε)) defined by

Pn(ε) :=
−1
2πi

∫
Cn

(T (ε) − znI)−1dzn,

where R(Pn(ε)) designates the range of Pn(ε). It follows from [16, p. 134]
that for |ε| < 1

q+αn
we have

Pn(ε) = Pn + εPn,1 + ε2Pn,2 + · · · + εiPn,i + · · · (3.2)

and
‖Pn,i‖ ≤ rnMnαn(q + αn)i−1, for all i ≥ 1. (3.3)

For each eigenvalue λn of T0, we fix an εn ∈ C such that

|εn| ∈
]
0,

√
6A

πnvnrnMnαn +
√

6A(q + αn)

[
.

It is easy to see that |εn| < 1
q+αn

, then Eqs. (3.2) and (3.3) imply that Pn(εn)
can be developed as entire series of εn as follow

Pn(εn) = Pn + εnPn,1 + ε2nPn,2 + · · · + εi
nPn,i + · · · ,

with

‖Pn,i‖ ≤ rnMnαn(q + αn)i−1, for all i ≥ 1.

Hence, we obtain

‖Pn(εn) − Pn‖ =

∥∥∥∥∥
∞∑

i=1

εi
nPn,i

∥∥∥∥∥
≤

∞∑
i=1

|εi
n|‖Pn,i‖

≤
∞∑

i=1

|εn|irnMnαn(q + αn)i−1

≤ rnMnαn|εn|
∞∑

i=1

(|εn|(q + αn))i−1.

Since |εn| <
√
6A

πnvnrnMnαn+
√
6A(q+αn)

, we get

‖Pn(εn) − Pn‖ ≤ |εn|rnMnαn

1 − |εn|(q + αn)

<

√
6A

nπvn
. (3.4)

If we denote by

R :=
∞∑

n=1

v2
n‖Pn(εn) − Pn‖2,
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Eq. (3.4) yields R <
∑∞

n=1
6A

n2π2 = A. Hence, we have

∞∑
n=1

v2
n‖Pn(εn)f − Pnf‖2 ≤ R‖f‖2, ∀f ∈ H,

with R < A. Then, due to Theorem 2.1 the family {Pn(εn), vn}n∈N∗ forms a
non-orthogonal fusion frame for H. �

Now, it remains to show the existence of a fixed complex number ε
such that the families {Pn(ε), vn}N

1 ∪ {Pn(εn), vn}∞
N+1 and {Pn(ε), vn}N

1 ∪
{Pn, vn}∞

N+1 are non-orthogonal fusion frames for H.

Theorem 3.3. Suppose that hypotheses (H1)–(H3) hold and the family
{Pn, wn}n∈N∗ is a non-orthogonal fusion frame for H with lower and upper
non-orthogonal fusion frame bounds A and B, respectively. Then, there exist
a sequence of complex numbers (εn)n∈N∗ and two sequences of projections
{Pn(ε)}n∈N∗ and {Pn(εn)}n∈N∗ having the form

Pn(ε) = Pn + εPn,1 + ε2Pn,2 + · · · + εiPn,i + · · ·
Pn(εn) = Pn + εnPn,1 + ε2nPn,2 + . . . + εi

nPn,i + . . .

such that for |ε| <
√
6A

supn∈[1,N](πnvnrnMnαn+
√
6A(q+αn)) , where N ∈ N

∗, the

systems

(i) {Pn(ε), vn}N
1 ∪ {Pn(εn), vn}∞

N+1

(ii) {Pn(ε), vn}N
1 ∪ {Pn, vn}∞

N+1

form non-orthogonal fusion frames for H. Here {wn}n∈N∗ and {vn}n∈N∗ are
two families of weights verifying wn ≤ vn ≤ √

2wn. ♦
Remark 3.2. It is interesting to note that in Theorem 3.2 the obtained non-
orthogonal fusion frame depend on a sequence of complex numbers (εn)n∈N∗ .
Further, they are related to a family of operators (T (εn))n∈N∗ , whereas
in Theorem 3.3 the first N projections in the two non-orthogonal fusion
frames are associated to the perturbed operator T (ε) for a fixed complex
number ε. ♦
Proof of Theorem 3.3. Let n ∈ [1, N ], N ∈ N

∗. Clearly, we have

|ε| <

√
6A

supn∈[1,N ]

(
πnvnrnMnαn +

√
6A(q + αn)

)

<
1

q + αn
.

Hence, in view of [16, p. 134] the eigenprojection Pn(ε) can be developed as
entire series of ε, i.e.,

Pn(εn) = Pn + εnPn,1 + ε2nPn,2 + · · · + εi
nPn,i + · · · ,

with

‖Pn,i‖ ≤ rnMnαn(q + αn)i−1, for all i ≥ 1.
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So, we have

‖Pn(ε) − Pn‖ =

∥∥∥∥∥
∞∑

i=1

εiPn,i

∥∥∥∥∥
≤

∞∑
i=1

|εi|‖Pn,i‖

≤
∞∑

i=1

|ε|irnMnαn(q + αn)i−1

≤ rnMnαn|ε|
∞∑

i=1

(|ε|(q + αn))i−1.

Consequently, we get

‖Pn(ε) − Pn‖ ≤ |ε|rnMnαn

1 − |ε|(q + αn)

<

√
6A

nπvn
. (3.5)

Let n ≥ N + 1. For each eigenvalue λn of T0, we fix an εn ∈ C such that

|εn| ∈
]
0,

√
6A

πnvnrnMnαn +
√

6A(q + αn)

[
.

As |εn| < 1
q+αn

, thus following some ideas of the above we get

‖Pn(εn) − Pn‖ <

√
6A

nπvn
. (3.6)

Now, let Pn ∈ {Pn(ε)}N
1 ∪ {Pn(εn)}∞

N+1. It follows from Eqs. (3.5) and (3.6)
that

‖Pn(εn) − Pn‖ <

√
6A

nπvn
. (3.7)

Setting

R :=
∞∑

n=1

v2
n‖Pn − Pn‖2,

then Eq. (3.7) implies that R <
∑∞

n=1
6A

n2π2 = A. Therefore, we have
∞∑

n=1

v2
n‖Pnf − Pnf‖2 ≤ R‖f‖2, ∀f ∈ H,

with R < A. Consequently, in view of Theorem 2.1 the family {Pn(ε), vn}N
1 ∪

{Pn(εn), vn}∞
N+1 forms a non-orthogonal fusion frame for H. This achieves

the proof of the first item.
The proof of the second item is similar to the one of the first item. �
We note here that the non-orthogonal fusion frames obtained above

depend totally on the sequence (εn)n or partially on the fixed complex number
ε. So, our objective now is to prove the existence of a family of non-orthogonal
fusion frame for T (ε).



52 Page 12 of 23 H. Ellouz, I. Feki and A. Jeribi MJOM

Theorem 3.4. Suppose that hypotheses (H1)-(H3) hold and the family
{Pn, wn}n∈N∗ is a non-orthogonal fusion frame for H with lower and upper
non-orthogonal fusion frame bounds A and B, respectively. Further, assume
that for all n ∈ N

∗ there exists a sequence (rn)n∈N∗ in R
∗
+ satisfying

(i) {z ∈ C such that |z − λn| ≤ rn} ∩ σ(T0) = {λn};
(ii) supn≥1 αn < ∞;

(iii)
∑∞

n=1
(vnrnMnαn)2 < ∞.

Then, for |ε| <
√A√∑∞

n=1(vnrnMnαn)2+
√A(q+ supn≥1 αn)

there exists a sequence

of projections {Pn(ε)}n∈N∗ having the form

Pn(ε) = Pn + εPn,1 + ε2Pn,2 + · · ·

such that the family {Pn(ε), vn}n∈N∗ forms a non-orthogonal fusion frame
for H. Here {wn}n∈N∗ and {vn}n∈N∗ are two families of weights verifying
wn ≤ vn ≤ √

2wn. ♦

Remark 3.3. Theorem 3.4 improves Theorems 3.2 and 3.3. Indeed, in The-
orem 3.2 we have proved that for each eigenprojection Pn of T0, there exist
a sequence of complex numbers (εn)n∈N∗ and a sequence of eigenprojections
(Pn(εn))n∈N∗ of (T (εn))n∈N∗ such that the system {Pn(εn), vn}n∈N∗ forms a
non-orthogonal fusion frame for H. We point out here that the non-orthogonal
fusion frame {Pn(εn), vn}n∈N∗ is related to the eigenprojections of a sequence
of operators (T (εn))n∈N∗ and depends on the sequence (εn)n∈N∗ . Further, in
Theorem 3.3 we assert the existence of a fixed complex number ε only for the
N first projections; whereas in Theorem 3.4, we give a fixed complex number
ε for which the system {Pn(ε), vn}n∈N∗ forms a non-orthogonal fusion frame
for H. Furthermore, the family of subspaces {Wn,ε}n∈N∗ coincide with the
range of the eigenprojections (Pn(ε))n∈N∗ of T (ε). ♦

Proof of Theorem 3.4. Let n ∈ N
∗. It is easy to see that

|ε| <

√A√∑∞
n=1

(vnrnMnαn)2 +
√A (

q + supn≥1 αn

)
<

1
q + αn

.

Then, it follows from [16, p. 134] that the eigenprojection Pn(ε) can be de-
veloped as entire series of ε as follow

Pn(εn) = Pn + εnPn,1 + ε2nPn,2 + · · · + εi
nPn,i + · · · , (3.8)

with

‖Pn,i‖ ≤ rnMnαn(q + αn)i−1, for all i ≥ 1. (3.9)
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Hence, Eqs. (3.8) and (3.9) yield

‖Pn(ε) − Pn‖ ≤
∞∑

i=1

|εi|‖Pn,i‖

≤
∞∑

i=1

|ε|irnMnαn(q + αn)i−1

≤ rnMnαn|ε|
∞∑

i=1

(|ε|(q + αn))i−1

≤ rnMnαn
|ε|

1 − |ε|(q + αn)
. (3.10)

So, Eq. (3.10) entails the estimate

‖Pn(ε) − Pn‖ < rnMnαn

√A√∑∞
n=1

(vnrnMnαn)2
. (3.11)

Setting

R :=
∞∑

n=1

v2
n‖Pn(εn) − Pn‖2,

Eq. (3.11) implies that R < A. Hence, we have

∞∑
n=1

v2
n‖Pn(εn)f − Pnf‖2 ≤ R‖f‖2, ∀f ∈ H,

with R < A. Consequently, the result follows immediately from Theorem
2.1. �

4. Application to a One-Dimensional Wave Control System

To illustrate the importance of the above mentioned results, we consider a
controlled wave system given by⎧⎪⎪⎨

⎪⎪⎩

wtt(x, t) = wxx(x, t), 0 < x < 1, t > 0,
wx(0, t) = wt(0, t) + γw(0, t),
wx(1, t) = −k2wt(1, t) − δw(1, t),
w(x, 0) = w0(x), wt(x, 0) = w1(x),

(4.1)

where γ, δ > 0 and k2 ≥ 0. The abstract formulation of Eq. (4.1) is equivalent
to consider the Hilbert space X defined by

X := H1(0, 1) × L2(0, 1)

and the operator A given by

A(u, v) := (v, u′′), (u, v) ∈ D(A),
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where

D(A) :=
{
(u, v) ∈ H2(0, 1) × H1(0, 1) such that u′(0) = γu(0) + v(0),

u′(1) = −δu(1) − k2v(1)} .

Then, our initial problem can be written as{
d
dtW (t) = AW (t), t > 0,

W (0) = W0,

where W (t) := (w(x, t), wt(x, t)) and W0 := (w0(x), w1(x)).
It is easy to see that the operator A is a densely defined closed operator

in X and it’s adjoint A∗, is given by

A∗(u, v) = −(v, u′′), (u, v) ∈ D(A∗),

where

D(A∗) :=
{
(u, v) ∈ H2(0, 1) × H1(0, 1) such that u′(0) = −v(0) + γu(0),

u′(1) = k2v(1) − δu(1)} .

Before going further, we recall the following result from [19].

Theorem 4.1 [19, Theorems 3.1 and 3.2]. The operator A is with compact
resolvent. Further, we have

σ(A) = {λ ∈ C such that Γ(λ) = 0},

where

Γ(λ) := [(1 + k2)λ + δ](2λ + γ)eλ + γ[(1 − k2)λ − δ]e−λ.

♦
Proof. Suppose that 0 ∈ σp(A). Then, there exists (u, v) �= (0, 0) ∈ D(A)
such that A(u, v) = (0, 0), i.e.,⎧⎪⎪⎨

⎪⎪⎩

v(x) = 0
u′′(x) = 0
u′(0) = γu(0)
u′(1) = −δu(1).

(4.2)

The solution of the system (4.2) is given by

u(x) = a + bx.

Substituting it into the boundary conditions, we get that the system (4.2)
has only the zero solution. Hence, 0 is not an eigenvalue of A.

Now, we consider the inhomogeneous equation AF = G, where F =
(u, v) ∈ D(A) and G = (f, g) ∈ X , i.e.,⎧⎪⎪⎨

⎪⎪⎩

v(x) = f(x)
u′′(x) = g(x)
u′(0) − γu(0) = f(0)
u′(1) + δu(1) = −k2f(1).
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It is easy to see that u1(x) = 1 and u2(x) = x are the solutions of the ho-
mogeneous equation u′′(x) = 0. An elementary calculation by the variation-
of-constants reveals that the general solution to the equation u′′(x) = g(x) is
given by

u(x) = au1(x) + bu2(x) +
∫ x

0

−u1(x)u2(t) + u2(x)u1(t)
u1(t)u′

2(t) − u2(t)u′
1(t)

g(t) dt

= a + bx +
∫ x

0

(−t + x) g(t) dt.

Using the boundary conditions, we get

a =
1
Δ

[
−f(0)(u′

2(1) + δu2(1)) − k2f(1)+
∫ 1

0

(u′
1(1) + δu1(1))u2(t)

u1(t)u′
2(t) − u2(t)u′

1(t)
g(t) dt

−
∫ 1

0

(u′
2(1) + δu2(1))u1(t)

u1(t)u′
2(t) − u2(t)u′

1(t)
g(t) dt

]

=
1
Δ

[
−f(0)(1 + δ) − k2f(1) +

∫ 1

0

(δt − 1 − δ) g(t) dt

]

and

b =
1
Δ

[
f(0)(u′

1(1) + δu1(1)) − k2f(1) +
∫ 1

0

(u′
1(1) + δu1(1))u2(t)

u1(t)u′
2(t) − u2(t)u′

1(t)
g(t) dt

−
∫ 1

0

(u′
2(1) + δu2(1))u1(t)

u1(t)u′
2(t) − u2(t)u′

1(t)
g(t) dt

]

=
1
Δ

[
f(0)δ − k2f(1) +

∫ 1

0

(δt − 1 − δ) g(t) dt

]
,

where

Δ = (u′
1(1) + δu1(1)) + γ(u′

2(1) + δu2(1)) = δ + γ(1 + δ).

Since 0 �∈ σp(A), hence Δ �= 0. Consequently, A−1(f, g) = (u, v). So, we
obtain

‖A−1(f, g)‖2 = ‖(u, v)‖2

=

∫ 1

0
|u′(x)|2 dx + γ|u(0)|2 + δ|u(1)|2 +

∫ 1

0
|v(x)|2 dx

=

∫ 1

0

∣∣∣∣b +
∫ x

0
g(t) dt

∣∣∣∣
2

dx +
1

γ
|b − f(0)|2 +

1

δ

∣∣∣∣−k2f(1) − b−
∫ 1

0
g(t) dt

∣∣∣∣
2

+

∫ 1

0
|f(x)|2dx

=

∫ 1

0

∣∣∣∣b +
∫ x

0
g(t) dt

∣∣∣∣
2

dx +
1

γ
|b − f(0)|2 +

1

δ

∣∣∣∣k2f(1) + b +

∫ 1

0
g(t) dt

∣∣∣∣
2

+

∫ 1

0

∣∣∣∣
∫ x

0
f ′(t) dt

∣∣∣∣
2

dx

≤
∫ 1

0

[(
4

δ
+ 2

)(
b2 +

(∫ 1

0
|g(t)| dt

)2)
+

2

γ

(
b2 + |f(0)|2)+ 2k2

2

δ
|f(1)|2

+

(∫ 1

0
|f ′(t)| dt

)2]
dx
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≤
∫ 1

0

[(
4

δ
+ 2

)(
b2 +

∫ 1

0
|g(t)|2 dt

)
+

2

γ

(
b2 + |f(0)2|)+ 2k2

2

δ
|f(1)|2

+

∫ 1

0
|f ′(t)|2 dt

]
dx.

Hence, we have

‖A−1(f, g)‖2 ≤ C

∫ 1

0

[∫ 1

0

|f ′(t)|2 dt+γ|f(0)|2 + δ|f(1)|2+
∫ 1

0

|g(t)|2 dt

]
dx

= C‖(f, g)‖2,
where C is a positive constant. Then, we get ‖A−1‖ ≤ C. So, 0 ∈ ρ(A).
Further, it follows from the Sobolev embedding theorem that A−1 is compact.
Thus the resolvent set of A is compact.

On the other hand, let λ ∈ C and we consider the eigenvalue problem{
(A − λ)F = 0,
F = (u, v) ∈ D(A). (4.3)

The system (4.3) is equivalent to⎧⎪⎪⎨
⎪⎪⎩

v(x) − λu(x) = 0
u′′(x) − λv(x) = 0
u′(0) = γu(0) + v(0)
u′(1) = −δu(1) − k2v(1).

(4.4)

Clearly, we have v(x) = λu(x). Substituting it into the system (4.4), we get⎧⎨
⎩

u′′(x) − λ2u(x) = 0
u′(0) = γu(0) + λu(0)
u′(1) = −δu(1) − k2λu(1).

(4.5)

The solution of the system (4.5) is formally given by

u(x) = aeλx + be−λx

and satisfies the following boundary conditions{
u′(0) = aλ − bλ = (γ + λ)(a + b)
u′(1) = aλeλ − bλe−λ = (−δ − k2λ)(aeλ + be−λ). (4.6)

Hence, the system (4.6) can be written as{
γa = −(2λ + γ)b
a[(1 + k2)λ + δ]eλ − b[(1 − k2)λ − δ]e−λ = 0.

So, we get that the necessary and sufficient condition to obtain a non-zero
solution is

[(1 + k2)λ + δ](2λ + γ)eλ + γ[(1 − k2)λ − δ]e−λ = 0.

�

Let σ(A) = (λn)n∈N∗ . For each eigenvalue λn ∈ σ(A), the corresponding
eigenvector of A is

ϕn =
(

λ−1
n

[
eλnx − γ

(2λn + γ)
e−λnx

]
,

[
eλnx − γ

(2λn + γ)
e−λnx

])
,
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and the eigenvector of A∗ corresponding to λn is

ϕ∗
n = ξn

(
λ−1

n

[
eλnx − γ

(2λn + γ)
e−λnx

]
,−

[
eλnx − γ

(2λn + γ)
e−λnx

])
,

where

ξ−1
n =

4γ

(2λn + γ)
+

γ

λ2
n

[
1 − γ

(2λn + γ)

]2
+

δ

λ2
n

[
eλn − γ

(2λn + γ)
e−λn

]2
.

Evidently,

〈ϕn, ϕ∗
n〉X = 1, 〈ϕm, ϕ∗

n〉X = 0, m �= n.

For each λn ∈ σ(A) and for F ∈ X the corresponding eigenprojection Pn is

PnF = 〈F,ϕ∗
n〉X ϕn

and
‖Pn‖ = ‖ϕ∗

n‖‖ϕn‖ = |ξn|‖ϕn‖2. (4.7)

Proposition 4.1 [19, p. 253]. The eigenvectors of A fail to be a basis for X .
Furthermore, we have

‖Pn‖ ≈ |λn|2
2|�(λn)|δ ≤

{
M1e

−4	(λn), as k2 �= 1,
M1e

−2	(λn), as k2 = 1,
(4.8)

where M1 is a positive constant.

Proof. An elementary calculation reveals that

lim
n→∞ |λ−4

n e−2λnξn| =
4

γ2δ
(4.9)

and

lim
n→∞ |λ2

n�λne2	λn |‖ϕn‖2 =
γ2

8
. (4.10)

Then, combining Eqs. (4.9) and (4.10) we get

lim
n→∞ |λ−2

n �λn||ξn|‖ϕn‖2 =
1
2δ

. (4.11)

Hence, Eqs. (4.7) and (4.11) imply that supn ‖Pn‖ = ∞ and consequently
the eigenvectors of A fail to be a basis for X . On the other hand, Γ(λ) = 0
yields

e2λ =
γ(k2 − 1)λ + γδ

2λ2(1 + k2) + [γ(1 + k2) + 2δ]λ + γδ
.

So, for k2 �= 1 we obtain

|e2λ| = e2	λ =
|γ(k2 − 1)λ + γδ|

|2λ2(1 + k2) + [γ(1 + k2) + 2δ]λ + γδ|
≤ |γ(k2 − 1)λ + γδ|

|2λ2(1 + k2)|

≤
|γ(k2 − 1)| + γδ

|λ|
2|λ|(1 + k2)

. (4.12)
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Thus, it follows from Eq. (4.12) that

|λ| ≤ D1e
−2	λ, (4.13)

where D1 is a positive constant. Further, for k2 = 1 we have

|e2λ| = e2	λ ≤ γδ

4|λ2| .

Hence, we get

|λ2| ≤ γδ

4
e−2	λ. (4.14)

Consequently, Eqs. (4.7), (4.11), (4.13) and (4.14) imply that

‖Pn‖ ≈ |λn|2
2|�(λn)|δ ≤

{
M1e

−4	(λn), as k2 �= 1,
M1e

−2	(λn), as k2 = 1,

where M1 is a positive constant. �

The following result hold.

Proposition 4.2. The family {Pn, wn}n∈N∗ forms a non-orthogonal fusion
frame for X , where wn = 1

|λn| 52+ ξ
2
, ξ > 0. ♦

Proof. It is clear here that wn > 0. Now, let f ∈ X . In view of Eq. (4.8), we
have

∞∑
n=1

w2
n‖Pn(f)‖2 ≤ ‖f‖2

∞∑
n=1

w2
n‖Pn‖2

≤ ‖f‖2
∞∑

n=1

[ |λn|2
2|�(λn)|δ

1
|λn| 1

2 (5+ξ)

]2

≤ ‖f‖2
∞∑

n=1

[
1

2|�(λn)|δ
1

|λn| 1
2 (1+ξ)

]2
︸ ︷︷ ︸

<∞

. (4.15)

Indeed, Γ(λ) is an entire function of exponential type. Then, it follows from
Remark 2.1 that Γ(λ) is an entire function of finite order at most 1. Moreover,
(λn)n≥1 are the zeros of Γ(λ). Hence, Theorem 2.3 implies that the series∑

n≥1
1

|λn|1+ξ is convergent whenever ξ > 0. Consequently, we have

∞∑
n=1

[
1

2|�(λn)|δ
1

|λn| 1
2 (1+ξ)

]2
< ∞.

On the other hand, we have Pn is a bounded operator with closed range.
Hence, in view of [1, p. 372], Pn admits a pseudo-inverse P †

n. Moreover,

inf
{‖Png‖ such that ‖g‖ = 1, g ∈ N(Pn)⊥} =

1

‖P †
n‖ > 0.
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Hence,
∞∑

n=1

w2
n‖Pn(f)‖2 ≥

∞∑
n=1

‖fn‖2w2
n‖P †

n‖−2

︸ ︷︷ ︸
>0

, fn ∈ N(Pn)⊥

=
∞∑

n=1

(‖f‖2 − ‖gn‖2)w2
n‖P †

n‖−2, gn ∈ N(Pn)

≥ ‖f‖2 sup
n∈N∗

(
1 − ‖gn‖2

‖f‖2
) ∞∑

n=1

w2
n‖P †

n‖−2

︸ ︷︷ ︸
>0

. (4.16)

As a consequence, Eqs. (4.15) and (4.16) imply that the family {Pn, wn}n∈N∗

forms a non-orthogonal fusion frame for X . �

Now, let us consider the following operator:

Ak(u, v) := (−1)k(v, u′), (u, v) ∈ D(Ak),

where

D(Ak) :=
{
(u, v) ∈ H1(0, 1) × L2(0, 1)

}
.

Let (u, v) ∈ D(A). We have

‖Ak(u, v)‖2 =
∫ 1

0

|v′(x)|2dx + γ|v(0)|2 + δ|v(1)|2 +
∫ 1

0

|u′(x)|2dx

≤
∫ 1

0

|v′(x)|2dx + γ|v(0)|2 + δ|v(1)|2 +
∫ 1

0

|u′′(x)|2dx

+
∫ 1

0

|u′(x)|2dx + γ|u(0)|2 + δ|u(1)|2 +
∫ 1

0

|v(x)|2dx

= ‖A(u, v)‖2 + ‖(u, v)‖2.
Consequently,

‖Ak(u, v)‖ ≤ ‖A(u, v)‖ + ‖(u, v)‖. (4.17)

Using the results described above, we can now prove the objective of this
part.

Proposition 4.3. For |ε| < 1, the series A +
∑

k≥1 εkAkF converges for all
F = (u, v) ∈ D(A). If we designate its sum by A(ε)F, we define a linear
operator A(ε) with domain D(A). For |ε| < 1

2 , the operator A(ε) is closed.♦
Proof. The proof follows immediately from Theorem 3.1 and Eq. (4.17). �

Theorem 4.2. For |εn| enough small and |ε| enough small there exist two
sequences of projections {Pn(εn)}n∈N∗ and {Pn(ε)}n∈N∗ of T (ε) having the
form

Pn(εn) = Pn + εnPn,1 + ε2nPn,2 + · · ·
Pn(ε) = Pn + εPn,1 + ε2Pn,2 + · · ·

such that the systems
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(i) {Pn(εn), w′
n}n∈N∗

(ii) {Pn(ε), w′
n}N

1 ∪ {Pn(εn), w′
n}∞

N+1

(iii) {Pn(ε), w′
n}N

1 ∪ {Pn, w′
n}∞

N+1

form non-orthogonal fusion frames for X . ♦
Proof. The proof is a direct implication from Theorems 3.2, 3.3 and 4.1,
Propositions 4.2 and 4.3 and Eq. (4.17). �

Theorem 4.3. For |ε| enough small, there exists a sequence of projections
{Pn(ε)}n∈N∗ having the form

Pn(ε) = Pn + εPn,1 + ε2Pn,2 + · · ·
such that the family {Pn(ε), w′

n}n∈N∗ forms a non-orthogonal fusion frame
for X . ♦

Proof. Let n ∈ N
∗, λn the nth eigenvalue of A and rn = min

{ ||λn|− π
3 |λn−1||
2 ,

||λn+1|− π
3 |λn||

2

}
.

As {z ∈ C, |z − λn| ≤ rn} ∩ σ(A) = {λn}, then let Cn = C(λn, rn) be the
closed circle with center λn and radius rn and z ∈ Cn.

It is easy to verify that the operator A is normal. Hence, it follows from
[14, p. 60] that

‖Rz‖ = ‖(A − zI)−1‖ =
1

d(z, σ(A))
.

Consequently, we obtain

αn = aMn + bNn

= a max
z∈Cn

‖Rz‖ + b max
z∈Cn

‖ARz‖

=
a

rn
+ b max

z∈Cn

‖I + zRz‖

≤ a

rn
+ b max

z∈Cn

(1 + |z|‖Rz‖).

Thus, we get

αn ≤ a

rn
+ b

(
2 +

|λn|
rn

)
. (4.18)

If rn = ||λn|− π
3 |λn−1||
2 , then Eq. (4.18) yields

αn ≤
(

2a∣∣|λn| − π
3 |λn−1|

∣∣ + b

(
2 +

2|λn|∣∣|λn| − π
3 |λn−1|

∣∣
))

≤ 2a∣∣|λn| − π
3 |λn−1|

∣∣ + b

⎛
⎝2 +

2∣∣∣1 − π
3

|λn−1|
|λn|

∣∣∣

⎞
⎠ . (4.19)
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As Γ(λ) is an entire function of finite order at most 1, Theorem 2.2 implies
that

n(r) ≤ Crκ

for some constant C and all values of r, where 1 < κ < 1 + ξ. If we choose
r = |λn| then n(r) ≥ n and hence

n
1
κ ≤ C

1
κ |λn|.

Then, it follows from Eq. (4.19) that

sup
n≥1

αn ≤ 2a
C

1
κ∣∣1 − π
3

∣∣ + b

(
2 +

2∣∣1 − π
3

∣∣
)

< ∞.

For rn = ||λn+1|− π
3 |λn||

2 , we show by a similar way as the above that

sup
n≥1

αn ≤ sup
n≥1

2a∣∣|λn+1| − π
3 |λn|∣∣ + b sup

n≥1

⎛
⎝2 +

2∣∣∣ |λn+1|
|λn| − π

3

∣∣∣

⎞
⎠

≤ 2a
C

1
κ∣∣1 − π
3

∣∣ + b

(
2 +

2∣∣1 − π
3

∣∣
)

< ∞.

On the other hand, we have
∞∑

n=1

(w′
nrnMnαn)2 ≤

(
sup
n≥1

αn

)2 ∞∑
n=1

(w′
n)2

≤
(

sup
n≥1

αn

)2 ∞∑
n=1

2w2
n

≤
(

sup
n≥1

αn

)2 ∞∑
n=1

2
|λn|(5+ξ)

< ∞.

Consequently, the family {Pn(ε), w′
n}n∈N∗ forms a non-orthogonal fusion

frame for X . �

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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