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1. Introduction

Motivated by the developments in [14], in this work, we study the existence
and uniqueness of a mild solution for the problem:

u′(t) = Au(t) + f(t, u(t), u(γ(t))), t �= ti, i = 1, . . . , N, (1.1)
u(t+j ) = gj(u(σj(u(t+j )))), j = 1, . . . , N, (1.2)

u0 = ϕ ∈ C([−p, 0];X), (1.3)

where A : D(A) ⊂ X �→ X is the generator of an analytic semigroup of
bounded linear operators (T (t))t≥0 on a Banach space (X, ‖ · ‖), 0 = t0 <
t1 < t2 < · · · < tN < tN+1 = a are pre-fixed numbers, and gi : X �→ X,
f : [0, a]×X ×X �→ X, γ : [0, a] �→ [−p, a] and σi : X �→ [−p, a], i = 1, . . . , N,
are functions specified be later.

The study of state-dependent delay equations is motivated by applica-
tions and theory. For the related ODEs on finite-dimensional spaces, we cite
the early works by Driver [4,5], Aiello et al. [1], the survey by Hartung et al.
[7] and the references in there. For the case PDEs with state-dependent de-
lay, we mention [8,9,18,19] and the recent works by Krisztin and Rezounenko
[11], Yunfei et al. [16], Kosovalic et al. [12], and Hernandez et al. [10].

Concerning the theory of impulsive differential equations, their motiva-
tions and developments, we cite the books by Bainov and Covachev [2] and
Lakshmikantham et al. [13] for the case of ordinary differential equations
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on finite-dimensional space and Benchohra et al. [3] for abstract differential
equations and partial differential equations.

To the best of our knowledge, the papers by Hakl et al. [6] and Li and
Wu [14] are the unique works treating on differential equations with state-
dependent delayed impulses. As pointed in these papers, the study of this type
of problems is motivated by applications arising in disease control, financial
options, population dynamics, and control theory among some fields.

The problem of the existence and “uniqueness” of solutions for (1.1)–
(1.3) is not trivial, since the function u �→ gi(u(σi(u(t+i )))) is (in general) not
Lipschitz. By noting that

‖ u(σi(u(t+i ))) − v(σi(v(t+i ))) ‖≤ (1 + [v]CLip(X)[σi]CLip
) ‖ u − v ‖, (1.4)

when the involved functions are Lipschitz, we work on spaces of sectionally
Lipschitz functions, a hard problem in the framework of semigroup theory.
We also note that the Lipschizianity of T (·)gi(u(σi(u(t+i )))) not depends on
the Lipschizianity of u(·), an extra difficulty in our studies.

In Theorem 2.1, we prove the existence and uniqueness of solutions using
the Banach principle. The existence of a mild solutions via the Schauder’s
fixed point theorem is established and proved in Theorem 2.2. In the last
section, an example is presented. Next, we include some notations and results.

Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be Banach spaces. We denote by L(Z,W )
the space of bounded linear operators from Z into W endowed with operator
norm denoted by ‖ · ‖L(Z,W ) and we write L(Z) and ‖ · ‖L(Z) if Z = W .
Moreover, if X = Z = W , we write simply ‖ · ‖ for the norms ‖ · ‖X and
‖ · ‖L(X). In addition, Br(z, Z) = {y ∈ Z :‖ y − z ‖Z≤ r}.

Let J ⊂ R be a bounded interval. The spaces C(J, Z) and CLip(J, Z) and
their norms denoted by ‖ · ‖C(J,Z) and ‖ · ‖CLip(J,Z) are the usual. We only
note that ‖ · ‖CLip(J;Z) is given by ‖ · ‖CLip(J;Z)=‖ · ‖C(J;Z) +[·]CLip(J;Z),
where [ζ]CLip(J;Z) = supt,s∈J,t�=s

‖ζ(s)−ζ(t)‖Z

|t−s| .
The notation PC(Z) is used for the space formed by all the bounded

functions u : [0, a] �→ Z, such that u(·) is continuous at t �= ti, u(t−i ) = u(ti)
and u(t+i ) exists for all i = 1, . . . , N , provided with the norm ‖ u ‖PC(Z)=
maxi=0,1,...,N ‖ u ‖C((ti,ti+1];Z). In addition, PCLip(Z) represents the space
of functions u ∈ PC(Z), such that u|(ti,ti+1]

∈ CLip((ti, ti+1];Z) for all i =
0, 1, . . . N , endowed with the norm

‖ u ‖PCLip(Z)= maxi=0,1,...,N ‖ u|(ti,ti+1]
‖CLip((ti,ti+1];Z).

We use the symbol BPC(Z) for the set of all the functions u : [−p, a] �→
Z, such that u|[−p,t1]

∈ C([−p, t1];Z) and u|[0,a]
∈ PC(Z). In addition, con-

sider BPCLip(Z) the space formed by all the functions u : [−p, a] �→ Z, such
that u ∈ BPC(Z), u|[−p,0]

∈ CLip([−p, 0];Z) and u|[0,a]
∈ PCLip(Z), endowed

with the norm ‖ u ‖BPCLip(Z)= max{‖ u|Ii
‖CLip(Ii;Z): i = −1, 0, . . . , N},

where I−1 = [−p, 0].
For u ∈ BPC(Z) and i ∈ {−1, 0, 1, · · · , N}, we denote by ũi the function

ũi ∈ C([ti, ti+1];Z) given by ũi(t) = u(t) for t ∈ (ti, ti+1] and ũi(t) = u(t+i )
for t = ti. For B ⊆ BPC(Z) and i ∈ {−1, 0, 1, · · · , N}, ˜Bi is the set ˜Bi =
{ũi : u ∈ B}. We note the next Ascoli–Arzela-type criteria.
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Lemma 1.1. A set B ⊆ BPC(Z) is relatively compact in BPC(Z) if and only
if each set ˜Bi is relatively compact in C([ti, ti+1], Z).

2. Existence of Solutions

Definition 2.1. A function u ∈ BPC(X) is called a mild solution of the prob-
lem (1.1)–(1.3) if u0 = ϕ, u(t+i ) = gi(u(σi(u(t+i )))) for all i = 1, . . . , N and

u(t) = T (t)ϕ(0) +
∫ t

0

T (t − τ)f(τ, u(τ), u(γ(τ)))dτ, t ∈ [0, t1],

u(t) = T (t − ti)gi(u(σi(u(t+i )))) +
∫ t

ti

T (t − τ)f(τ, u(τ), u(γ(τ)))dτ,

∀t ∈ (ti, ti+1], i = 1, . . . , N.

Definition 2.2. A function u ∈ BPC(X) is called a classical solution of (1.1)–
(1.3) if u0 = ϕ, u(t+i ) = gi(u(σi(u(t+i )))) for all i = 1, . . . , N and u(·) satisfy
(1.1).

In this section, we assume that (W, ‖ · ‖W ) is a Banach space contin-
uously embedded in (X, ‖ · ‖), such that AT (·) ∈ L∞([0, a];L(W,X)). In
addition, C0 ∈ R is such that ‖ T (t) ‖≤ C0 for all t ∈ [0, a]. To prove our
results, we introduce the following conditions.
Hγ γ ∈ CLip([0, a]; [−p, a]), there is a function k : {1, . . . , N} �→ {−1, 0, . . . ,

N}, such that γ(Ii) ⊂ Ik(i) and k(i) ≤ i for all i. Next, for convenience,
we write [γ]CLip

in place [γ]CLip([0,a];[−p,a]).
Hσi

There is a function q : {1, . . . , N} �→ {−1, 0, 1, . . . , N}, such that q(i) ≤
i and σi ∈ C(X, Iq(i)) for all i ∈ {1, . . . , N}. Next, we write [σi]CLip

in
place [σi]CLip(X;Iq(i)).

HW
g,X gi ∈ CLip(X;W ) and CX,W (gi) =‖ gi ‖C(X;W )< ∞ for all i ∈ {1, . . . ,

N}. Next, LZ,W (gi) denotes the Lipschitz constant of gi(·), LZ,W (g) =
maxi=1,...,N LZ,W (gi) and CZ,W (g) = maxi=1,...,N CZ,W (gi).

Hf f ∈ CLip([0, a] × X × X;X) and CX(f) =‖ f ‖C([0,a]×X×X;X)< ∞.
Next, Lf denotes the Lipschitz constant of f(·).

Notations 1. We consider bi = ti+1 − ti, b = maxi=1,...,N bi, ic : W �→ X is
the inclusion map , ΛX,W = max{‖ AT (·) ‖L∞([0,b],L(W,X)), C0‖ ic ‖L(W,X)},
and

ΦX,W = ΛX,W CX,W (g) + C0(CX(f) + bLf )

+ [T (·)ϕ(0)]CLip([0,a];X) + [ϕ]CLip([−p,0];X).

The next useful result follows from the proof of [10, Lemma 1]. The
proof is omitted.

Lemma 2.1. Assume that the conditions Hγ and Hσi
are satisfied, u, v ∈

BPCLip(X) and u0 = v0. Then, u(γ(·)) ∈ PCLip(X), [u(γ(·))]PCLip(X) ≤
[u]BPCLip(X)[γ]CLip

and

‖ u(σi(u(t+i )))−v(σi(v(t+i ))) ‖≤ (1 + [v]BPCLip(X)[σi]CLip
) ‖ u − v ‖PC(X) .

(2.1)
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Theorem 2.1. Assume that the conditions Hγ , Hσi
, HW

g,X, and Hf are satis-
fied, T (·)ϕ(0) ∈ CLip([0, a];X) and ϕ ∈ CLip([−p, 0];X). Then, there exists
a unique classical solution u ∈ BPCLip(X) of (1.1)–(1.3) provided that

2C0bLf (3+ [γ]CLip
)+ΛX,W LX,W (g)(1+4 max

j=1,...,N
[σj ]CLip

ΦX,W ) < 1. (2.2)

Proof. First of all, we consider the polynomial P : R → R given by the
following:

P (x) = ΦX,W + (C0bLf (3 + [γ]CLip
) + ΛX,W LX,W (g) − 1)x

+ΛX,W LX,W (g)max
i

[σi]CLip
x2. (2.3)

From (2.2) and noting that C0bLf (3+ [γ]CLip
)+ΛX,W LX,W (g) < 1, we

infer that P (·) has a root 0 < R1. We select now 0 < R, such that P (R) < 0.
From the fact that P (R) < 0, we note that

ΦX,W + C0bLf (1 + [γ]CLip
)R < R, (2.4)

ΛX,W LX,W (g)(1 + R max
i=1,...,N

[σi]CLip
) + 2C0bLf < 1. (2.5)

Let S(R) be the space S(R) = {u ∈ BPCLip(X) ; u0 = ϕ, [u|[0,a]
]PCLip(X) ≤

R}, endowed with the metric d(u, v) =‖ u − v ‖PC(X) and Γ : S(R) →
BPC(X) be the map given by (Γu)0 = ϕ :

Γu(t) = T (t)ϕ(0) +
∫ t

0

T (t − τ)f(s, u(s), u(γ(s)))ds, t ∈ [0, t1],

Γu(t) = T (t − ti)gi(u(σi(u(t+i )))) +
∫ t

ti

T (t − s)f(s, u(s), u(γ(s)))ds,

t ∈ (ti, ti+1], i = 1, . . . , N.

To prove that Γ is a S(R)-valued function, for t ∈ (ti, ti+1), i ∈ {1, . . . ,
N} and h > 0 such that t + h ∈ (ti, ti+1], we have that

‖ Γu(t + h) − Γu(t) ‖

≤
∫ t−ti+h

t−ti

‖ AT (s)gi(u(σi(u(t+i )))) ‖ ds

+
∫ ti+h

ti

‖ T (t + h − s) ‖‖ f(s, u(s), u(γ(s))) ‖ ds

+
∫ t

ti

‖ T (t − s) ‖‖ f(s + h, u(s + h), u(γ(s + h)))

−f(s, u(s), u(γ(s))) ‖ ds
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≤‖ AT (·) ‖L∞([0,b];L(W,X)) CX,W (g)h + C0CX(f)h

+
∫ t

ti

‖ T (t − s) ‖ Lf (1 + [u]BPCLip(X) + [u(γ(·))]CLip(Ii;X))hds,

and hence, [(Γu)|Ii
]CLip(Ii;X) ≤ ΦX,W +C0bLf (1+[γ]CLip

)R < R. In a similar
way, we prove that

[(Γu)|[0,t1]
]CLip([0,t1];X) ≤ [T (·)ϕ(0)]CLip([0,a];X)

+C0(CX(f) + bLf + bLf (1 + [γ]CLip
))R ≤ R.

From the above remarks and (2.4), we infer that [(Γu)|[0,a]
]PCLip(X) ≤ R,

which implies that Γ is a S(R)-valued function.
On the other hand, from (2.1), for u, v ∈ S(R), i = 1, . . . , N , and

t ∈ (ti, ti+1], we get

‖ Γu(t) − Γv(t) ‖
≤ ‖ T (t − ti) ‖L(W,X) LX,W (g) ‖ u(σi(u(t+i ))) − v(σi(v(t+i ))) ‖

+

∫ t

ti

‖ T (t − s) ‖ Lf ‖ (‖ u(·) − v(·) ‖C(Ii;X) +u(γ(·)) − v(γ(·)) ‖C(Ii;X))ds

≤ (

C0 ‖ ic ‖L(W,X) LX,W (g)(1 + [v]BPCLip(X)[σi]CLip) + 2C0bLf

)

d(u, v).

In addition, for t ∈ [0, t1], we note that ‖ Γu(t) − Γv(t) ‖≤ 2C0bLfd(u, v).
From the above:

d(Γu,Γv) ≤
(

ΛX,W LX,W (g)
(

1 + R max
i=1,...,N

[σi]CLip

)

+ 2C0bLf

)

d(u, v),

which implies that Γ(·) is a contraction and there exists a unique mild solution
u ∈ S(R) of (1.1)–(1.3).

We prove now that u(·) is a classical solution. Let ũi, i ≥ 1, be defined
as in the introduction. It is easy to see that ũi(·) is the mild solution of the
problem:

w′(t) = Aw(t) + f(t, u(t), u(γ(t))), t ∈ Ii = [ti, ti+1], (2.6)
w(ti) = gi(u(σi(u(t+i )))). (2.7)

Since f(·, u(·), u(γ(·))) is Lipschitz on Ii and the semigroup is analytic, from
[17], it is easy to infer that ũi is a classical solution of (2.6)–(2.7) on Ii. The
same argument proves that ũ0 is a classical solution of (2.6) on [0, t1] with
the initial condition u(0) = ϕ(0). From the above remarks, we obtain that
u ∈ BPCLip(X) is a classical solution of (1.1)–(1.3). �

Next, using the ideas in the proof of Theorem 2.1, we discuss briefly
the case in which the functions f(·), gi(·) are unbounded and (or) locally
Lipschitz. To begin, we include the next conditions.
HW

g,X Each function gi is continuous from X into W , which takes bounded
sets into bounded sets, and there is LX,W (gi, ·) ∈ C(R; R), such that ‖
gi(x)−gi(y) ‖W ≤ LX,W (gi, r) ‖ x−y ‖ for all x, y ∈ Br(0,X) and every
r > 0. Next, LX,W (g, r) = maxi=1 ...,N LX,W (gi, r) and CX,W (g, r) =
maxi=1 ...,N CX,W (gi, r), where CX,W (gi, r) =‖ gi ‖C(Br(0,X);W ).
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Hf f(·) is continuous from I × X into X, which takes bounded sets into
bounded sets, and there is Lf (·) ∈ C(R; R), such that ‖ f(t, x) −
f(s, y) ‖≤ Lf (r)(| t − s | + ‖ x − y ‖) for all x, y ∈ Br(0,X),
t, s ∈ [0, a] and every r > 0. Next, for r > 0, we use the notation
CX(f, r) =‖ f ‖C([0,a]×Br(0,X);X).

Notations 2. For r > 0, we define ΦX,W (r) = ΛX,W CX,W (g, r)+C0CX(f, r)+
C0bLf (r) + [T (·)ϕ(0)]CLip([0,a];X) + [ϕ]CLip([−p,0];X).

The proof of Proposition 2.1 below follows from the proof of Theo-
rem 2.1.

Proposition 2.1. Let conditions Hγ ,Hσi
, HW

g,X and Hf hold. Suppose that
T (·)ϕ(0) belongs to CLip([0, a];X), ϕ ∈ CLip([−p, 0];X), and there is r > 0,
such that ‖ ϕ ‖C([−p,0];X)< r and (2.2) is valid with Lf (r),ΦX,W (r) and
LX,W (g, r) in place Lf ,ΦX,W and LX,W (g), also C0(‖ ϕ(0) ‖ +bCX(f, r)) +
ΓX,W (r)CX,W (g, r) < r. Then, there exists a unique classical solution u ∈
BPCLip(X) of (1.1)–(1.3).

To complete this section, we study the existence of solution using the
Schauder’s fixed point Theorem. The next lemma follows arguing as in the
proof of [15, Proposition 4.2.1].

Lemma 2.2. Let α ∈ (0, 1), ξ ∈ L∞([b, c];X), and v : [b, c] �→ X be the func-
tion defined by v(t) =

∫ t

b
T (t − s)ξ(s)ds. Then, [v]Cα([b,c];X) ≤‖ ξ ‖L∞([b,c];X)

(c − b)1−α(C0 + C1
α(1−α) ) and v ∈ Cα([b, c];X).

Theorem 2.2. Assume that the conditions Hγ and Hσi
are satisfied, there is

a Banach space (Y, ‖ · ‖Y ) ↪→ (X, ‖ · ‖), such that ‖ T (t) − I ‖L(Y,X)→ 0
as t → 0, gi ∈ C(X;Y ) for all i, f ∈ C([0, a] × X × X;X), the functions
gi(·), f(·) are bounded, and (T (t))t≥0 is compact. Then, there exists a mild
solution of the problem (1.1)–(1.3).

Proof. Let CX,Y (g) = maxi=1,...,N ‖ gi ‖C(X;Y ), CX(f) =‖ f ‖C([0,a]×X×X;X)

and α ∈ (0, 1). Let BPCϕ(X) = {u ∈ BPC(X) : u0 = ϕ} endowed with the
metric d(u, v) =‖ u − v ‖BPC(X) and Γ : BPCϕ(X) �→ BPC(X) be defined as
in the proof of Theorem 2.1. It is easy to prove that Γ is continuous. Next,
we show that Γ is completely continuous.

Let i ∈ {1, . . . , N}. From Lemma 2.2, for t ∈ (ti, ti+1), h > 0 with
t + h ∈ (ti, ti+1], we get the following:

‖ Γu(t + h) − Γu(t) ‖≤‖ (T (t + h − ti) − T (t − ti))gi(u(σi(u(t+i )))) ‖

+ ‖
∫ t+h

ti

T (t + h − s)f(s, u(s), u(γ(s)))ds

−
∫ t

ti

T (t − s)f(s, u(s), u(γ(s)))ds ‖
≤‖ (T (t + h − ti) − T (t − ti)) ‖L(Y,X) CX,Y (g)

+ CX(f)a1−α

(

C0 +
C1

α(1 − α)

)

hα,
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which implies that the set of functions {(Γu)|Ii
: u ∈ BPCϕ(X)} is right

equicontinuous at t ∈ (ti, ti+1), since ‖ (T (t + h − ti) − T (t − ti)) ‖L(Y,X)→ 0
as h → 0. A similar argument proves that {(Γu)|Ii

: u ∈ BPCϕ(X)} is
left equicontinuous at t ∈ (ti, ti+1]. From the above, we allows us to infer
that {(Γu)|Ii

: u ∈ BPCϕ(X)} is equicontinuous on Ii. In addition, for u ∈
BPCϕ(X) and 0 < h < δ, we note that

‖ ˜Γu(ti + h) − ˜Γu(ti) ‖=‖ (T (h) − I)gi(u(σi(u(t+i )))) ‖

+
∫ ti+h

ti

‖ T (ti + h − s)f(s, u(s), u(γ(s))) ‖ ds

≤‖ T (h) − I ‖L(Y,X) CX,Y (g) + CX(f)a1−α

(

C0 +
C1

α(1 − α)

)

hα,

which proves that ˜ΓBPCϕ(X)i = {(˜Γu)i : u ∈ BPCϕ(X)} is right equicon-
tinuous at ti. From the above, it follows that { ˜(Γu)i : u ∈ BPCϕ(X)} is
equicontinuous on [ti, ti+1].

We prove now that {(˜Γu)i(t) : u ∈ BPCϕ(X)} is relatively compact in X
for all t ∈ [ti, ti+1]. Since the semigroup is compact, (Y, ‖ · ‖Y ) ↪→ (X, ‖ · ‖)
and gi(·) is bounded with values in Y , we have that U = {gj(u(σj(u(t+j )))) :
u ∈ BPCϕ(X), j = 1, . . . , N} is relatively compact in X. For t ∈ (ti, ti+1]
and 0 < ε < t − ti, we note that

(˜Γu)i(t) = T (t − ti)gi(u(σi(u(t+i ))))

+T (ε)
∫ t−ε

ti

T (t − ε − s)f(s, u(s), u(γ(s)))ds

+
∫ t

t−ε

T (t − s)f(s, u(s), u(γ(s)))ds

∈ T (t − ti)U + T (ε)C0(t − ε − ti)CX(f)B1(0,X) + εC0CX(f)B1(0,X),

so that, {(˜Γu)i(t) : u ∈ BPCϕ(X)} ⊂ Kε+Dε, where Kε is relatively compact
and the diameter of Dε converges to zero as ε → 0. This proves that the
set ΓBPCϕ(X)(t) is relatively compact in X. Moreover, ˜ΓBPCϕ(X)i(ti) =
{gi(u(σi(u(t+i )))) : u ∈ BPCϕ(X)} is relatively compact in X. From the above

remarks, we have that ( ˜ΓBPCϕ(X))i is relatively compact in C([ti, ti+1];X).

In a similar way, we prove that ( ˜ΓBPCϕ(X))1 = {(Γu)|[0,t1]
: u ∈ BPCϕ(X))}

is relatively compact in C([0, t1];X).
From the above remarks and Lemma 1.1, it follows that Γ is completely

continuous and noting that the functions f(·) and gi(·) are bounded, we infer
that there exists r > 0, such that Γ(BPCϕ(X)) ⊂ Br(0,BPCϕ(X)). Thus,
Γ is completely continuous from Br(0,BPCϕ(X)) into Br(0,BPCϕ(X)), and
there exists a mild solution u ∈ Br(0,BPCϕ(X)) of (1.1)–(1.3). �



42 Page 8 of 10 K. A. G. Azevedo MJOM

3. Example

Consider the following problem motivated by equations arising in population
dynamics:

ut(t, x) = uxx(t)(x) + αu(t, x)(1 − u(γ(t), x)), x ∈ Ω, t ∈ (ti, ti+1], (3.1)
u(t+i , x) = αiu(σi(u(t+i )), x), (3.2)
u(θ, x) = ϕ(θ, x), θ ∈ [−p, 0], (3.3)

We note that, in this problem, the impulses depending on the state can be
justified by a control population decision.

To treat this problem, we take X = C(Ω; R), where Ω ⊂ R
n is bounded

and A : D(A) ⊂ X �→ X is the realization of the second-order derivative
in X. We assume that α, αi ∈ R, Hγ and Hσi

are satisfied, T (·)ϕ(0) ∈
CLip([0, a];X) and ϕ ∈ CLip([−p, 0];X). We define gi : X �→ X and f :
[0, a]×X×X �→ X by f(t, x, y)(ξ) = αx(ξ)(1−y(ξ)) and gi(t, x)(ξ) = αix(ξ).
It is trivial to see that

‖ f(t, x1, y1) − f(s, x2, y2) ‖ ≤ | α | ((1 + r) ‖ x1 − x2 ‖ +r ‖ y1 − y2 ‖),
‖ f(t, x, y) ‖ ≤ | α | r(1 + r),

‖ gi(x) − gi(y) ‖ ≤ | αi |‖ x − y ‖, ‖ Agi(z) ‖≤| αi |‖ Az ‖,

for all t, s ∈ [0, a], x, y ∈ Br(0;X), and z ∈ D(A).

Proposition 3.1. Suppose that there is r >‖ ϕ ‖C([−p,0];X), such that the
inequality (2.2) is verified and

C0(‖ ϕ(0) ‖ +b | α | (1 + 2r)) + ΛX,W

(

max
i=1,...,N

| αi |
)

< r.

Then, there exists a unique classical solution u ∈ BPCLip(X) of (3.1)–(3.3).

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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