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Symmetric Strong Diameter Two Property

Rainis Haller, Johann Langemets , Vegard Lima
and Rihhard Nadel

Abstract. We study Banach spaces with the property that, given a finite
number of slices of the unit ball, there exists a direction such that all
these slices contain a line segment of length almost 2 in this direction.
This property was recently named the symmetric strong diameter two
property by Abrahamsen, Nygaard, and Põldvere. The symmetric strong
diameter two property is not just formally stronger than the strong
diameter two property (finite convex combinations of slices have diame-
ter 2). We show that the symmetric strong diameter two property is only
preserved by �∞-sums, and working with weak star slices we show that
Lip0(M) have the weak star version of the property for several classes
of metric spaces M .
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1. Introduction

All Banach spaces considered in this paper are nontrivial and over the real
field. The closed unit ball of a Banach space X is denoted by BX and its unit
sphere by SX . The dual space of X is denoted by X∗ and the bidual by X∗∗.
By a slice of BX , we mean a set of the form

S(BX , x∗, α) := {x ∈ BX : x∗(x) > 1 − α},

where x∗ ∈ SX∗ and α > 0. If X is a dual space, then slices whose defining
functional comes from (the canonical image of) the predual of X are called
weak∗ slices.

This research belongs to the area of diameter two properties, which
is a recent topic in geometry of Banach spaces and has received intensive
attention in the last years (see [1–9,12–15,18]). Its central research objects are
Banach spaces where certain subsets of the unit ball (slices, relatively weakly
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open subsets or convex combinations of slices) all have diameter equal to 2.
Different subsets under consideration led to particular diameter properties.

Recall from [1] that a Banach space X is almost square (ASQ) if when-
ever n ∈ N, and x1, . . . , xn ∈ SX , there exists a sequence (yk)∞

k=1 ⊂ SX such
that ‖xi ±yk‖ → 1 for every i ∈ {1, . . . , n}. If a Banach space X is ASQ, then
every finite convex combination of slices of BX has diameter two [1, Proposi-
tion 2.5], that is, X has the strong diameter 2 property (SD2P). Spaces which
are ASQ include c0(Xn), where Xn are arbitrary Banach spaces, and Banach
spaces X which are M-ideals in X∗∗ (see [1]).

In this paper, we investigate the following property, which first appeared
in [3], but was singled out and studied in [5].

Definition 1.1. A Banach space X has the symmetric strong diameter 2 prop-
erty (SSD2P) if for every finite family {Si}n

i=1 of slices of BX and ε > 0, there
exist xi ∈ Si and y ∈ BX , independent of i, such that xi ± y ∈ Si for every
i ∈ {1, . . . , n} and ‖y‖ > 1 − ε.

It is known [3, Lemma 4.1] that if a Banach space has the SSD2P, then
it has the SD2P. In fact, the SSD2P is strictly stronger than the SD2P. For
example, L1[0, 1] has the SD2P, but not the SSD2P (see Remark 3.3 below).
On the other hand, ASQ Banach spaces have the SSD2P (this can easily be
observed from Theorem 2.1 (d) below). The converse fails, C[0, 1] has the
SSD2P (it is a Lindenstrauss space) and is not ASQ (this can be easily seen
by considering the constant 1 function).

The following classes of spaces have the SSD2P:

(a) Lindenstrauss spaces (this follows by inspecting the proof of Proposi-
tion 4.6 in [4]);

(b) uniform algebras (see Theorem 4.2 in [3]);
(c) ASQ-spaces, in particular, Banach spaces which are M-ideals in their

bidual (see [1]);
(d) Banach spaces with an infinite-dimensional centralizer (this follows by

inspecting the proof of Proposition 3.3 in [6]);
(e) somewhat regular linear subspaces of C0(L), whenever L is an infinite

locally compact Hausdorff topological space [5];
(f) Müntz spaces (this follows by inspecting the proof of Theorem 2.5 in

[2]).

All of the above-listed spaces contain an almost isometric copy of c0. However,
we do not know whether every space with the SSD2P contains c0. On the
other hand, every Banach space containing a copy of c0 can be equivalently
renormed to have the SSD2P, in fact even to be ASQ (see [8]).

Let us summarize the results of the paper. We start our investigation
in Sect. 2 by giving equivalent formulations of the SSD2P, which are often
more convenient to use.

Recently in [13], it was proven that the SD2P is preserved by a lot of
absolute normalized norms. However, in Sect. 3, we show that the only direct
sums of Banach spaces that can have the SSD2P are the �∞-sums. In Sect. 4,
we prove that the SSD2P passes down from a superspace if a subspace is
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an ai-ideal in it or if the quotient is strongly regular. For the other way, we
show that if a subspace is an M-ideal in the superspace then the SSD2P will
lift from the subspace to the superspace. In Sect. 5, we introduce the weak∗

version of the SSD2P and we study this property for Lipschitz spaces. At the
end, we list some open problems.

2. Characterization of the SSD2P

Let O(x) denote the set of all relatively weakly open neighborhoods of x in
BX .

Theorem 2.1. Let X be a Banach space. The following assertions are equiv-
alent:

(a) X has the SSD2P.
(b) Whenever n ∈ N, U1, . . . , Un are relatively weakly open subsets of BX

and ε > 0, there exist xi ∈ Ui, i ∈ {1, . . . , n}, and y ∈ BX such that
xi ± y ∈ Ui for every i ∈ {1, . . . , n} and ‖y‖ > 1 − ε.

(c) Whenever n ∈ N, C1, . . . , Cn are finite convex combinations of slices
of BX and ε > 0, there exist xi ∈ Ci, i ∈ {1, . . . , n}, and y ∈ BX such
that xi ± y ∈ Ci for every i ∈ {1, . . . , n} and ‖y‖ > 1 − ε.

(d) Whenever n ∈ N, x1, . . . , xn ∈ SX , there exist nets (yi
α) ⊂ SX and

(zα) ⊂ SX such that yi
α → xi weakly, zα → 0 weakly, and ‖yi

α±zα‖ → 1
for all i ∈ {1, . . . , n}.

(e) Whenever n ∈ N, x1, . . . , xn ∈ SX , Ui ∈ O(xi), i ∈ {1, . . . , n}, V ∈
O(0), and ε > 0, there exist yi ∈ Ui∩SX , i ∈ {1, . . . , n}, and z ∈ V ∩SX

such that ‖yi ± z‖ ≤ 1 + ε.

Proof. (a) ⇒ (b). Let n ∈ N and assume that U1, . . . , Un are relatively weakly
open subsets of BX and that ε > 0. By Bourgain’s lemma [11, Lemma II.1]
each Ui contains a convex combination of slices, say Ui ⊃ ∑ni

j=1 λj
iS

j
i , with

∑ni

j=1 λj
i = 1 and λj

i > 0, for each i ∈ {1, . . . , n}. We apply the definition
of the SSD2P to the family of all Sj

i to find xj
i ∈ Sj

i and y ∈ BX such that
xj

i ± y ∈ Sj
i and ‖y‖ > 1 − ε. Set wi :=

∑ni

j=1 λj
ix

j
i . Then

wi ∈
ni∑

j=1

λj
iS

j
i ⊂ Ui

and

wi ± y =
ni∑

j=1

λj
i (x

j
i ± y) ∈

ni∑

j=1

λj
iS

j
i ⊂ Ui.

This shows (a) ⇒ (b). The same proof also gives (a) ⇒ (c), while (b) ⇒ (a)
and (c) ⇒ (a) are trivial.

(b) ⇒ (e). Let n ∈ N, x1, . . . , xn ∈ SX , Ui ∈ O(xi), i ∈ {1, . . . , n},
V ∈ O(0), and ε ∈ (0, 1). By choosing 0 < δ < ε small enough there exist
finite sets Ai ⊂ SX∗ and B ⊂ SX∗ such that

Ui ⊃ Ūi := {x ∈ BX : |x∗(x − xi)| < δ, x∗ ∈ Ai}
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and

V ⊃ V̄ := {x ∈ BX : |x∗(x)| < δ, x∗ ∈ B}.

Let

Ūi ⊃ Ũi := {x ∈ BX : |x∗(x − xi)| < δ/2, x∗ ∈ Ai}
and

V̄ ⊃ Ṽ := {x ∈ BX : |x∗(x)| < δ/2, x∗ ∈ B}.

For each i ∈ {1, . . . , n}, choose x∗
i ∈ SX∗ such that x∗

i (xi) = 1, and define
Si := S(BX , x∗

i , δ/2). We apply (b) to the relatively weakly open sets Wi =
Si ∩ Ũi and Ṽ and find wi ∈ Wi and v ∈ Ṽ and z ∈ BX such that

wi ± z ∈ Wi, v ± z ∈ Ṽ , and ‖z‖ > 1 − δ

2
.

Define ui := wi

‖wi‖ . Since wi ∈ Si, we get

‖wi‖ > 1 − δ

2
and ‖ui − wi‖ <

δ

2
.

From this and wi ∈ Ũi, we have ui ∈ Ui.
Next, note that −(v ± z) ∈ Ṽ hence z = 1

2 (−v + z) + 1
2 (v + z) ∈ Ṽ by

convexity. Since ‖z‖ > 1 − δ/2, we get that y := z
‖z‖ ∈ V .

Finally, note that

‖ui ± y‖ ≤ ‖wi − ui‖ + ‖wi ± z‖ + ‖z − y‖ ≤ δ

2
+ 1 +

δ

2
< 1 + ε.

(d) ⇒ (a). Let n ∈ N, S1 := S(BX , x∗
1, α1), . . . , Sn := S(BX , x∗

n, αn) be
slices of BX and ε ∈ (0, 1). Find a δ > 0 such that

1
1 + δ

> 1 − ε and
1 − 2δ

1 + δ
> 1 − αi

for every i ∈ {1, . . . , n}. For every i choose an xi ∈ SX ∩S(BX , x∗
i , δ). By (d)

there are nets (yi
α) ⊂ SX and (zα) ⊂ SX such that yi

α → xi weakly, zα → 0
weakly, and ‖yi

α ± zα‖ → 1 for all i ∈ {1, . . . , n}.
Find an index α0 such that

yi
α0

∈ S(BX , x∗
i , δ), ‖x∗

i (zα0)‖ < δ, and max ‖yi
α0

± zα0‖ ≤ 1 + δ

for every i ∈ {1, . . . , n}. Finally, set yi := yi
α0

/(1 + δ) and z := zα0/(1 + δ).
Then we have yi, yi ± z ∈ Si and z ∈ BX with ‖z‖ > 1 − ε.

The implication (e) ⇒ (d) is straightforward. �

Theorem 2.1 (d) provides a condition that is easy to check. See for
example Proposition 3.4 below or Proposition 3.3 in [6].
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3. Direct Sums with the SSD2P

We recall that a norm N on R
2 is absolute (see [10]) if

N(a, b) = N(|a|, |b|) for all (a, b) ∈ R
2

and normalized if
N(1, 0) = N(0, 1) = 1.

For 1 ≤ p ≤ ∞, we denote the �p-norm on R
2 by ‖ · ‖p. Every norm ‖ · ‖p is

absolute and normalized. Moreover, if N is an absolute normalized norm on
R

2 (see [10, Lemmata 21.1 and 21.2]), then

‖ · ‖∞ ≤ N(·) ≤ ‖ · ‖1
and if (a, b), (c, d) ∈ R

2 and

|a| ≤ |c| and |b| ≤ |d|,
then

N(a, b) ≤ N(c, d).

If X and Y are Banach spaces and N is an absolute normalized norm
on R

2, then we denote by X ⊕N Y the product space X × Y with respect to
the norm

‖(x, y)‖N = N(‖x‖, ‖y‖) for all x ∈ X and y ∈ Y.

In the special case, where N is the �p-norm, we write X ⊕p Y .
We will now prove that the �∞-norm is the only absolute normalized

norm, which preserves the SSD2P.

Theorem 3.1. Let X and Y be Banach spaces.
(a) X ⊕∞ Y has the SSD2P if and only if X or Y has the SSD2P.
(b) If N is an absolute normalized norm different from the �∞-norm, then

X ⊕N Y does not have the SSD2P.

Proof. (a). Assume first that X has the SSD2P and denote by Z := X ⊕∞ Y .
For every i ∈ {1, . . . , n}, let Wi be a nonempty relatively weakly open subset
of BZ containing the element (ui, vi), and ε > 0. Find nonempty relatively
weakly open subsets Ui ⊂ BX and Vi ⊂ BY such that

(ui, vi) ∈ Ui × Vi ⊂ Wi.

Since X has the SSD2P, by Theorem 2.1 (b), we can find xi ∈ Ui and x ∈ BX

such that xi, xi ± x ∈ Ui and ‖x‖ > 1 − ε. Set zi = (xi, vi) and z = (x, 0).
Then zi, zi ± z ∈ Wi and ‖z‖ > 1 − ε, which completes the proof.

Assume now that X ⊕∞ Y has the SSD2P. Suppose for contradiction
that X and Y both fail to have the SSD2P.

Since X fails the SSD2P, there are nonempty relatively weakly open
subsets U1, . . . , Un ∈ BX and an ε > 0 such that for all xi ∈ Ui and for all
x ∈ BX with ‖x‖ > 1 − ε there is an index i0 such that xi0 + x /∈ Ui0 or
xi0 −x /∈ Ui0 . In addition, there are nonempty relatively weakly open subsets
V1, . . . , Vm ∈ BY and a δ > 0 such that for all yj ∈ Vj and for all y ∈ BY

with ‖y‖ > 1− δ there is an index j0 such that yj0 + y /∈ Vj0 or yj0 − y /∈ Vj0 .
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Set Wij := Ui×Vj for every i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. Then each
Wij is a nonempty relatively open subset of BX⊕∞Y and by our assumption
there should be (xi0 , yj0) ∈ Wi0j0 and (x, y) ∈ BZ such that (xi0 , yj0) ±
(x, y) ∈ Wi0j0 and ‖(x, y)‖ > 1 − max{δ, ε}, which is impossible.

(b). Denote Z := X ⊕N Y . Note that N(1, 1) > 1, because N differs
from the �∞-norm. Let a ∈ (0, 1) be such that N(a, a) = 1. Since N(a, 1) > 1
and N(1, a) > 1, there is a δ > 0 such that if N(u, v) ≤ 1 and u > 1− δ, then
v < a − δ or if v > 1 − δ, then u < a − δ. Fix an ε > 0 with a − δ ≤ (1 − ε)a.

Consider slices S1 := S(BZ , (x∗, 0), δ) and S2 := S(BZ , (0, y∗), δ). Sup-
pose for contradiction that Z has the SSD2P, then there are z1 = (x1, y1) ∈
S1, z2 = (x2, y2) ∈ S2, and w = (u, v) ∈ BZ such that

z1 ± w ∈ S1, z2 ± w ∈ S2, and ‖w‖ > 1 − ε.

Therefore, (x∗, 0)(z1 ±w) = x∗(x±u) > 1− δ, which implies that ‖x1 ±u‖ >
1 − δ. Similarly, we have that ‖y2 ± v‖ > 1 − δ. Hence, ‖y1 ± v‖ < a − δ and
‖x2 ± u‖ < a − δ. Now we see that

‖v‖ ≤ 1
2
(‖y1 + v‖ + ‖y1 − v‖) < a − δ.

Similarly, one has that ‖u‖ < a − δ. Thus,

1 − ε < ‖w‖ = N(‖u‖, ‖v‖)

≤ N(a − δ, a − δ)

≤ N((1 − ε)a, (1 − ε)a)

= (1 − ε)N(a, a) = 1 − ε,

a contradiction. �
Remark 3.2. Note that Theorem 3.1 implies that almost squareness is also
preserved only by �∞-sums.

Remark 3.3. By Theorem 3.1, L1[0, 1] does not have the SSD2P, because
L1[0, 1] = L1[0, 1

2 ] ⊕1 L1[12 , 1].

If (Xn)∞
n=1 is a sequence of Banach spaces, then �∞(Xn) is the Banach

space of bounded sequences (xn)∞
n=1, where xn ∈ Xn, with norm ‖(xn)‖ =

supn ‖xn‖.

Proposition 3.4. Let (Xn)∞
n=1 be a sequence of Banach spaces. Then �∞(Xn)

has the SSD2P.

Proof. Define Z := �∞(Xn) and Z0 := c0(Xn). Let Pk : Z → Z0, z =
(xn) �→ Pk(z) = (0, . . . , 0, xk, 0, . . .). Observe that (Pk(z))∞

k=1 is a weakly
null sequence in Z, because it is a weakly null sequence in the subspace Z0,
where Z∗

0 = �1(X∗
n).

Let z1, . . . , zm ∈ SZ . Choose u = (un)∞
n=1 ∈ SZ such that ‖un‖ = 1 for

all n. Define
yi

k := zi − Pk(zi) and wk := Pk(u).
Then yi

k → zi weakly and wk → 0 weakly since both (Pk(zi))∞
k=1 and

(Pk(u))∞
k=1 are weakly null. By definition ‖yi

k ± wk‖ = 1. From Theo-
rem 2.1 (d), we see that Z has the SSD2P. �
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4. Subspaces with the SSD2P

We show that the SSD2P behaves similar to the SD2P by passing to sub-
spaces.

Let X be a Banach space and Y a subspace of X. Following [4] we
say that Y is an almost isometric ideal (ai-ideal) in X if for every finite-
dimensional subspace E of X and every ε > 0 there exists a bounded linear
operator T : E → Y such that (1 − ε)‖e‖ ≤ ‖Te‖ ≤ (1 + ε)‖e‖ and Te = e
for all e ∈ E ∩ Y .

Using ideas from [17] one can connect ai-ideals to Hahn–Banach exten-
sion operators. Recall that ϕ : Y ∗ → X∗ is called a Hahn–Banach extension
operator if ϕ(y∗)(y) = y∗(y) and ‖ϕ(y∗)‖ = ‖y∗‖ for all y ∈ Y and y∗ ∈ Y ∗.
The connection was made explicit in Theorem 1.4 in [4] which says that: If
Y is an ai-ideal in X, then there exists a Hahn–Banach extension operator
ϕ : Y ∗ → X∗ such that for every ε > 0, every finite-dimensional subspace
E ⊂ X and every finite-dimensional subspace F ⊂ Y ∗ there exists T : E → Y
which satisfies:
(a) Te = e for all e ∈ E ∩ Y.
(b) (1 − ε)‖e‖ ≤ ‖Te‖ ≤ (1 + ε)‖e‖ for all e ∈ E.
(c) ϕ(f)(e) = f(Te) for all e ∈ E and f ∈ F .

The Principle of Local Reflexivity says that every Banach space is an ai-ideal
in its bidual.

Proposition 4.1. Let X be Banach space and Y be its closed subspace. If X
has the SSD2P and Y is an ai-ideal in X, then Y has the SSD2P.

Proof. Let ϕ : Y ∗ → X∗ be a Hahn–Banach extension operator connected to
the local projections. Let y1, . . . , yn ∈ SY , Ui ∈ O(yi) and V ∈ O(0) in Y ,
and ε > 0.

Let δ > 0 be so small that (1 + δ)2 + δ < 1 + ε. By choosing δ even
smaller if necessary there exist finite sets Ai ⊂ SY ∗ and B ⊂ SY ∗ such that

Ui ⊃ Ūi := {y ∈ BY : |y∗(y − yi)| < δ, y∗ ∈ Ai}
and

V ⊃ V̄ := {y ∈ BY : |y∗(y)| < δ, y∗ ∈ B}.

Define corresponding neighborhoods in X by

Ũi := {x ∈ BX : |ϕ(y∗)(x − yi)| <
δ

2
, y∗ ∈ Ai}

and
Ṽ := {x ∈ BX : |ϕ(y∗)(x)| <

δ

2
, y∗ ∈ B}.

By Theorem 2.1 (e), there exist xi ∈ Ũi ∩ SX and z ∈ Ṽ ∩ SX such that
‖xi ± z‖ ≤ 1 + δ.

Define E := span{x1, . . . , xn, y1, . . . , yn, z} ⊂ X and F := span(A1 ∪
. . . ∪ An ∪ B) ⊂ Y ∗. Both E and F are finite-dimensional. Since Y is an
ai-ideal in X there exists a bounded linear operator T : E → Y such that
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(a) Te = e for all e ∈ E ∩ Y .
(b) (1 − δ

2 )‖e‖ ≤ ‖Te‖ ≤ (1 + δ
2 )‖e‖ for all e ∈ E.

(c) ϕ(f)(e) = f(Te) for all e ∈ E and f ∈ F .
Define ui := Txi/‖Txi‖ and v := Tz/‖Tz‖. Then ‖ui − Txi‖ ≤ δ/2 and
‖v − Tz‖ ≤ δ/2, hence

|y∗(ui − yi)| ≤ |y∗(Txi − yi)| +
δ

2
= |y∗(T (xi − yi))| +

δ

2

= |ϕ(y∗)(xi − yi)| +
δ

2
<

δ

2
+

δ

2
= δ

and similarly |y∗(v)| < δ. This means that ui ∈ Ui ∩SY , for all i ∈ {1, . . . , n},
and v ∈ V ∩ SY . Finally,

‖ui ± v‖ = ‖Txi − ui‖ + ‖T (xi ± z)‖ + ‖Tz − w‖

≤ δ

2
+

(

1 +
δ

2

)

‖xi ± z‖ +
δ

2
≤ (1 + δ)2 + δ ≤ 1 + ε.

From Theorem 2.1 (e), we get that Y has the SSD2P. �

Recall that a Banach space X is strongly regular if every closed and
convex subset of BX has convex combinations of slices with arbitrarily small
diameter. For a deeper discussion of strong regularity and related concepts,
we refer the reader to [11].

Proposition 4.2. Let X be a Banach space and Y a closed subspace. If X
has the SSD2P and X/Y is strongly regular, then Y has the SSD2P too. In
particular, SSD2P passes down to finite co-dimensional subspaces.

We omit the proof of Proposition 4.2, because using Theorem 2.1 (b) it
is similar to the proof of [9, Theorem 2.2 (iii)].

Recall that a subspace Y of a Banach space X is an M-ideal in X if
there exists a bounded linear projection P : X∗ → X∗ such that ker P = Y ⊥

and
‖x∗‖ = ‖Px∗‖ + ‖x∗ − Px∗‖

for all x∗ ∈ X∗.

Proposition 4.3. Let Y be a proper closed subspace of a Banach space X. If
Y is an M-ideal in X and Y has the SSD2P, then X has the SSD2P.

Proof. The proof is modelled on the proof of [12, Proposition 3]. Let Si :=
S(BX , x∗

i , αi), i ∈ {1, . . . , n}, be slices and let ε > 0.
Let P : X∗ → X∗ with ker P = Y ⊥ be the M-ideal projection. Define

y∗
i :=

Px∗
i

‖Px∗
i ‖

and βi :=
ε(1 − ‖Px∗

i ‖) + ε2

‖Px∗
i ‖

> 0.

Since Y has the SSD2P there exist ui ∈ S(BY , y∗
i , βi) and v ∈ BY with

ui ± v ∈ S(BY , y∗
i , βi) and ‖v‖ > 1 − ε. Note that we then have |y∗

i (v)| < βi.
The choice of βi means that

Px∗
i (ui) > (‖Px∗

i ‖ − ε)(1 + ε).
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If we happen to have Px∗
i = 0 we just set ui = 0 and use the v we get from

the rest of the slices. And if Px∗
i = 0 for all i then use any v ∈ SY .

Find x1, . . . , xn such that

(x∗
i − Px∗

i )(xi) > (‖x∗
i − Px∗

i ‖ − ε)(1 + ε).

By Proposition 2.3 in [19] for each i, there is a net zα,i in Y such that
zα,i → xi in the σ(X,Y ∗)-topology and

lim sup ‖y + (xi − zα,i)‖ ≤ 1

for all y ∈ BY . Hence, we may choose zi ∈ Y such that

‖ui + xi − zi‖ < 1 + ε

‖ui ± v + xi − zi‖ < 1 + ε

|P (x∗
i )(xi − zi)| < ε.

Define
yi :=

ui + xi − zi

1 + ε
and w :=

v

1 + ε
.

Then

x∗
i (yi) =

x∗
i (ui + xi − zi)

1 + ε

=
Px∗

i (ui) + (x∗
i − Px∗

i )(xi) + Px∗
i (xi − zi)

1 + ε

>
(‖Px∗

i ‖ − ε)(1 + ε) + (‖x∗
i − Px∗

i ‖ − ε)(1 + ε) − ε

1 + ε
> ‖x∗

i ‖ − 3ε = 1 − 3ε.

In addition, 1 ≥ ‖w‖ ≥ 1−ε
1+ε and

x∗
i (yi ± w) > 1 − 3ε ± ‖Px∗

i ‖
1 + ε

y∗
i (v) > 1 − 3ε − ‖Px∗

i ‖
1 + ε

βi

= 1 − 3ε − ε − ε‖Px∗
i ‖ + ε2

1 + ε
> 1 − 4ε.

Since ε > 0 is arbitrary, we can choose it as small as we like so that yi ∈ Si,
yi ± w ∈ Si and ‖w‖ is as close to 1 as we like. �

The SD2P-version of the following result is [3, Theorem 4.10], its proof
in [3] actually proves the SSD2P-version.

Theorem 4.4. Let X be a Banach space and Y its proper closed subspace. If
Y is an M-ideal in X, that is X∗ = Z ⊕1 Y ⊥ for some nonempty subspace Z
of X∗, and moreover, if Z is 1-norming for X, then both X and Y have the
SSD2P.

In particular, if X is non-reflexive and an M-ideal in X∗∗, then both X
and X∗∗ have the SSD2P.

Remark 4.5. Similar results to Proposition 4.3 and Theorem 4.4 cannot hold
for ASQ spaces, because c0 is an M-ideal in �∞ = (c0)∗∗ and c0 is ASQ, but
�∞ is not ASQ.
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5. Lipschitz Spaces with the w∗-SSD2P

Recall from [18] that a metric space M has the long trapezoid property (LTP)
if for every finite subset N ⊂ M and ε > 0, there exist u, v ∈ M,u �= v, such
that

(1 − ε)(d(x, y) + d(u, v)) ≤ d(x, u) + d(y, v)

holds for all x, y ∈ N . In [18, Theorem 3.1], the authors prove that M has
the LTP if and only if Lip0(M) has the w∗-SD2P, that is, every finite convex
combination of weak∗ slices of BLip0(M) has diameter two. We show that for
some M with the LTP the space Lip0(M) even has the weak∗ version of the
SSD2P (see Theorem 5.7 below).

Definition 5.1. A dual Banach space X∗ has the weak∗ symmetric strong
diameter 2 property (w∗-SSD2P) if for every finite family {Si}n

i=1 of weak∗

slices of BX∗ and ε > 0 there exist x∗
i ∈ Si and y∗ ∈ BX∗ , independent of i,

such that x∗
i ± y∗ ∈ Si for every i ∈ {1, . . . , n} and ‖y∗‖ > 1 − ε.

In a dual space, the (S)SD2P clearly implies the w∗-(S)SD2P. The space
(C[0, 1])∗ has the w∗-SD2P and fails the SD2P (see [14, Example 1.1]). We do
not know whether the w∗-SSD2P and the SSD2P for a dual space are really
different. However, the w∗-SSD2P is stronger than the w∗-SD2P. Indeed,
�∞ ⊕1 �∞ has the SD2P (see [3], hence also the w∗-SD2P), but �1-sums never
have the w∗-SSD2P (the proof is similar to the one of Theorem 3.1). We
also note that a Banach space X has the SSD2P if and only if X∗∗ has the
w∗-SSD2P, because by Goldstine’s theorem BX is w∗-dense in BX∗∗ and the
norm on X∗∗ is w∗-lower semicontinuous.

Let M be a pointed metric space with metric d and a base point denoted
by 0. The space Lip0(M) of all Lipschitz functions f : M → R with f(0) = 0
is a Banach space with norm

‖f‖ = sup
{ |f(x) − f(y)|

d(x, y)
: x, y ∈ M,x �= y

}

.

It is known that Lip0(M) is a dual space, whose canonical predual is the
Lipschitz-free space F(M), the norm closed linear subspace of Lip0(M)∗

spanned by the evaluation functionals δx with x ∈ M . If μ =
∑n

i=1 aiδxi

is an element in F(M) with xi ∈ M\{0} and ai �= 0 for every i ∈ {1, . . . , n},
then we will denote the support of μ by supp(μ) := {x1, . . . , xn}.

Proposition 5.2. If M is an unbounded metric space, then Lip0(M) has the
w∗-SSD2P.

Proof. Let n ∈ N, Si := S(BLip0(M), μi, αi), i ∈ {1, . . . , n}, be weak∗ slices
of BLip0(M), where μi ∈ span{δx : x ∈ M}, and ε > 0. We want to show that
there exist fi ∈ Si and ϕ ∈ BLip0(M) such that

fi ± ϕ ∈ Si and ‖ϕ‖ > 1 − ε.

Choose gi ∈ Si with gi(μi) = 1 for i ∈ {1, . . . , n}. Denote by N :=
{0} ∪ ⋃n

i=1 supp(μi). The main idea of the proof is to find norm preserving
extensions fi of gi|N such that fi|M\B(0,s) = 0 and ϕ|B(0,t) = 0 for suitable
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0 < s < t. Since N is a finite subset of M , there is an r > 0 such that
N ⊂ B(0, r). Let s := 2r. Then for every x ∈ B(0, r) and y ∈ M\B(0, s) we
have d(x, 0) ≤ d(x, y). Since M is unbounded there exists u ∈ M\B(0, s).

Let δ > 0 be such that (1 − δ)2 > max{1 − ε, 1 − αi}. Find a t > 0 such
that for every x ∈ B(0, s) and y ∈ M\B(0, t) one has

d(x, y) ≥ (1 − δ)(d(x, u) + d(u, y)).

For example, any t with δt ≥ 2(s + d(0, u)) does the job.
Since M is unbounded there exists v ∈ M\B(0, t) such that

d(v, 0) − t

d(v, 0)
> 1 − δ, that is, δ · d(v, 0) > t.

Define ϕ̃ : B(0, t) ∪ {v} → R by ϕ̃|B(0,t) = 0 and ϕ̃(v) = d(v, 0) − t. Then
‖ϕ̃‖ ≤ 1, because for any x ∈ B(0, t), we have

|ϕ̃(v) − ϕ̃(x)|
d(v, x)

=
|ϕ̃(v) − 0|

d(v, x)
≤ d(v, 0) − t

d(v, 0) − d(0, x)
≤ 1.

In addition, ‖ϕ̃‖ > 1 − δ, because

‖ϕ̃‖ ≥ ϕ̃(v) − ϕ̃(0)
d(v, 0)

=
d(v, 0) − t

d(v, 0)
> 1 − δ.

For every i ∈ {1, . . . , n} define f̃i : N ∪ (M\B(0, s)) → R by f̃i|N = gi and
fi|M\B(0,s) = 0. Then ‖f̃i‖ ≤ 1, because for any x ∈ N and y ∈ M\B(0, s),
we have

|f̃i(x) − f̃i(y)| = |f̃i(x) − f̃i(0)| ≤ d(x, 0) ≤ d(x, y).

Consider fi := (1−δ)f̃i and ϕ := (1−δ)ϕ̃ and extend them norm preservingly
to M . Observe that ‖fi ± ϕ‖ ≤ 1, because for any x ∈ B(0, s) and y ∈
M\B(0, t), we have

|(fi ± ϕ)(x) − (fi ± ϕ)(y)| = |fi(x) ± ϕ(y)|
≤ |fi(x)| + |ϕ(y)| = |fi(x) − fi(u)| + |ϕ(y) − ϕ(u)|
≤ (1 − δ)d(x, u) + (1 − δ)d(u, y) ≤ d(x, y).

Finally, note that ‖ϕ‖ = (1 − δ)‖ϕ̃‖ > (1 − δ)2 > 1 − ε, and

(fi ± ϕ)(μi) = fi(μi) = (1 − δ)f̃i(μi)

= (1 − δ)gi(μi) = 1 − δ

> (1 − δ)2 > 1 − αi.

�

Proposition 5.3. If M is an infinite discrete metric space, then Lip0(M) has
the w∗-SSD2P.

Proof. Let n ∈ N, Si := S(BLip0(M), μi, αi), i ∈ {1, . . . , n}, be weak∗ slices of
BLip0(M), where μi ∈ span{δx : x ∈ M}.

Let N = {0} ∪ ⋃n
i=1 supp(μi). For every i ∈ {1, . . . , n} choose gi ∈

SLip0(N) such that gi(μi) = 1 and let xi, yi ∈ N be such that

gi(xi) − gi(yi) = d(xi, yi) = 1.
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Fix any two different elements u, v ∈ M\N . Define fi ∈ Si and ϕ ∈ SLip0(M)

by setting

fi(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

gi(x), if x ∈ N,
gi(xi) + gi(yi)

2
, if x = u or x = v,

0 elsewhere,

and

ϕ(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi(xi) − gi(yi)
2

=
1
2
, if x = u,

gi(yi) − gi(xi)
2

= −1
2
, if x = v,

0 elsewhere.

Then fi, fi ± ϕ ∈ Si, and ‖ϕ‖ = 1. �

For n ∈ N denote by

Kn := {x ∈ �∞ : x(k) ∈ {0, 1, . . . , n} for all k ∈ N}
with metric inherited from �∞. Note that Lip0(Kn) has the w∗-SD2P, because
Kn has the LTP (see Lemma 5.4). In addition, observe that Proposition 5.3
shows that Lip0(K1) has the w∗-SSD2P. In Proposition 5.5 below, we prove
that Lip0(K2) has the w∗-SSD2P, and in Proposition 5.6 we prove that
Lip0(Kn) has the w∗-SSD2P for every n ≥ 3. It is unknown, whether every
slice of the unit ball of Lip0(Kn) has diameter two for every n ∈ N (see [15,
p. 114]).

Lemma 5.4. Let n ∈ N and let N be a finite subset of Kn. Then there are
u, v ∈ Kn\N satisfying

(a) d(u, v) = 1;
(b) For all x ∈ N one has d(x, u) = d(x, v);
(c) For all x, y ∈ N one has d(x, y) ≤ d(x, u) or d(x, y) ≤ d(y, u).

In particular, Kn has the LTP.

Proof. Choose an u ∈ Kn\N such that u(i) ∈ {0, n} for every i ∈ N. For such
an element u the condition (c) holds. We will construct a suitable v ∈ Kn\N ,
such that it differs from u in only one coordinate i0. Let I ⊂ N be a finite
subset such that for every x ∈ N there is an i ∈ I such that d(x, u) =
|x(i) − u(i)|. Fix an i0 ∈ N\I. Let v(i0) be such that |u(i0) − v(i0)| = 1.
Hence, condition (a) holds and we will check condition (b). Let x ∈ N .
Clearly, d(x, v) ≥ d(x, u), because u(i) = v(i) for all i ∈ I. For the reverse
inequality, observe that

|x(i0) − v(i0)| =

{
1, if x(i0) = u(i0),
|x(i0) − u(i0)| − 1, if x(i0) �= u(i0).

Hence, d(x, u) ≥ d(x, v), and condition (b) holds. �

Proposition 5.5. The Banach space Lip0(K2) has the w∗-SSD2P.
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Proof. Let n ∈ N, Si := S(BLip0(K2), μi, αi), i ∈ {1, . . . , n}, be weak∗ slices
of BLip0(K2), where μi ∈ span{δx : x ∈ M}. We show that there exist fi ∈ Si

and ϕ ∈ BLip0(K2) such that

fi ± ϕ ∈ Si and ‖ϕ‖ = 1.

Let N = {0} ∪ ⋃n
i=1 supp(μi) and let u, v ∈ K2 be as in Lemma 5.4 for

N . For every μi choose gi ∈ SLip0(K2) such that gi(μi) = 1. The main idea
of the proof is to define ϕ such that ϕ = 0 outside {u, v} and fi are norm
preserving extensions of gi|N satisfying fi(u) = fi(v) and |fi(x) − fi(y)| ≤ 1
for every x, y /∈ N . For j ∈ {1, 2} set

Nj := {x ∈ N : d(x, u) = d(x, v) = j}.

For every gi define its norm preserving extension g+i from N to N ∪ {u, v}
by taking

g+i (u) := min{gi(x) + d(x, u) : x ∈ N},

g+i (v) := max{g+i (x) − d(x, v) : x ∈ N ∪ {u}}.

This means that g+i is the maximal extension from N to u and then
minimal extension to v preserving the Lipschitz constant (see [16] or [20,
p. 18]). Note that g+i (v) + 1 = g+i (u). Indeed, for every k, l ∈ {1, 2},

(

min
x∈Nk

gi(x) + k

)

−
(

max
x∈Nl

gi(x) − l

)

≥ 1,

that is,

max
x∈Nl

gi(x) − min
x∈Nk

gi(x) ≤ k + l − 1,

because for x ∈ Nl and y ∈ Nk

gi(x) − gi(y) ≤ d(x, y) ≤

⎧
⎪⎨

⎪⎩

d(x, u) = l ≤ k + l − 1
or
d(y, u) = k ≤ k + l − 1,

by Lemma 5.4.
If there is an element x ∈ K2\N such that

N1
2 (x) := {y ∈ N2 : d(x, y) = 1} �= ∅,

then choose arbitrarily ax
i from the set

[

max
y∈N1

2 (x)
gi(y) − 1, min

y∈N1
2 (x)

gi(y) + 1
]

∩ [g+i (u) − 1, g+i (u)].

Note that the latter intersection is nonempty, because

max
y∈N1

2 (x)
gi(y) − 1 ≤ g+i (u) = g+i (v) + 1

and

min
y∈N1

2 (x)
gi(y) + 1 ≥ g+i (u) − 1.
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Define

ϕ(x) :=

⎧
⎪⎨

⎪⎩

1
2 , if x = u,

− 1
2 , if x = v,

0 elsewhere,

and

fi(x) :=

⎧
⎪⎨

⎪⎩

gi(x), if x ∈ N,

ax
i , if x ∈ K2\N and d(x,N2) = 1,

g+i (u) − 1
2 elsewhere.

Then fi ∈ Si, (fi ± ϕ)(μi) = fi(μi) > 1 − αi, and ‖ϕ‖ = 1. To check
that ‖fi ± ϕ‖ ≤ 1, we argue by cases:

• If x ∈ N and y = u, then

|(fi ± ϕ)(x) − (fi ± ϕ)(u)| =
∣
∣
∣
∣gi(x) −

(

g+i (u) − 1
2

± 1
2

)∣
∣
∣
∣

=

⎧
⎪⎨

⎪⎩

|gi(x) − g+i (u)| ≤ d(x, u)
or
|gi(x) − g+i (u) + 1| = |gi(x) − g+i (v)| ≤ d(x, v) = d(x, u).

• If x ∈ K2\(N ∪ {u, v}) and y = u, then

|(fi ± ϕ)(x) − (fi ± ϕ)(u)|

=

⎧
⎪⎨

⎪⎩

|ax
i − (g+i (u) − 1

2 ± 1
2 )| ≤ 1 ≤ d(x, u)

or
|(g+i (u) − 1

2 ) − (g+i (u) − 1
2 ± 1

2 )| = 1
2 ≤ d(x, u),

because ax
i ∈ [g+i (u) − 1, g+i (u)].

• If x ∈ K2\(N ∪ {u, v}) and y ∈ N , then

|(fi ± ϕ)(x) − (fi ± ϕ)(y)| = |fi(x) − fi(y)| ≤ d(x, y),

because ‖fi‖ ≤ 1.
• The other cases are trivial or similar to the ones above.

Hence, ‖fi ± ϕ‖ ≤ 1, which completes the proof. �

Proposition 5.6. The Banach space Lip0(Kn), n ≥ 3, has the w∗-SSD2P.

Proof. Let n ≥ 3, k ∈ N, Si := S(BLip0(Kn), μi, αi), i ∈ {1, . . . , k}, be weak∗

slices of BLip0(Kn), where μi ∈ span{δx : x ∈ M}. We show that there exist
fi ∈ Si and ϕ ∈ BLip0(Kn) such that

fi ± ϕ ∈ Si and ‖ϕ‖ = 1.

Set N = {0} ∪ ⋃k
i=1 supp(μi). Choose u ∈ Kn such that d(u,N) ≥ 2

and for every j one has u(j) = 0 or u(j) = n. (The geometrical idea behind
choosing u is the following. There are uncountably many elements u ∈ Kn

with coordinates 0 or n. Closed balls of Kn with such centers u and with
radius 1 do not intersect each other. Since N is finite, there are such balls
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without elements from N . To visualize the Kn imagine an infinite dimensional
Rubik’s cube.)

Define ϕ(u) = 1 and ϕ = 0 elsewhere. Now we deal with the fi’s. For
every μi choose gi ∈ SLip0(Kn) such that gi(μi) = 1. For every gi let g+i be
its norm preserving extension from N to Kn\B(u, 1), where B(u, 1) is the
closed ball with center u and radius 1. Let

ai =
1
2

(
max

x∈S(u,2)
g+i (x) + min

x∈S(u,2)
g+i (x)

)
.

Note that since Lip(g+i ) = 1, the values of the function g+i on the sphere
S(u, 2) differ by no more than 2. Moreover,

min
x∈S(u,2)

g+i (x) ≤ n − 2

and

max
x∈S(u,2)

g+i (x) ≥ −n + 2.

This is because S(u, 2) contains a point of distance n − 2 from the origin.
Therefore, ai ∈ [−n + 1, n − 1].

Define fi : Kn → R by

fi(x) =

{
ai, if d(x, u) ≤ 1,

g+i (x) elsewhere.

Then fi ∈ Si and fi ±ϕ ∈ Si. Let us verify that ‖fi ±ϕ‖ ≤ 1. Fix x ∈ B(u, 1)
and y ∈ Kn\B(u, 1).

If x �= u, then ϕ(x) = ϕ(y) = 0 and therefore

|(fi ± ϕ)(x) − (fi ± ϕ)(y)| = |fi(x) − fi(y)| ≤ d(x, y).

For x = u, fix z ∈ S(u, 1) such that d(u, y) = d(u, z) + d(z, y). Then

|(fi ± ϕ)(u) − (fi ± ϕ)(y)| = |fi(z) ± ϕ(u) − fi(y)|
≤ |fi(z) − fi(y)| + 1

≤ d(z, y) + d(u, z) = d(u, y).

�

We now collect the known examples of metric spaces M such that
Lip0(M) has the w∗-SSD2P.

Theorem 5.7. If M is an infinite metric space satisfying at least one of the
following conditions:
(a) sup{d(x, y) : x, y ∈ M,x �= y} = ∞;
(b) inf{d(x, y) : x, y ∈ M,x �= y} = 0;
(c) M is a discrete metric space;
(d) M = Kn, where n ∈ N,

then Lip0(M) has the w∗-SSD2P.

Proof. (a), (c), and (d) are Propositions 5.2, 5.3, 5.5, and 5.6, respectively.
An inspection of the proof of Theorem 2.4 in [7] shows (b). �
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6. Questions

Let us end the paper with some questions that are suggested by the current
work:

Question 6.1. If a Banach space has the SSD2P must it then contain an
isomorphic copy of c0?

Question 6.2. Does there exist a dual Banach space with the w∗-SSD2P and
without the SSD2P?

Question 6.3. If M has the LTP, does then Lip0(M) have the w∗-SSD2P?
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