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Integro-differential Equation with
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Bernoulli Polynomials Operational Matrix
of Fractional Derivative
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Abstract. In this article, fractional integro-differential equation (FIDE)
of Fredholm type involving right-sided Caputo’s fractional derivative
with multi-fractional orders is considered. Analytical expressions of the
expansion coefficient ck by Bernoulli polynomials approximation have
been derived for both approximation of single- and double-variable func-
tion. The Bernoulli polynomials operational matrix of right-sided Ca-
puto’s fractional derivative Pα

−;B is derived. By approximating each term
in the Fredholm FIDE with right-sided Caputo’s fractional derivative in
terms of Bernoulli polynomials basis, the equation is reduced to a sys-
tem of linear algebraic equation of the unknown coefficients ck. Solving
for the coefficients produces the approximate solution for this special
type of FIDE.
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1. Introduction

In the past decade, we have seen an increasing amount of works made in the
field of FIDEs. One may find such equations in mathematical models that
describe a variety of physical phenomena such as wind ripple in the desert,
nono-hydrodynamics, dropwise consideration, glass-forming process [1], vis-
coelasticity [2], and epidemic processes [3]. Numerous numerical methods are
carried over naturally from those methods adopted for fractional differential
equations (FDE). Some of the methods applied to solve FIDE numerically
are Adomian Decomposition Method [4] and Homotopy Analysis Method [5].
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One of the most widely used methods is the method based on polynomials
which include the use of operational matrix. Examples of works that adopt
polynomial-based method are Legendre polynomials [6], Chebyshev polyno-
mials [7], Jacobi polynomials [8], and Bernstein polynomials [9].

On the other hand, the use of Bernoulli polynomials to solve FIDE is not
new. Bhrawy et al. [10] uses matrix based on Bernoulli polynomials in solving
high-order linear and nonlinear FIDE of Fredholm type. Meanwhile, [11] uses
Bernoulli polynomials to solve nonlinear FIDE of Volterra type where the in-
tegral is approximated by Legendre–Gaussian quadrature rule. Other recent
works involving Bernoulli polynomials can be found in [12]. It is found that
many of these works mainly considers only FIDEs with left-sided Caputo’s
fractional derivative. Equations that involve right-sided Caputo’s fractional
derivatives receive much less attention. Saatmandi et al. [13] have derived
the operational matrix of left-sided Caputo’s fractional derivative and solve
numerically the one-dimensional space fractional diffusion equation via tau
method. Recently, Bhrawy et al. further derived the operational matrix of
right-sided Caputo’s fractional derivative based on shifted Legendre polyno-
mials and combined with spectral-tau method to solve fractional advection–
dispersion equation [14] and fractional diffusion-wave equation [15]. Bhrawy
et al. [16] also derived the operational matrix of left-sided and right-sided Ca-
puto’s fractional derivative based on Chebyshev polynomials of first kind and
applied the operational matrices in combination with spectral-tau method to
solve two-sided space–time-fractional telegraph equation. These mentioned
works focus on solving problems involving FDEs with right-sided Caputo’s
derivative, while the corresponding problem in FIDE is not considered. More-
over, such methods only focus on the use of orthogonal polynomials.

Therefore, it is the main aim of this paper to consider FIDE that involves
right-sided Caputo’s fractional derivatives and find numerical solutions to it
by Bernoulli polynomials operational matrix method. This Bernoulli polyno-
mials have some advantages over the other classical orthogonal polynomials
when approximating an arbitrary function, as shown in [17]. The FIDE in-
volving right-sided Caputo’s fractional derivative is defined as follows:

l∑

r=1

qr
CDαr∗ f(x) = h(x) +

∫ 1

0

K(x, t)f(t)dt

f (i)(0) = di, i = 0, 1, . . . ,m − 1, (1.1)

where f(x) is the unknown solution, qr ∈ R, r = 0, . . . , l are constants, CDαr∗
can be either the left-sided Caputo’s derivative CDαr

a+ or the right-sided Ca-
puto’s derivative CDαr

b−, αr ≥ 0 are real derivative orders, h(x) is the forced
term known a-priori, and K(x, t) is the Fredholm integral kernel function.
Here, we assume that the solution of this FIDE exist. This study focuses
on function approximation by Bernoulli polynomials, the derivation of the
Bernoulli expansion coefficients, and, more importantly, the Bernoulli poly-
nomials operational matrix of fractional derivative. The derived expressions
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are used to find numerical solution for FIDEs that involves not just the left-
sided Caputo’s fractional derivative CDα

a+ but also the right-sided Caputo’s
fractional derivative CDα

b−.
The paper is organized as follows. Section 2 gives basic properties of frac-

tional calculus and Bernoulli polynomials. Section 3 discusses about function
approximation by Bernoulli polynomials for single- and double-variable func-
tion. In Sect. 4, Bernoulli polynomials operational matrix for both left-sided
and right-sided Caputo’s fractional derivatives has been derived. In Sect. 5,
we discuss about error and convergence analysis of proposed method. Section
6 describes the general procedure of solving single FIDE using Bernoulli poly-
nomials approximation and examples are given in Sect. 7. Section 8 states
the conclusion of this paper.

2. Preliminaries and Basic Concepts

2.1. Classical Caputo’s Fractional Derivative with Singular Kernel

In this section, we give the definition and basic properties of Caputo’s frac-
tional derivatives for both left-sided and right-sided. For more details of Ca-
puto’s fractional derivative, the reader is advised to refer to [18–20].

Definition 2.1 ([18] Theorem 2.1 ). Let �(α) ≥ 0 and let n be given by the
following:

n =
{ ��(α)� , α /∈ N0

α , α ∈ N0,
(2.1)

where ��(α)� denotes the smallest integer greater or equal to �(α). If y(x) ∈
ACn[a, b], then the Caputo’s fractional derivatives are the following:

(1) The left-sided Caputo’s fractional derivative CDα
a+;xf(x) of order α ∈

C (�(α) > 0) exists almost everywhere on [a, b] and is defined as follows:

CDα
a+;xf(x) =

⎧
⎨

⎩

1
Γ(n−α)

∫ x

a
f(n)(t)

(x−t)α−n+1 dt, α /∈ N0, n = [�(α)] + 1, x > a

Dnf(x), α ∈ N0

(2.2)

(2) The right-sided Caputo’s fractional derivative CDα
b−;xf(x) of order α ∈

C (�(α) > 0) exists almost everywhere on [a, b] and is defined as follows:

CDα
b−;xf(x) =

⎧
⎨

⎩

(−1)n

Γ(n−α)

∫ b

x
f(n)(t)

(t−x)α−n+1 dt, α /∈ N0, n = [�(α)] + 1, x < b

(−1)nDnf(x), α ∈ N0.
(2.3)

Below are some important properties of these operators: CDα
a+, CDα

b−.
All these operators satisfy the linearity property:

CDα
∗ (k1f1(x) + k2f2(x)) = k1(CDα

∗ f1(x)) + k2(CDα
∗ f2(x)), (2.4)

where CDα
∗ applies to both left-sided and right-sided corresponding operators:
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CDα
a+(x − a)β =

Γ(β + 1)
Γ(β − α + 1)

(x − a)β−α (2.5)

CDα
b−(b − x)β =

Γ(β + 1)
Γ(β − α + 1)

(b − x)β−α (2.6)

CDα
a+(x − a)k = 0, CDα

b−(b − x)k = 0, k = 0, 1, . . . , n − 1. (2.7)

2.2. Bernoulli Polynomials: Definitions and Basic Properties

There are many ways to represent the Bernoulli polynomials and it is con-
structed from Bernoulli numbers. Various important properties and relations
with polynomials of the same class such as Genocchi, Euler can be found in
the works by [21].

Definition 2.2. [21] The Bernoulli Polynomials Bn(x) of order n are defined
via its generating function given by the following:

GB(x, t) =
text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
. (2.8)

The Bernoulli Polynomials Bn(x) of order n can also be expressed using
Bernoulli numbers bn by the following explicit formula:

Bn(x) =
n∑

k=0

(
n

k

)
bn−kxk, n = 0, 1, 2, . . . ,∈ N0, (2.9)

where the Bernoulli numbers are defined by the generating function, Gb(t) =∑∞
k=0 bn

tn

n! , n = 0, 1, 2, . . . ,∈ N0. The first few Bernoulli numbers are b0 = 1,
b1 = −1/2, b2 = 1/6, b3 = 0 . . .. In particular, b2k+1 = 0, k = 1, 2, 3, . . ..

Bernoulli polynomials satisfy important properties which are stated be-
low [21]:

Bn+1(x) − Bn(x) = nxn−1

Bn+1(x) =
n∑

k=0

(
n

k

)
Bk(x)

Bn(1 − x) = (−1)nBn(x)

Bn(x) = n

∫ x

0

Bn−1(t)dt + bn (2.10)

∫ 1

0

Bn(x)dx = δ0,n, n ≥ 0 (2.11)

B2k+1(1) + B2k+1(0) = 0, k = 0, 1, 2, . . . (2.12)

The following property will be useful later:

Bn(1) − Bn(0) = Bn(1) − bn = δ1,n, n ≥ 1
B0(1) = B0(0) = 1. (2.13)
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The integral of product of two Bernoulli polynomials is given by the following:

βn,m =
∫ 1

0

Bn(x)Bm(x)dx =

⎧
⎪⎪⎨

⎪⎪⎩

1, n = m = 0

0, n + m = 1

(−1)n−1 m!n!
(m+n)!bn+m, n + m ≥ 2.

(2.14)
The first derivative property are similar to that of Genocchi and Euler:

dBn(x)
dx

= nBn−1(x), n ≥ 1. (2.15)

3. Function Approximation by Bernoulli Polynomials

Given an arbitrary continuously differentiable function f(x) ∈ C∞(I) over a
region I = [a, b] ∈ R, one may expand the function in a series of Bernoulli
polynomials acting as basis:

f(x) =
∞∑

n=0

cnBn(x), (3.1)

where cn are Bernoulli expansion coefficients to be determined. Practically,
one needs to truncate the above series to obtain the approximate function
f∗(x) up to order N − 1 as follows:

f(x) ≈ f∗(x) =
N−1∑

n=0

cnBn(x). (3.2)

Rewriting the equation in matrix notation, it takes the familiar form:

f(x) ≈ f∗(x) = CTB(x)

C = [c0 c1 · · · cN−1]
T

, B(x) = [B0(x) B1 · · · BN−1]
T

,
(3.3)

where C is the coefficient vector and B(x) is the Bernoulli polynomials basis
vector. Approximation by polynomials exists and has been guaranteed by the
important Weierstrass approximation theorem which can be found in [22].

3.1. Computation of Bernoulli Coefficients for Single-Variable Function

To determine the values of the expansion coefficients cn for Bernoulli poly-
nomials, one may follow one of the following two approaches:
First Approach:
Step 1: From (3.1), take inner products with respect to Bernoulli polynomials
basis over the interval [0, 1]:

〈f(x), Bj(x)〉 ≈
N−1∑

i=0

ci 〈Bi(x), Bj(x)〉
∫ 1

0

f(x)Bj(x)dx ≈
N−1∑

i=0

ci

(∫ 1

0

Bi(x)Bj(x)dx

)
. (3.4)
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Representing the above in matrix:

FB ≈ CTTB, (3.5)

where FB =
[∫ 1

0
f(x)Bj(x)dx

]T
, and the matrix TB = [Ti,j;B]T , and Ti,j;B =

∫ 1

0
Bi(x)Bj(x)dx has elements which are integral of products of two Bernoulli

polynomials computed using (2.14).
Step 2: Taking the inverse of TB at both sides of (3.5) gives the coefficient
vector C with coefficients cn as its elements:

CT = FBT−1
B . (3.6)

Second Approach: Another approach which we will derive here requires that
f(x) ∈ CN ([0, 1]).
Step 1: Assume that a function f(x) is expanded in Bernoulli polynomials:

f(x) =
N−1∑

n=0

cnBn(x). (3.7)

Then, taking k-order derivatives and using the first derivative property of
(2.15) repeatedly give:

f (k)(x) =
dk

dxk
f(x) =

N−1∑

n=k

cn(n)(k)Bn−k(x), k = 0, 1, 2, . . . , (3.8)

where (n)(k) = n(n − 1) · · · (n − k + 1) is the falling factorial.
Step 2: Using property of (2.13),

f (k)(1) − f (k)(0) =
N−1∑

n=k

cn(n)(k)(Bn−k(1) − Bn−k(0)), k = 0, 1, 2, . . .

=
N−1∑

n=k

cn(n)(k)δ1,n−k = ck+1(k + 1)(k) = ck+1(k + 1)!

(3.9)

since δ1,n−k =
{

1, n = k + 1
0, n 
= k + 1 , and thus,

ck+1 =
1

(k + 1)!
(f (k)(1) − f (k)(0)), k = 0, 1, 2, . . . (3.10)

ck =
1
k!

(f (k−1)(1) − f (k−1)(0)), k = 1, 2, 3, . . . (3.11)

Step 3: Finally, to compute coefficient c0:
∫ 1

0

f(x)dx =
N∑

n=0

cn

∫ 1

0

Bn(x)dx. (3.12)

By (2.11):

c0 =
∫ 1

0

f(x)dx. (3.13)
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3.2. Computation of Bernoulli Coefficients for Two-Variable Function

Given a function with two variables K(x, t), it can be expanded in Bernoulli
polynomials in variables x, t by the following series:

K(x, t) =
∞∑

i=0

∞∑

j=0

ki,jBi(x)Bj(t). (3.14)

Again, in real practice, only approximation can be made by truncating the
above series using Bernoulli polynomials up to order N for both x and t:

K(x, t) ≈
N−1∑

i=0

N−1∑

j=0

ki,jBi(x)Bj(t) = BT (x)KB(t), (3.15)

where K = [ki,j ]N×N is the two-variable coefficient matrix with coefficients
ki,j as its elements.

The following procedure shows the first approach to compute the ki,j :
First Approach:
Step 1: From (3.15), take inner products with respect to Bernoulli polynomi-
als basis over the region [0, 1] × [0, 1] with respect to x and t:

〈〈K(x, t), Bk(x)〉 , Bl(x)〉 ≈
N−1∑

i=0

N−1∑

j=0

ki,j 〈Bi(x), Bk(x)〉 〈Bj(t), Bl(t)〉 .

(3.16)
This is equivalent in matrix notation as follows:
∫ 1

0

∫ 1

0

B(x)K(x, t)BT (t)dxdt ≈
(∫ 1

0

B(x)BT (x)dx

)
K

(∫ 1

0

B(t)BT (t)dt

)

KB = TBKTB,

(3.17)
where TB is the same as given in (3.5) and

KB =
∫ 1

0

∫ 1

0

B(x)K(x, t)BT (t)dxdt =
[∫ 1

0

∫ 1

0

K(x, t)Bk(x)Bl(t)dxdt

]
.

(3.18)
Step 2: Finally, taking the inverses for both TB at both sides of (3.17) gives
the two-variable coefficient matrix K:

K = T−1
B KBT−1

B . (3.19)

It is clear that this approach requires K(x, t) to be a continuous integrable
function and does not require the strict condition K(x, t) ∈ C∞([0, 1]2).
Second Approach: Second approach similar to the concepts used previously
for single-variable function requires that K(x, t) ∈ CN−2([0, 1]2). We have
the following theorem:

Theorem 3.1. Given a function K(x, t) ∈ CN−2([0, 1]2), it can be approxi-
mated by Bernoulli polynomials in variables x, t by the following truncated
series of order N :

K(x, t) =
N−1∑

i=0

N−1∑

j=0

ki,jBi(x)Bj(t). (3.20)
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In matrix notation, the series takes the form of K(x, t) = BT (x)KB(t)K =
[ki,j ] where K is the two-variable coefficient matrix and the ki,j is given by
the following:

ki,j =
1

i!j!

(
∂i+j−2

∂xi−1∂tj−1
K(1, 1) − ∂i+j−2

∂xi−1∂tj−1
K(0, 1)

− ∂i+j−2

∂xi−1∂tj−1
K(1, 0) +

∂i+j−2

∂xi−1∂tj−1
K(0, 0)

)
, i ≥ 1, j ≥ 1

k0,j =
1
j!

∫ 1

0

(
∂j−1

∂tj−1
K(x, 1) − ∂j−1

∂tj−1
K(x, 0)

)
dx , i = 0, j ≥ 1

ki,0 =
1
i!

∫ 1

0

(
∂i−1

∂xi−1
K(1, t) − ∂i−1

∂xi−1
K(0, t)

)
dt , i ≥ 1, j = 0

k0,0 =
∫ 1

0

∫ 1

0

K(x, t)dxdt.

(3.21)

Proof. From (3.20), let φi(t) =
∑N−1

j=0 ki,jBj(t), then, K(x, t) =
∑N−1

i=0 φi(t)
Bi(x). Thus, by applying (3.11) w.r.t. variable x, we have the following:

φi(t) =
1
i!

(
∂i−1

∂xi−1
K(1, t) − ∂i−1

∂xi−1
K(0, t)

)
, i ≥ 1, j ≥ 1. (3.22)

Applying (3.11) to φi(t) =
∑N−1

j=0 ki,jBj(t) w.r.t. variable t and using (3.22),
we obtain the expression ki,j for i ≥ 1, j ≥ 1 as follows:

ki,j =
1
j!

(
∂j−1

∂tj−1
φi(1) − ∂j−1

∂tj−1
φi(0)

)

=
1
j!

1
i!

{
∂j−1

∂tj−1

(
∂i−1

∂xi−1
K(1, t) − ∂i−1

∂xi−1
K(0, t)

)
|t=1

− ∂j−1

∂tj−1

(
∂i−1

∂xi−1
K(1, t) − ∂i−1

∂xi−1
K(0, t)

)
|t=0

}

=
1

i!j!

(
∂i+j−2

∂xi−1∂tj−1
K(1, 1) − ∂i+j−2

∂xi−1∂tj−1
K(0, 1)

− ∂i+j−2

∂xi−1∂tj−1
K(1, 0) +

∂i+j−2

∂xi−1∂tj−1
K(0, 0)

)
, i ≥ 1, j ≥ 1.

(3.23)

For the case i = 0, j ≥ 1, take integral over [0, 1] w.r.t. x for (3.20), we have
the following:

∫ 1

0

K(x, t)dx =
N−1∑

i=0

N−1∑

j=0

ki,jBj(t)
∫ 1

0

Bi(x)dx =
N−1∑

i=0

N−1∑

j=0

ki,jBj(t)δi,0.

(3.24)
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Thus,
∫ 1

0
K(x, t)dx =

∑N−1
j=0 k0,jBj(t), where

k0,j =
1
j!

{
∂j−1

∂tj−1

(∫ 1

0

K(x, t)dx

)
|t=1 − ∂j−1

∂tj−1

(∫ 1

0

K(x, t)dx

)
|t=0

}

=
1
j!

∫ 1

0

(
∂j−1

∂tj−1
K(x, 1) − ∂j−1

∂tj−1
K(x, 0)

)
dx.

(3.25)
Now, for i ≥ 1, j = 0, take integral over [0, 1] w.r.t. t for (3.20), we have the
following:
∫ 1

0

K(x, t)dt =
N−1∑

i=0

N−1∑

j=0

ki,j

(∫ 1

0

Bj(t)dt

)
Bi(x)=

N−1∑

i=0

N−1∑

j=0

ki,j (δj,0) Bi(x).

(3.26)
Thus,

∫ 1

0
K(x, t)dt =

∑N−1
i=0 ki,0Bi(x), where

ki,0 =
1
i!

{
∂i−1

∂xi−1

(∫ 1

0

K(x, t)dt

)
|x=1 − ∂i−1

∂xi−1

(∫ 1

0

K(x, t)dt

)
|x=0

}

=
1
i!

∫ 1

0

(
∂i−1

∂xi−1
K(1, t) − ∂i−1

∂xi−1
K(0, t)

)
dt.

(3.27)
For i = 0, j = 0, take integrals over [0, 1] w.r.t. x and t for (3.20), we have
the following:

∫ 1

0

∫ 1

0

K(x, t)dxdt =
N−1∑

i=0

N−1∑

j=0

ki,j

(∫ 1

0

Bj(t)dt

)(∫ 1

0

Bi(x)dx

)

=
N−1∑

i=0

N−1∑

j=0

ki,jδi,0δj,0. (3.28)

Thus, k0,0 =
∫ 1

0

∫ 1

0
K(x, t)dxdt �

4. Bernoulli Polynomials Operational Matrix of Caputo’s
Fractional Derivative

In general, most articles that adopted the polynomial-based method of op-
erational matrices only considered problems that involve left-sided Caputo
CDα

a+f(x) and very less attention is given to equations that involve right-
sided Caputo’s fractional derivative CDα

b−. The Bernoulli polynomials opera-
tional matrix of left-sided Caputo’s fractional derivative has been applied by
others and its implicit form in matrix can be found in [10,11]. This section
derives the explicit form of the elements of Bernoulli polynomials operational
matrix of left-sided as well as right-sided Caputo’s fractional derivative. The
Bernoulli polynomials operational matrix Pα

∗;B of Caputo’s fractional deriva-
tives CDα

∗ is the N × N matrix that approximates the operation of Ca-
puto’s fractional derivatives acting on the Bernoulli polynomials basis vector
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B(x) = [Bi(x)]T and takes the following general form:
CDα

∗ B(x) = Pα
∗;BB(x)

CDα
∗

⎡

⎢⎢⎢⎣

B0(x)
B1(x)

...
BN−1(x)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

ρ0,0 ρ0,1 · · · ρ0,N−1

ρ1,0 ρ1,1 · · · ρ1,N−1

... · · · · · · ...
ρN−1,0 ρN−1,1 · · · ρN−1,N−1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

B0(x)
B1(x)

...
BN−1(x)

⎤

⎥⎥⎥⎦ ,

(4.1)

where ρi,j is the expansion coefficient of the fractional derivative CDα
∗ Bi(x)

of order-i Bernoulli polynomials by the order-j Bernoulli polynomials, that is

CDα
∗ Bi(x) =

N−1∑

j=0

ρi,jBj(x). (4.2)

Let CDα
∗ represents either the left-sided Caputo’s fractional derivative CDα

a+

or the right-sided Caputo’s fractional derivative CDα
b−, while Pα

∗;B represents
either the Bernoulli polynomials operational matrix of left-sided Caputo’s
fractional derivative Pα

+;B or the Bernoulli polynomials operational matrix
of right-sided Caputo’s fractional derivative Pα

−;B.

4.1. Derivation of Operational Matrix of Fractional Derivative

This section briefly explains the usual approach to find the polynomial-
based operational matrix particularly when the basis polynomials are non-
orthogonal. It uses the concept of least-square approximation by taking in-
ner products w.r.t. the basis polynomials and solving the “normal equation”
generated which can be expressed in Gram matrices. To do so, we start the
procedure by consider CDα

∗ B(x) = Pα
∗;BB(x). Hence, take the inner prod-

uct by multiplying with Bernoulli polynomials basis B(x) and integrate over
interval [0, 1]:

∫ 1

0

(
CDα

∗ B(x)
)
BT (x)dx = Pα

∗;B

(∫ 1

0

B(x)BT (x)dx

)

ΘN ;B = Pα
∗;BTB , (4.3)

where

ΘN ;B =

[∫ 1

0

{
CDα

∗ (Bi(x))
}

Bj(x)dx

]
(4.4)

and TB = [Ti,j;B ] =
∫ 1

0
B(x)BT (x)dx. Hence, after taking inverse of TB at

both sides, we have Pα
∗;B = ΘN ;BT−1

B .
By doing so, it leads to the following theorem on computation of

Bernoulli polynomials operational matrix of Caputo’s fractional derivative.

Theorem 4.1. Given a set Bi(x), i = 0, 1, . . . N − 1 of N Bernoulli polyno-
mials, the Bernoulli polynomials operational matrix of Caputo’s fractional
derivative of order α 
= �α� over the interval [0, 1] is the N ×N matrix Pα

∗;B:

Pα
∗;B = ΘN ;BT−1

B , (4.5)
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where ΘN ;B is given in (4.4) and TB = [Ti,j;B ] is computed using (3.5). CDα
∗

represents either CDα
a+ or CDα

b−, and Pα
∗;B represents either Pα

+;B or Pα
−;B.

This method has the merit of relaxing strict requirements of the differ-
entiability of the function f(x) to be approximated. However, this method
does not produce an explicit form for the expression of the elements ρi,j of
the operational matrix Pα

∗;B .

4.2. Bernoulli Polynomials Operational Matrix of Left-Sided Caputo’s Frac-
tional Derivative

In this section, we derive the analytical expression of the Bernoulli poly-
nomials operational matrix of left-sided Caputo’s fractional derivative using
second approach different from the usual approach described in Sect. 4.1.
Here, the analytical expression of each element ρi,j of the operational matrix
Pα

+;B will be derived. Before this, we need the following Lemma.

Lemma 4.2. The left-sided Caputo’s fractional derivative of fractional order
α of a Bernoulli polynomials of order i is given by the following:

CDα
a+Bi(x) =

⎧
⎨

⎩

∑i
r=n

∑r
v=n

i!bi−rar−v(x−a)v−α

(i−r)!(r−v)!Γ(v−α+1) , n = �α�, i ≥ α

0, i < α.
(4.6)

Proof. For n − 1 < α ≤ n, n = �α�, we have CDα
a+Bi(x) =

∑i
r=0

(
i
r

)
bi−r

C

Dα
a+xr. Using (2.5) and CDα

a+Bi(x) = 0, i < α:

CDα
a+Bi(x) =

i∑

r=n

(
i

r

)
bi−r

CDα
a+(x − a + a)r, i ≥ n = α

=
i∑

r=n

(
i

r

)
bi−r

r∑

v=n

(
r

v

)
ar−vCDα

a+(x − a)v

=
i∑

r=n

(
i

r

)
bi−r

r∑

v=n

(
r

v

)
ar−v Γ(v + 1)

Γ(v − α + 1)
(x − a)v−α

=
i∑

r=n

(
i

r

)
bi−r

r∑

v=n

r!ar−v

(r − v)!Γ(v − α + 1)
(x − a)v−α

=
i∑

r=n

r∑

v=n

i!bi−ra
r−v

(i − r)!(r − v)!Γ(v − α + 1)
(x − a)v−α. �

Then, using Lemma 4.2, we have the following theorem.

Theorem 4.3. For CDα
a+B(x) = Pα

+;BB(x), the element of Pα
+;B is given by

the following:

ρi,j =

⎧
⎨

⎩

1
j!

∑i
r=n

∑r
v=n

i!bi−rar−v

(i−r)!(r−v)!Γ(v−α−j+2) ((1−a)v−α−j+1−(−a)v−α−j+1), j ≥ 1
∑i

r=n

∑r
v=n

i!bi−rar−v

(i−r)!(r−v)!Γ(v−α+2) ((1 − a)v−α+1 − (−a)v−α+1), j = 0

(4.7)
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Proof. Let CDα
a+Bi(x) =

∑N−1
j=0 ρi,jBj(x), where as usual CDα

a+Bi(x) =
0, i < α. Using (3.8) w.r.t. the column index j and (4.6), For i ≥ α, j ≥ 1:

ρi,j =
1
j!

(
dj−1

dxj−1
(CDα

a+Bi(x))|x=1 − dj−1

dxj−1
(CDα

a+Bi(x))|x=0

)
, j ≥ 1

=
1
j!

i∑

r=n

r∑

v=n

i!bi−ra
r−v

(i − r)!(r − v)!Γ(v − α + 1)
Γ(v − α + 1)

Γ(v − α − j + 2)

× ((x − a)v−α−j+1|x=1 − (x − a)v−α−j+1|x=0)

=
1
j!

i∑

r=n

r∑

v=n

i!bi−ra
r−v((1 − a)v−α−j+1 − (−a)v−α−j+1)
(i − r)!(r − v)!Γ(v − α − j + 2)

.

For i ≥ α, j = 0, using (3.13) and (4.6):

ρi,0 =
∫ 1

0

CDα
a+Bi(x)dx

=
i∑

r=n

r∑

v=n

i!bi−ra
r−v

(i − r)!(r − v)!Γ(v − α + 1)

∫ 1

0

(x − a)v−αdx

=
i∑

r=n

r∑

v=n

i!bi−ra
r−v

(i − r)!(r − v)!Γ(v − α + 2)
((1 − a)v−α+1 − (−a)v−α+1).

�

4.3. Bernoulli Polynomials Operational Matrix of Right-Sided Caputo’s Frac-
tional Derivative

In this section, we derive the analytical expression of the Bernoulli polyno-
mials operational matrix of right-sided Caputo’s fractional derivative using
the second approach different from the usual approach described in Sect. 4.1.
Here, the analytical expression of each element ρi,j of the operational matrix
Pα

−;B will be derived. Before this, we need the following Lemma.

Lemma 4.4. The right-sided Caputo’s fractional derivative of fractional order
α of a Bernoulli polynomials of order i is given by the following:

CDα
b−Bi(x) =

{ ∑i
r=n

∑r
v=n

(−1)vi!bi−r(b)r−v(b−x)v−α

(i−r)!(r−v)!Γ(v−α+1) , n = �α�, i ≥ α

0, i < α.

(4.8)

Proof. For n − 1 < α ≤ n, n = �α�, we have CDα
b−Bi(x) =

∑i
r=0

(
i
r

)
bi−r

C

Dα
b−xr. Using (2.6) and CDα

b−Bi(x) = 0, i < α:

CDα
b−Bi(x) =

i∑

r=n

(
i

r

)
bi−r

CDα
b−(x − b + b)r

=
i∑

r=n

(
i

r

)
bi−r

r∑

v=n

(
r

v

)
br−v(−1)vCDα

b−(b − x)v
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=
i∑

r=n

(
i

r

)
bi−r

r∑

v=n

(−1)v

(
r

v

)
br−v Γ(v + 1)

Γ(v − α + 1)
(b − x)v−α

=
i∑

r=n

(
i

r

)
bi−r

r∑

v=n

(−1)vr!br−v

(r − v)!Γ(v − α + 1)
(b − x)v−α

=
i∑

r=n

r∑

v=n

(−1)vi!bi−r(b)r−v

(i − r)!(r − v)!Γ(v − α + 1)
(b − x)v−α.

�

Then, using Lemma 4.4, we have the following theorem.

Theorem 4.5. For CDα
b−B(x) = Pα

−;BB(x), the element of Pα
−;B is given by

the following:

ρi,j =

⎧
⎨

⎩

1
j!

∑i
r=n

∑r
v=n

(−1)vi!bi−r(b)r−v((b−1)v−α−j+1−(b)v−α−j+1)
(i−r)!(r−v)!Γ(v−α−j+2) , j ≥ 1

∑i
r=n

∑r
v=n

(−1)vi!bi−r(b)r−v((b)v−α+1−(b−1)v−α+1)
(i−r)!(r−v)!Γ(v−α+2) , j = 0.

(4.9)

Proof. Let CDα
b−Bi(x) =

∑N−1
j=0 ρi,jBj(x) where as usual CDα

b−Bi(x) =
0, i < α. Using (3.11) w.r.t. the column index j and (4.8), for i ≥ α, j ≥ 1:

ρi,j =
1
j!

(
dj−1

dxj−1
(CDα

b−Bi(x))|x=1 − dj−1

dxj−1
(CDα

b−Bi(x))|x=0

)
, j ≥ 1

=
1
j!

i∑

r=n

r∑

v=n

(−1)vi!bi−r(b)r−v

(i − r)!(r − v)!Γ(v − α + 1)
Γ(v − α + 1)

Γ(v − α − j + 2)

× ((b − x)v−α−j+1|x=1 − (b − x)v−α−j+1|x=0)

=
1
j!

i∑

r=n

r∑

v=n

(−1)vi!bi−r(b)r−v((b − 1)v−α−j+1 − (b)v−α−j+1)
(i − r)!(r − v)!Γ(v − α − j + 2)

.

For i ≥ α, j = 0, using (4.8):

ρi,0 =
∫ 1

0

CDα
b−Bi(x)dx

=
i∑

r=n

r∑

v=n

(−1)vi!bi−r(b)r−v

(i − r)!(r − v)!Γ(v − α + 1)

∫ 1

0

(b − x)v−αdx

=
i∑

r=n

r∑

v=n

(−1)vi!bi−r(b)r−v

(i − r)!(r − v)!Γ(v − α + 1)

[−(b − x)v−α+1

v − α + 1

]x=1

x=0

=
i∑

r=n

r∑

v=n

(−1)vi!bi−r(b)r−v

(i − r)!(r − v)!Γ(v − α + 2)
((b)v−α+1 − (b − 1)v−α+1).

�
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Figure 1. Relative error of Right-SLOMFD(red) and Right-
BerOMFD(black) for α = 0.5 and N = 5

5. Error and Convergence Analysis

In this section, we will discuss the error estimation, and error upper bound
and convergence analysis for the right-sided Bernoulli operational matrix
that we derived in Sect. 4.3. First, we compute the relative error εN for
approximating the right-sided Caputo’s fractional derivative by operational
matrix based on shifted Legendre polynomials given in [15] and operational
matrix based on Bernoulli polynomials. We define the relative error as follows:

∣∣∣∣∣

CDα
∗ Yi(x) − [Pα

∗;BY](i)
DαYi(x)

∣∣∣∣∣, (5.1)

where Yi(x) is either the Shifted Legendre polynomials L̃i(x) or the Bernoulli
polynomials Bi(x). CDα

∗ represents either the left-sided Caputo’s fractional
derivative or the right-sided Caputo’s fractional derivative. Pα

∗;B represents
either the operational matrix of left-sided Caputo’s fractional derivative Pα

+;B

or the right-sided Caputo’s fractional derivative Pα
−;B.

In Fig. 1, we compare the relative error between operational matrix of
right-sided Caputo’s fractional derivative based on shifted Legendre poly-
nomials (Right-SLOMFD) derived in [15] and operational matrix of right-
sided Caputo’s fractional derivative based on Bernoulli polynomials (Right-
BerOMFD). From the figure given, it is clear that the overall relative errors
for Right-BerOMFD are much smaller than that of Right-SLOMFD. This
gives the motivation of proposing Bernoulli polynomials operational matrix
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of right-sided Caputo’s fractional derivative as a method to obtain numerical
solution of FIDE.

Here, we show the error upper bound and convergence analysis for the
method using Bernoulli operational matrix of right-sided Caputo’s fractional
derivative. To show this, we need the following theorem.

Theorem 5.1. Suppose that H is a Hilbert space and Y is a closed subspace
of H, such that dimY < ∞ and y1, y2, . . . , yn is any basis for Y . Let f be an
arbitrary element in H and y0 be the unique best approximation of f out of
Y . Then

‖f − y0‖2
2 =

Gram(f, y1, . . . , yn)
Gram(y1, y2, . . . , yn)

,

where Gram(f, y1, . . . , yn) =

∣∣∣∣∣∣∣∣∣

〈f, f〉 〈f, y1〉 · · · 〈f, yn〉
〈y1, f〉 〈y1, y1〉 · · · 〈y1, yn〉

...
... · · · ...

〈yn, f〉 〈yn, y1〉 · · · 〈yn, yn(t)〉

∣∣∣∣∣∣∣∣∣

.

Lemma 5.2. Suppose that f ∈ L2[0, 1] is approximated by fN−1, such that
fN−1(x) =

∑N−1
n=0 cnBn(x) = CTB(x). Then, we have limN−1→∞ ‖f(x) −

fN−1(x)‖2 = 0.

The error vector Eα of the operational matrix Pα
−;B is given by Eα =

Pα
−;BB(x)−DαB(x), where Eα = [eα

1 , eα
2 , ..., eα

N ]. By (3.2) and Theorem 5.1,
we have the following:

‖(b − x)v−α −
N−1∑

j=0

cjBj(x)‖2

=
(

Gram((b − x)v−α, B0(x), B1(x), . . . , BN−1(x))
Gram(B0(x), B1(x), B2(x), . . . , BN−1(x))

) 1
2

.

Thus, according to (3.2),(4.8) and (4.9), we get

‖eα
i ‖2 = |Dα

b−Bi(x) − Pα
−;BB(x)|2

≤
i∑

r=n

r∑

v=n

(−1)vi!bi−rb
r−v

(i − r)!(r − v)!Γ(v − α + 1)
|(b − x)v−α −

N−1∑

j=0

cjBj(x)|2

≤
i∑

r=n

r∑

v=n

(−1)vi!bi−rb
r−v

(i − r)!(r − v)!Γ(v − α + 1)

×
(

Gram((b − x)v−α, B0(x), . . . , BN−1(x))
Gram(B0(x), B1(x), . . . , BN−1(x))

) 1
2

, i = 0, 1, 2, . . . , N − 1,

(5.2)
where

cj =

⎧
⎨

⎩

1
j!

((b−1)v−α−j+1−(b)v−α−j+1)B(v−α+1,j)
Γ(j)(v−α+j+1) , j ≥ 1

((b)v−α+1−(b−1)v−α+1)
v−α+1 , j = 0

(5.3)
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By considering Lemma 5.2 and (5.2), we can conclude that, by increas-
ing the number of the Bernoulli bases, the vector eα

i tends to zero. The
convergence analysis for operational matrix for left-sided derivative is similar
to the right-sided one.

6. Solving FIDE with Right-Sided Caputo’s Derivative via
Bernoulli Operational Matrix

Here, we consider solving the following types of FIDE of Fredholm type in-
volving l number of right-sided Caputo’s fractional derivatives:

l∑

r=1

qr
CDαr∗ f(x) = h(x) +

∫ 1

0

K(x, t)f(t)dt, (6.1)

where f (i)(0) = di, i = 0, 1, . . . ,m − 1, f(x) is the unknown solution, qr ∈
R, r = 0, . . . , l are constants, CDαr∗ can be either the left-sided Caputo’s
derivative CDαr

a+ or the right-sided Caputo’s derivative CDαr

b−, αr ≥ 0 are
real derivative orders, h(x) is the forced term known a-priori, and K(x, t) is
the Fredholm integral kernel function. The general procedure of spectral-tau
method using Bernoulli polynomials approximation is given as follows:
Step 1: As in a typical method using operational matrix of fractional deriva-
tive, one begins with

f(x) ≈ CTB(x) (6.2)

and applies the right-sided Caputo’s fractional derivative to (6.2) and ap-
proximates using Bernoulli polynomials operational matrix Pαr

−;B:

CDαr

b−f(x) ≈ CTPαr

−;BB(x). (6.3)

Step 2: For h(x), approximate in Bernoulli polynomials:

h(x) ≈ HTB(x) = [hi]T , (6.4)

where the coefficients hi are computed using (3.11).
Step 3: For the kernel function K(x, t) which has two variables, it is approx-
imated in Bernoulli polynomials basis by the following:

K(x, t) ≈ BT (x)KB(t)K = [ki,j ], (6.5)

where the coefficients ki,j are computed using Theorem (3.1).
Step 4: By substituting (3.5), (6.3), (6.2), and(6.5) into

l∑

r=1

qrBT (x)(Pαr

−;B)TC = BT (x)H + BT (x)K

(∫ 1

0

B(t)BT (t)dt

)
C

(6.6)
and after rearranging, we obtain the following:

BT (x)

(
l∑

r=1

qr(Pαr

−;B)TC − H − KTBC

)
= 0. (6.7)
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Thus, the residual is as follows:

R(x) = BT (x)

(
l∑

r=1

qr(Pαr

−;B)TC − H − KTBC

)
. (6.8)

Step 5: Since the set of Bernoulli polynomials basis, B(x) = [B0(x) · · ·
BN−1(x)] are linearly independent, and hence:

l∑

r=1

qrPαr

−;B
TC − H − KTBC = 0. (6.9)

Thus, this produces a system of N algebraic equations.
Step 6: The initial condition given is approximated in Bernoulli polynomials:

f (i)(0) = di, i = 0, . . . ,m − 1(−1)iBT (0)(Pi
−;B)TC = di. (6.10)

Step 7: Selecting N − m equations from (6.9) combining with the initial
conditions from (6.10), one has a system of N linear algebraic equations
to be solved for C using any suitable numerical methods such as Gaussian
elimination method.
Step 8: After obtaining C, we get the approximate solution, f∗(x) = CTB(x).

7. Numerical Examples

In this section, we will give five examples of FIDEs involving right-sided
Caputo’s fractional derivative and solved using our proposed method. Ones
may consider the maximum error function of the approximate function f∗

N (x)
of order N for each numerical solution obtained:

e∞(N) = ‖f(x) − f∗
N (x)‖∞ = max |f(x) − f∗

N (x)|, a ≤ x ≤ b, (7.1)

where f(x) is the exact solution and f∗
N (x) is the approximate solution of

order N . In addition, one may compute the absolute error of N -order approx-
imation at a particular point x ∈ [0, 1] as eN (x) = ‖f(x) − f∗

N (x)‖. However,
in the examples that we shown, using suitable N , we able to obtain exact
solution.

7.1. Linear FIDE

Example 1.

CD
1/2
1− f(x) = h(x) +

∫ 1

0

(x2 + t2)f(t)dt, (7.2)

where h(x) = 8
√

1−x
3
√

π
(x − 1) + 23

3 x2 + 79
30 and its exact solution is f(x) =

x2 − 2x − 7.
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Using N = 4 Bernoulli polynomials basis, the operational matrix is as
follows:

P1/2
−;B =

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 0

− 4
3
√

π
16

9
√

π
8

7
√

π
16

9
√

π

− 4
15

√
π

− 208
231

√
π

8
3
√

π
80

33
√

π

2
105

√
π

8
117

√
π

− 100
77

√
π

392
117

√
π

⎤

⎥⎥⎥⎥⎥⎦
. (7.3)

On the other hand:

HT =

⎡

⎢⎢⎢⎢⎢⎢⎣

− 467
√

π+96
90

√
π

2(−288+805
√

π)
63

√
π

− 1771
√

π−640
99

√
π

161
√

π+32
21

√
π

2(−288+805
√

π)
9
√

π
− 10(1771

√
π−640)

99
√

π

⎤

⎥⎥⎥⎥⎥⎥⎦
, (7.4)

while TB = [Ti,j;B]T with using Ti,j;B =
∫ 1

0
Bi(x)Bj(x)dx and getting K

using (3.19). After substitution of Bernoulli expansion in matrix for each
term, the residual system of N = 4 algebraic equations is as follows:

P1/2
−;B

TC − H − KTBC = 0

−
(

4
3
√

π
+ 1

12

)
c1−

(
4

15
√

π
+ 1

180

)
c2+

(
2

105
√

π
+ 1

120

)
c3 − 467

√
π+96

90
√

π
− 2

3c0 = 0

16
9
√

π
c1 − 208

231
√

π
c2 + 8

117
√

π
c3 − 2(−288+805

√
π)

63
√

pi
+ 1771

√
π−640

99
√

π
− c0 = 0

8
7
√

π
c1 + 8

3
√

π
c2 − 100

77
√

π
c3 − 161

√
π+32

21
√

π
− c0 = 0

16
9
√

π
c1 + 80

33
√

π
c2 + 392

117
√

π
c3 − 2(−288+805

√
π)

9
√

π
+ 10(1771

√
π−640)

99
√

π
= 0.

(7.5)

Solving (7.5), the expansion coefficients are obtained as C = [c0 c1 c2 c3]T =[− 23
3 − 1 − 1 0

]T . Finally, the approximate solution is obtained as f∗(x) =
CTB(x) = x2 − 2x − 7 which is the exact solution.

Example 2. Consider also the following linear Fredholm FIDE with multi-
fractional orders and involve both left-sided Caputo’s derivative and right-
sided Caputo’s derivative without the initial conditions:

−1
4

CD
2/3
1− f(x) − 3

4
CD

1/3
0+ f(x) +

1
5

CD1
1−f(x) = h(x) +

∫ 1

0

K(x, t)f(t)dt

(7.6)
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with a singular kernel K(x, t) = x2

t1/2 , where

h(x) =
Γ(2/3)

√
3

8π

(
− 8

35
− 18

7
x − 27

14
x2 − 81

14
x3

)
(1 − x)1/3

− 3
4Γ(2/3)

(
−81

44
x11/3−18

35
x5/3+

3
5
x2/3

)
+

2
3
x3+

31
945

x2 +
4
35

x − 2
25

.

(7.7)

The exact solution is f(x) = − 5
6x4 − 2

7x2 + 2
5x.

Assume we use N = 5 Bernoulli polynomials. The operational matrices
involved fractional operators are as follows:

P1/3
−;B =

√
3Γ(2/3)

π

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
− 9

8
207
182

27
13

45
26

405
104

− 9
56 − 9

8
3105
988

9
4

4455
988

9
560

225
3458 − 135

176
2475
988

567
176

27
910

27
616

81
2470 − 27

11
2673
1235

⎤

⎥⎥⎥⎥⎥⎥⎦

P2/3
+;B =

1
Γ(2/3)

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
9
10

63
44 − 783

748
9
11 − 567

374

− 9
40

279
748

27
11 − 441

374
81
44

− 9
880

9
280

1323
17204

9
4 − 51597

34408

27
616 − 135

4301
81

2860
6615
8602

1215
572

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where H = [0.080730245 1.57226359 4.54462943 3.59901587 4.48753077] and

TB =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1
12 0 − 1

120 0

0 0 1
180 0 − 1

630
0 − 1

120 0 1
840 0

0 0 − 1
630 0 1

2100

⎤

⎥⎥⎥⎥⎥⎥⎦
. (7.8)

In this case, since the integral kernel K(x, t) = x2

t1/2 is singular, the expansion
coefficient ki,j for the kernel matrix K cannot be computed using (3.1), be-
cause K(x, t) is not differentiable for variable t at t = 0. Therefore, one has
to resolve to the method by inner products given in (3.19). Thus, we obtain
the following:

K(x, t) =
x2

t1/2
= BT (x)KB(t)

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2
3 − 8

3
52
3 − 40

3
140
3

2 −8 52 −40 140

2 −8 52 −40 140

0 0 0 0 0

0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

(7.9)
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After substitution of Bernoulli expansion in matrix for each term, the residual
system of N = 5 algebraic equations is as follows:

−0.3773971414c1 + 0.1323935356c2 − 0.0036842558c3 − 0.0245232951c4

− 0.0807302457 − 0.6666666667c0 = 0
−0.6719807945c1 − 0.4632845312c2 − 0.0489945421c3 + 0.02507709482c4

− 1.5722635995 − 2c0 = 0
0.5254764302c1 − 2.0127154313c2 − 0.5184781227c3 − 0.0059340198c4

− 4.5446294395 − 2c0 = 0
−0.7761958099c1 + 0.2331456370c2 − 1.7137459457c3 − 0.7678079788c4

− 3.5990158733 = 0
0.1128612141c1 − 1.8612021718c2 + 0.2292764414c3

− 1.5804421095c4 − 4.4875307705 = 0.
(7.10)

Solving (7.10) above, the coefficients are obtained as C = [c0 c1 c2 c3 c4]
T =[− 13

210 − 151
210 − 41

21 − 5
3 − 5

6

]T . Finally, the approximate solution is
obtained as f∗(x) = CTB(x) = − 5

6x4 − 2
7x2 + 2

5x, which is the exact so-
lution.

7.2. Nonlinear FIDE

Now, we solve nonlinear Fredholm FIDE with right-sided Caputo’s deriva-
tives with the proposed Bernoulli polynomial method. Instead of combining
with spectral-tau method, collocation method is being used here as it is more
feasible than spectral-tau method in the presence of nonlinear terms in the
FIDE. The results of the following examples are compared with the opera-
tional matrix of right-sided Caputo’s fractional derivative based on Shifted
Legendre polynomial given in [15].

Example 3. Consider the following nonlinear Fredholm FIDE with the ini-
tial condition where there is a single right-sided Caputo’s derivative and a
nonlinear term [f(x)]2:

CD
1/2
1− f(x) + [f(x)]2 = h(x) +

∫ 1

0

K(x, t)f(t)dt

f(0) = −2 (7.11)

with kernel K(x, t) = x2 + t2, where h(x) = 10
√

1−x√
π

+ 59x2

2 + 20x + 71
12 . The

exact solution is f(x) = −5x − 2.

Assume that we use N = 6 Bernoulli polynomials. In this case, we have
a nonlinear term [f(x)]2 which is approximated as follows:

f(x)2 ≈ CTB(x)BT (x)C. (7.12)

Instead of using spectral-tau, we turned to adopt collocation method to solve
the residual equation. Using Maple and fixing the digits of accuracy up to
10, the approximate solution obtained is as follows:
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Table 1. Example 3: comparison of absolute errors between
order N = 6 Bernoulli polynomials and N = 6, 9 shifted
Legendre polynomial

x Bernoulli, e6,B(x) Legendre, e6,Leg(x) Legendre, e9,Leg(x)

0.0 1.00000E−09 5.00000E−09 1.00000E−09
0.1 7.10000E−08 1.14182E+01 3.00000E−09
0.2 7.90000E−08 9.43561E+00 2.00000E−09
0.3 5.90000E−08 3.28575E+00 2.00000E−09
0.4 3.70000E−08 1.43486E+00 2.00000E−09
0.5 3.60000E−08 2.15129E+00 2.00000E−09
0.6 6.10000E−08 1.30504E+00 1.00000E−09
0.7 9.50000E−08 7.31162E+00 0.00000E+00
0.8 8.40000E−08 1.30701E+01 0.00000E+00
0.9 6.20000E−08 1.52217E+01 2.00000E−09
1.0 4.79000E−07 1.04622E+01 2.00000E−09

f∗(x) = −1.999999999 − 5.000001122x + 4.482295544 × 10−6x2

− 3.52519041 × 10−6x3 − 5.63317826 × 10−6x4

+ 6.275503624 × 10−6x5. (7.13)

Table 1 compares the absolute error between the proposed Bernoulli method
with the operational matrix method of [15] which is using Shifted Legendre
polynomial. The results show that the proposed Bernoulli method is able to
achieve a higher accuracy than Shifted Legendre polynomial for the same
N . The shifted Legendre polynomial will achieve a higher accuracy than
Bernoulli using a larger value of N which implies that more number of basis
polynomials with higher degrees are required for Shifted Legendre to achieve
a superior accuracy than Bernoulli polynomial method.

Example 4. Consider the following nonlinear Fredholm FIDE with nonlinear
terms involving right-sided Caputo’s derivative with the initial condition:

(CD
2/3
1− f(x))2 − 2[f(x)]2 = h(x) +

∫ 1

0

K(x, t)f(t)dtf(0) = 0 (7.14)

with kernel K(x, t) = x2 + t2, where

h(x) =
2187
256

Γ
(

2
3

)2 (1 − x)2/3x2

π2
− 1215

128
Γ
(

2
3

)2 (1 − x)2/3x

π2

+
675
256

Γ
(

2
3

)2 (1 − x)2/3

π2
− 9x4

8
+ 3x3 − 9

4
x2 − 1

10
. (7.15)

The exact solution is f(x) = − 3
4x2 + x.

Assume that we use N = 4 Bernoulli polynomials. The nonlinear term
(CD

2/3
1− f(x))2 is approximated as follows:

(CD
2/3
1− f(x))2 ≈ CTB(x)P2/3

−;B(P2/3
−;B)TBT (x)C. (7.16)
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Table 2. Example 4: comparison of absolute errors between
order N = 4 Bernoulli polynomials and N = 4 shifted Le-
gendre polynomial

x Bernoulli,e4,B(x) Legendre, e4,Leg(x)

0.0 0.00000E+00 0.00000E+00
0.1 2.91915E−03 3.39648E−01
0.2 2.58579E−03 3.35111E−01
0.3 1.90118E−04 1.87877E−01
0.4 3.07765E−03 3.50857E−02
0.5 6.02732E−03 4.41974E−02
0.6 7.46866E−03 2.27145E−02
0.7 6.21149E−03 8.12565E−02
0.8 1.06558E−03 2.10173E−01
0.9 9.15926E−03 2.73495E−01
1.0 2.56532E−02 1.53960E−01

Similarly, collocation method is used here. Using Maple and fixing the digits
of accuracy up to 10, the approximate solution obtained is as follows:

f∗(x) = 1.049421454x − 0.9721361433x2 + 0.1983679384x3. (7.17)

Table 2 compares the absolute error between the proposed Bernoulli method
with Shifted Legendre polynomial for N = 4. The results show that the
proposed Bernoulli method is able to achieve a higher accuracy than Shifted
Legendre polynomial for Example 4 of a nonlinear Fredholm FIDE.

Example 5. Consider another nonlinear Fredholm FIDE with the initial con-
dition where there is a nonlinear term [f(x)]2:

CD
1/2
1− f(x) + [f(x)]2 = h(x) +

∫ 1

0

K(x, t)f(t)dtf(0) = −7 (7.18)

with kernel K(x, t) = x − t, where

h(x) = −8
3

x
√

1 − x√
π

+
8
3

√
1 − x√

π
+ x4 − 4x3 − 10x2 +

107x

3
+

541
12

.

(7.19)

The exact solution is f(x) = x2 − 2x − 7.

Assume we use N = 6 Bernoulli polynomials. In this case, we have a
nonlinear term [f(x)]2 which is approximated as follows:

f(x)2 ≈ CTB(x)BT (x)C. (7.20)
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Table 3. Example 5: comparison of absolute errors between
order N = 6 Bernoulli polynomials and N = 6 shifted Le-
gendre polynomial

x Bernoulli, e6,B(x) Legendre, e6,Leg(x)

0.0 0.00000E+00 0.00000E+00
0.1 1.00000E−09 2.18781E−02
0.2 6.00000E−09 1.05917E−02
0.3 8.00000E−09 5.89246E−03
0.4 6.00000E−09 1.81807E−02
0.5 5.00000E−09 2.75772E−02
0.6 1.00000E−08 3.82080E−02
0.7 1.90000E−08 4.91458E−02
0.8 1.70000E−08 4.65342E−02
0.9 1.80000E−08 4.28770E−03
1.0 1.34000E−07 1.66661E−01

Instead of using spectral-tau, we turned to adopting collocation method to
solve the residual equation. Using Maple and fixing the digits of accuracy up
to 10, the approximate solution obtained is as follows:

f∗(x) = − 7.000000000 − 1.999999931x + 0.9999987946x2

+ 4.860561970 × 10−6x3 − 7.482818204 × 10−6x4

+ 3.892003543 × 10−6x5.

(7.21)

Table 3 compares the absolute error between the proposed Bernoulli method
with the operational matrix method of [15] which is based on shifted Legendre
polynomial for N = 6. The results show that the proposed Bernoulli method
is able to achieve a higher accuracy than shifted Legendre polynomial for
Example 5 of a nonlinear Fredholm FIDE.

8. Conclusion

In this paper, the analytical expression of the expansion coefficients for a
single-variable as well as double-variable function approximation by Bernoulli
polynomials has been derived. In addition, the operational matrix of right-
sided Caputo’s fractional derivative in Bernoulli polynomials basis has been
derived. The derived expressions for Bernoulli polynomials expansion coef-
ficients and Bernoulli polynomials operational matrix are applied in solving
linear Fredholm FIDE involving multi-orders of right-sided Caputo’s frac-
tional derivative as well as nonlinear Fredholm FIDE with right-sided Ca-
puto’s fractional derivative. Specifically, the numerical results have shown
that the operational matrix based on Bernoulli polynomial performs better
than Shifted Legendre polynomial in terms of accuracy. In particular, the
double-variable expansion coefficient is used to approximate the Fredholm
integral kernel by the kernel matrix. The illustrative examples given show
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that the Bernoulli polynomials operational matrix method provides high ac-
curacy in solving FIDEs with right-sided Caputo’s fractional derivative.
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