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Convergence Properties of the Single-Step
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for Non-Hermitian Positive Semidefinite
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Abstract. For the nonsingular, non-Hermitian and positive semidefinite
linear systems, we derive the convergence results of the single-step pre-
conditioned HSS (SPHSS) method under suitable constraints. Addition-
ally, we consider the acceleration of the SPHSS method by Krylov sub-
space methods and some spectral properties of the preconditioned ma-
trix are established. Numerical experiments are presented to further
examine the effectiveness of the proposed method either as a solver or
a preconditioner.
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1. Introduction

In this paper, we consider the following systems of linear equations:

Ax = b, (1.1)

where A ∈ C
n×n is a large, sparse and nonsingular matrix, x ∈ C

n is an un-
known vector and b ∈ C

n is a given vector. Moreover, we assume A �= ±A∗,
which implies that A is not Hermitian, while A is not skew-Hermitian, where
A∗ denotes the conjugate transpose of the matrix A. Linear systems of the
form (1.1) come from many problems in scientific computing and engineering
applications, such as molecular scattering, lattice quantum chromodynamics,
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quantum chemistry, diffuse optical tomography, FFT-based solution of cer-
tain time-dependent PDEs, eddy current problem and so on; see [1–18] and
references therein.

Based on the Hermitian and skew-Hermitian (HS) splitting,

A = H + S, with H =
1
2
(A + A∗) and S =

1
2
(A − A∗).

Bai et al. [19–22] presented a class of the Hermitian and skew-Hermitian
splitting (HSS) iteration method for solving non-Hermitian linear systems.

When the coefficient matrix A is positive definite, i.e., its Hermitian
part H is Hermitian positive definite, Bai et al. [19] masterly designed a
class of Hermitian and skew-Hermitian splitting (HSS) iteration method and
described it as follows:{

(αI + H)x(k+ 1
2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI − H)x(k+ 1
2 ) + b,

(1.2)

where α is a given positive constant and I is identity matrix with proper
dimension. To accelerate the convergence of the HSS method, Bai et al. [20]
further proposed a preconditioned HSS (PHSS) iteration method and de-
scribed below: {

(αP + H)x(k+ 1
2 ) = (αP − S)x(k) + b,

(αP + S)x(k+1) = (αP − H)x(k+ 1
2 ) + b,

(1.3)

where P is a prescribed Hermitian positive definite matrix. Additionally, Li
et al. [27] presented a single-step HSS (SHSS) iteration method, which can
be described as follows:

(αI + H)x(k+1) = (αI − S)x(k) + b. (1.4)

Furthermore, Wu et al. [28] proposed a non-alternating preconditioned HSS
(NPHSS) iteration method as follows:

(αP + H)x(k+1) = (αP − S)x(k) + b. (1.5)

Due to the performance and elegant mathematical properties of the HSS
method, a number of considerable attentions and results have been presented;
see [23–26,29,31] and references therein.

When the coefficient matrix A is positive semidefinite, but nonsingular,
Bai et al. [21] proved that the HSS method is convergent if and only if the
coefficient matrix A does not have a (reducing) eigenvalue of the form iς
with ς ∈ R and i the imaginary unit, or, equivalently, the null space of
Hermitian part H of coefficient matrix does not contain an eigenvector of
skew-Hermitian part S of coefficient matrix.

In this paper, we use the SHSS and SPHSS methods for a class of
nonsingular, non-Hermitian and positive semidefinite linear system (1.1).

The remainder of this paper is organized as follows. In Sect. 2, the
convergence conditions of the proposed method and the spectral properties of
the preconditioned matrices are derived under suitable constraints. In Sect. 3,
numerical experiments are presented to show the correctness of theoretical
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analyses and the effectiveness of the proposed method either as a solver or a
preconditioner. Finally, some conclusions are given in Sect. 4.

2. Convergence and Preconditioning Properties

In this section, we discuss the convergence properties of the SHSS and SPHSS
methods, and study the spectral properties of the preconditioned matrices
with respect to the SHSS and SPHSS preconditioner for a class of nonsingu-
lar non-Hermitian positive semidefinite linear systems (1.1). Without loss of
generality, we take the SHSS method as an example.

It is easy to see that (1.4) can be rewritten as

x(k+1) = Tαx(k) + M−1
α b, k = 0, 1, 2, . . . , (2.1)

where
Tα = (αI + H)−1(αI − S), Mα = (αI + H). (2.2)

Here, Tα is the iteration matrix of the SHSS method. In fact, the scheme (2.1)
can also be obtained from the splitting A = Mα − Nα of the coefficient ma-
trix with Nα = (αI − S). Evidently, the SHSS method can naturally induce
a preconditioner Mα to the matrix A, which is called the SHSS precondi-
tioner. Then, in every step of the SHSS iteration scheme (2.1) or applying
the preconditioner Mα to accelerate a Krylov subspace methods, we need to
solve generalized residual equations of the form Mαz = r, where r, z ∈ C

n

are the current and generalized residual vectors, respectively. Notice αI + H
is Hermitian positive definite matrix for any α > 0 and Hermitian positive
semidefinite matrix H ; hence the linear systems can be exactly solved by
the Cholesky factorization or inexactly by the CG algorithm.

Now, we turn to study the convergence properties of the SHSS method.
It is well known that the iteration method (2.1) is convergent for every initial
guess x(0) if and only if ρ(Tα) < 1, where ρ(Tα) denotes the spectral radius
of Tα.

To obtain the convergence of the SHSS method, we first assume that
λ �= 0 and give a lemma.

Lemma 2.1. Assume that A ∈ C
n×n is a nonsingular positive semidefinite

matrix. If λ is an eigenvalue of iteration matrix Tα defined by (2.2), then
λ �= 1.

Proof. If λ = 1 and x are the corresponding eigenvector, then it follows that
Ax = 0. Since the matrix A is nonsingular, we have x = 0, which contradicts
the assumption that x is an eigenvector of the iteration matrix Tα. Hence,
λ �= 1. �

The following theorem gives sufficient and necessary conditions for con-
vergence of the SHSS method.

Theorem 2.1. Assume that A ∈ C
n×n is a nonsingular positive semidefinite

matrix with A �= ±A∗, and let α be a positive constant. If x is an eigenvector
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of the iteration matrix Tα corresponding to the eigenvalue λ, then

λ =
α − b̃

α + ã
,

where

ã =
x∗Hx

x∗x
, b̃ =

x∗Sx

x∗x
. (2.3)

Moreover, the SHSS method is convergent if and only if parameter α satisfies

α > max
{

0,
b̃2 − ã2

2ã

}
, (2.4)

with ã > 0.

Proof. Let (λ, x) be the eigenpair of the iteration matrix Tα; we have

(αI − S)x = λ(αI + H)x.

Multiplying both sides from the left by x∗, yield

αx∗x − x∗Sx = λ(αx∗x + x∗Hx).

Thus, it follows from the denote (2.3) that

λ =
α − b̃

α + ã
.

Next, we first prove ã > 0. Since H is a Hermitian positive semidefinite, we
only need to prove ã �= 0. In fact, if ã = 0, i.e., Hx = 0, we have Sx �= 0,
i.e., b̃ �= 0. Thus, we conclude that |λ| � 1, so it must have ã > 0 so that the
SHSS method is convergent. After simple algebraic manipulations, we get the
SHSS iteration method to be convergent if and only if parameter α satisfies
(2.4) with ã > 0. Thus, we complete the proof of Theorem 2.1. �

Denote

η̃max = max
ηj∈sp(H)

{ηj}, η̃min = min
ηj∈sp(H)

{ηj\{0}}, μ̃max = max
μj∈sp(S)

{|μj |}.

(2.5)
Accordingly, combining Theorem 2.1 and the denote (2.5), we derive

the following sufficient convergence conditions of the SHSS method.

Lemma 2.2. Under the assumption of Theorem 2.1, the spectral radius ρ(Tα)
of the iteration matrix Tα satisfies ρ(Tα) � δα, with

δα =

√
α2 + μ̃2

max

α + η̃min
,

where μ̃max and η̃min are denoted in (2.5). Moreover, the SHSS method is
convergent if δα < 1 or equivalently parameter α satisfies

α > max
{

0,
μ̃2
max − η̃2

min

2η̃min

}
. (2.6)
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Proof. By Theorem 2.1 and using the Courant–Fisher minmax theorem [30],
we have

ρ(Tα) = max{|λ|} = max

{√
α2 + b̃2

α + ã

}
�

√
α2 + μ̃2

max

α + η̃min
= δα.

Thus, after the same algebraic manipulations of Theorem 2.1, the SHSS
method is convergent if δα < 1 or equivalently parameter α satisfies (2.6).
Therefore, we complete the proof of Lemma 2.2. �

On the other hand, as we know, the clustered spectrum of the precondi-
tioned matrix often leads to rapid convergence [14,30] of the preconditioning
Krylov subspace iteration methods such as restarted GMRES, so possess-
ing the clustering properties of the eigenvalues of the preconditioned matrix
and playing an important role in estimating the convergence rate of the pre-
conditioned Krylov subspace iteration methods. In the following lemmas, we
describe the spectral properties of the eigenvalues of the preconditioned ma-
trix M−1

α A with respect to the SHSS preconditioner.

Lemma 2.3. Under the assumption of Theorem 2.1, the eigenvalues ξ of the
preconditioned matrix M−1

α A are

ξ =
ã + b̃

α + ã
,

where ã and b̃ denote in (2.3). Moreover, it holds that

η̃min

α + η̃min
� �(ξ) � η̃max

α + η̃max
and

∣∣�(ξ)
∣∣ � μ̃max

α + η̃min
, (2.7)

where μ̃max, η̃min and η̃max denote in (2.5).

Proof. Let ξ be the eigenvalues of the preconditioned matrix M−1
α A. By

Theorem 2.1, we have

ξ = 1 − λ =
ã + b̃

α + ã
.

Since H and S are Hermitian and skew-Hermitian matrices, respectively,

�(ξ) =
ã

α + ã
and �(ξ) =

b̃

α + ã
.

By making use of the Courant–Fisher minmax theorem [30], after simple
algebraic manipulations, we obtain that the conclusion of (2.7) holds. Thus,
we complete the proof. �

From the view of Lemma 2.3, we obtain the asymptotic behavior of the
eigenvalue ξ of the preconditioned matrix M−1

α A under some conditions.

Lemma 2.4. Under the assumption of Theorem 2.1, the Hermitian part of
matrix A is dominantly stronger than the skew-Hermitian part. Then the
eigenvalue ξ of the preconditioned matrix M−1

α A are clustered at 1− as α
tends to 0+.
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Proof. According to Lemma 2.3 and since the Hermitian part of the coeffi-
cient matrix is dominantly stronger than the skew-Hermitian part, we obtain
�(ξ) → 1− and �(ξ) → 0+ as α tends to 0+. Thus, we have ξ → 1− as α
tends to 0+. Hence, we complete the proof. �

Based on the algebraic estimation technique [34], we may expect that
Mα is close to A as much as possible and Nα ≈ 0. If the expectation comes
true, more precisely, the SHSS method will have fast convergence rates and
the preconditioned matrix will have clustered eigenvalue distribution when
we minimize the function φ(α) = ‖Nα‖2F with respect to α. By direct com-
putations, we have

φ(α) = ‖Nα‖2F = tr(NαN∗
α)

= α2tr(In) + tr(S∗S).

By taking the first-order derivative of φ(α) and making use of the necessary
condition for the extreme value of a function, we conclude that φ(α) has a
minimum if α → 0+ (since α > 0).

Similar to the SHSS method, the iteration matrix of the SPHSS method
is

Tα,P = (αP + H)−1(αP − S),
which is similar to

T̃α,P = (αI + H̃)−1(αI − S̃),

where H̃ = P− 1
2 HP− 1

2 and S̃ = P− 1
2 SP− 1

2 . Then, similar to the analysis
method, in the SHSS method, we can obtain the convergence of the SPHSS
method and the spectral properties of the preconditioned matrix M−1

α,P A;
since it is similar to the above results, it is omitted here. Moreover, we
have α → 0+ and matrix P dominant matrix S by minimizing the function
α2tr(In) + tr

(
(P−1S)∗(P−1S)

)
.

3. Numerical Experiments

In this section, we perform two examples to illustrate the effectiveness of the
proposed method and the corresponding preconditioner for solving linear sys-
tems (1.1). In actual computations, we use left preconditioning with restarted
GMRES(10) [33] as the Krylov subspace method. We compare the SPHSS
method with the HSS [19] method and compare the corresponding precondi-
tioner for the GMRES(10) method from the point of view of the number of
iterations (denoted by “IT”, including the outside iteration numbers and the
inner iteration numbers), elapsed CPU time in seconds (denoted by “CPU”)
and relative residual error (denoted by “RES”) defined by

RES :=
‖b − Ax(k)‖2

‖b‖2
,

where x(k) are the current approximate solutions. Moreover, we choose the
null vectors as an initial guess and the stopping criterion RES < 10−6 or the
maximum prescribed number of iteration kmax = 600. All the computation
results are run in MATLAB [version 7.10.0.499 (R2010a)] in double precision
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and performed on a personal computer with 3.20 GHz central processing unit
(Intel(R) Core(TM) i5-6500) and 16.00G memory. In our experiments, the
linear subsystems involved in each step of the HSS and SPHSS methods can
be solved effectively using the sparse Cholesky factorization [32].

Example 1. Consider the complex Helmholtz equation:

− Δu + σ1u + iσ2u = b, (3.1)

where σ1 and σ2 are real coefficient functions, u satisfies Dirichlet boundary
conditions in D = [0, 1]× [0, 1] and i =

√
−1. We discretize the problem with

finite differences on a m × m grid with mesh size h = 1/(m + 1). Then it
leads to the following linear equations:[

(K + σ1I) + iσ2I
]

= b,

where K = I ⊗Vm +Vm ⊗ I is the discretization of −Δ by means of centered
differences, wherein Vm = h−2tridiag(−1, 2,−1) ∈ R

m×m. The right-hand
side vector b is taken as b = (1 + i)A1, with 1 being the vector of all entries
equal to 1. Moreover, we also normalize the coefficient matrix and in right-
hand side of (3.1) by multiplying both by h2. For the numerical tests we take
σ1 = σ2 = 100.

Example 2 [22,32]. Consider the nonsingular linear system of equations (1.1)
with

W = 10(I ⊗ Vc + Vc ⊗ I) + 9(e1eT
m + eT

me1) ⊗ I and T = I ⊗ V + V ⊗ I,

where Vc = V − e1e
T
m − emeT

1 ∈ R
m×m, V = tridiag(−1, 2,−1) ∈ R

m×m,
and e1 and em are the first and last unit vectors in R

m, respectively. Hence,
we take the right-hand side vector b to be of the form b = (1 + i)Ae, with
e being the vector of all entries equal to 1 and A = W + iT . Here, T and
K correspond to the five-point centred difference matrices approximating the
negative Laplacian operator with homogeneous Dirichlet boundary conditions
and periodic boundary conditions, respectively, on a uniform mesh in the unit
square [0, 1] × [0, 1] with the mesh size h = 1/(m + 1).

Table 1. Numerical results of different splitting iteration
methods for Example 1

Grid Method α∗ IT CPU RES

16 × 16 HSS 1.45 25 0.0456 5.95e−08
SPHSS 0.79 30 0.0398 6.20e−08

32 × 32 HSS 1.49 86 2.6899 1.49e−08
SPHSS 0.62 29 0.8559 1.31e−08

48 × 48 HSS 1.22 149 32.5328 8.40e−09
SPHSS 0.75 28 6.2937 6.05e−09

64 × 64 HSS 1.01 208 68.1580 5.53e−08
SPHSS 0.89 27 19.5856 4.85e−08
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Table 2. Numerical results of different preconditioned GM-
RES methods for Example 1

Grid Preconditioner α∗ IT CPU RES

16 × 16 HSS-GMRES(10) 1.45 2(3) 0.0387 3.60e−07
SPHSS-GMRES(10) 0.79 2(1) 0.0259 6.27e−07

32 × 32 HSS-GMRES(10) 1.49 4(1) 1.1569 9.75e−07
SPHSS-GMRES(10) 0.62 2(2) 0.5917 3.95e−07

48 × 48 HSS-GMRES(10) 1.22 5(7) 16.6351 8.36e−07
SPHSS-GMRES(10) 0.75 2(2) 4.1917 5.79e−07

64 × 64 HSS-GMRES(10) 1.01 7(1) 46.6169 9.44e−07
SPHSS-GMRES(10) 0.89 2(2) 9.3528 6.86e−07

Figure 1. Eigenvalue distribution of different preconditioned
matrices for Example 1 with m = 32

Figure 2. Eigenvalue distribution of the preconditioned ma-
trix M−1

α,P A for Example 1 with m = 32
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Figure 3. Eigenvalue distribution of different preconditioned
matrices for Example 2 with m = 32

Figure 4. Eigenvalue distribution of preconditioned matrix
M−1

α,P A for Example 2 with m = 32

Table 3. Numerical results of different splitting iteration
methods for Example 2

Grid Method α∗ IT CPU RES

16 × 16 HSS 4.41 84 0.2489 9.26e−07
SPHSS 0.35 22 0.0256 5.81e−07

32 × 32 HSS 2.71 137 8.2371 9.28e−07
SPHSS 1.46 47 0.6591 7.93e−07

48 × 48 HSS 2.12 185 43.1284 9.70e−09
SPHSS 3.34 85 5.1283 9.98e−07

64 × 64 HSS 1.61 223 128.1285 9.72e−07
SPHSS 5.38 138 21.2117 9.52e−07
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Table 4. Numerical results of different preconditioned GM-
RES methods for Example 2

Grid Preconditioner α∗ IT CPU RES

16 × 16 HSS-GMRES(10) 4.41 4(8) 0.1387 8.72e−07
SPHSS-GMRES(10) 0.35 1(9) 0.0642 6.58e−07

32 × 32 HSS-GMRES(10) 2.71 9(6) 6.2149 8.84e−07
SPHSS-GMRES(10) 1.46 3(9) 0.3482 9.95e−07

48 × 48 HSS-GMRES(10) 1.22 13(9) 23.1284 9.99e−07
SPHSS-GMRES(10) 0.75 7(10) 2.9124 9.14e−07

64 × 64 HSS-GMRES(10) 1.61 16(5) 85.5417 9.80e−07
SPHSS-GMRES(10) 5.38 12(7) 8.1286 9.75e−07

In Table 1, we list the numerical results of various iteration methods
with respect to different problem sizes for Example 1. The parameter α∗ for
HSS and SPHSS iteration methods is obtained by minimizing the numbers
of iterations with respect to each test example and each spatial mesh size.
Moreover, we take P = H for Example 1. Additionally, the numerical re-
sults of IT, CPU and RES of the tested methods with respect to different
problem sizes for Example 1 by using GMRES(10) in conjunction with the
corresponding preconditioners are listed in Table 2. The eigenvalue distribu-
tion of the corresponding preconditioned matrices with m = 32 is given in
Fig. 1. Furthermore, the eigenvalue distribution of the preconditioned matrix
M−1

α,P A is listed in Fig. 2 with α = 0.01 and α = 0.001, respectively. For
Example 2, we have the same strategy as Example 1, see Tables 3, 4 and
Figs. 3, 4

The numerical results clearly show that the SPHSS method and the cor-
responding preconditioner use less iteration steps and CPU times to achieve
the stopping criterion. We also see that the distribution eigenvalues of the
preconditioned matrices M−1

α,P A are quite clustered in accordance with theo-
retical analysis. In other words, the numerical results show the feasibility of
the SPHSS method for solving nonsingular linear system (1.1).

4. Conclusions

In this paper, we present the SPHSS method for solving a class of nonsingular
non-Hermitian positive semidefinite linear system (1.1). Meanwhile, the con-
vergence properties of the SPHSS method and the spectral properties of the
preconditioned matrix are also derived. Numerical results show the effective-
ness of the SPHSS method in terms of the number of iteration steps (“IT”)
and CPU times (“CPU”). However, its efficiency depends on the precondi-
tioned matrix P . With regard to this case, we will need to study further.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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