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Abstract. In this paper, we consider the split null point problem and
the fixed point problem for multivalued mappings in Hilbert spaces. We
introduce a Halpern-type algorithm for solving the problem for maximal
monotone operators and demicontractive multivalued mappings, and
establish a strong convergence result under some suitable conditions.
Also, we apply our problem of main result to other split problems, that
is, the split feasibility problem, the split equilibrium problem, and the
split minimization problem. Finally, a numerical result for supporting
our main result is also supplied.
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1. Introduction

Throughout this paper, we shall assume that H, H1 and H2 are real Hilbert
spaces with inner products 〈·, ·〉 and norms ‖ · ‖, and let I be the identity
operator on a Hilbert space. Let N be the set of positive integers and R the
set of real numbers.

Recently, the split inverse problem (SIP) was widely studied by many
researchers [6,8–10,12,17,18,23] as its applications are desirable and can be
used in real-world applications, for example, in image recovery, signal pro-
cessing, the intensity-modulated radiation therapy, etc (see [4,7,8,11]). The
SIP concerns a model which is to find a point

x∗ ∈ H1 that solves IP1 (1.1)

such that
y∗ := Ax∗ ∈ H2 solves IP2, (1.2)
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where IP1 denotes an inverse problem formulated in H1 and IP2 denotes an
inverse problem formulated in H2, and A : H1 → H2 is a bounded linear oper-
ator. In 1994, the first instance of the split inverse problem was introduced
by Censor and Elfving, that is, the split feasibility problem [8]. After that,
other split problems were introduced such as the split variational inequality
problem [12], the split common null point problem [6], the split common fixed
point problem [9], the split equilibrium problem [23], the split minimization
problem, etc (see Sect. 4).

In this work, we focus our attention on the following split null point
problem (SNPP) which was introduced by Byrne et al. [6]: given two mul-
tivalued mappings B1 : H1 → 2H1 and B2 : H2 → 2H2 , the problem is
formulated as finding a point

x∗ ∈ H1 such that 0 ∈ B1(x∗) and 0 ∈ B2(Ax∗). (1.3)

Let B be a multivalued mappings of H into 2H, then the null point set of
B is denoted by B−10 := {x ∈ H : 0 ∈ Bx}. In other words of the SNPP,
the problem of finding a point of the null point set of a multivalued mapping
such that its image under a given bounded linear operator belongs to the
null point set of another multivalued mapping in the image space. Then, the
SNPP (1.3) can be rewritten as follows: Find a point x∗ ∈ H1 such that

x∗ ∈ B−1
1 0 and Ax∗ ∈ B−1

2 0.

The SNPP for maximal monotone operators was studied by many
researches in both Hilbert spaces and Banach spaces; see, for instance,
[1,2,6,30,31]. The subdifferential of a lower semicontinuous and convex func-
tion is an important example of maximal monotone operators and its resol-
vent operators are often used to construct algorithms for solving the mini-
mization problem of the function. In [15], Combettes and Pesquet considered
proximal splitting methods constructed by the resolvent operators of the sub-
differential of functions to study signal processing.

To solve the SNPP (1.3) for two maximal monotone operators B1 and
B2, Byrne et al. [6] proposed the following two algorithms:

xn+1 = JB1
λ

(
xn + γA∗

(
JB2

λ − I
)

Axn

)
, n ∈ N, (1.4)

and
{

u ∈ H1,

xn+1 = αnu + (1 − αn)JB1
λ

(
xn + γA∗

(
JB2

λ − I
)

Axn

)
, n ∈ N,

(1.5)
where JB1

λ and JB2
λ are resolvents of B1 and B2, respectively, A∗ is the

adjoint operator of A. They obtained a weak convergence result of Algorithm
(1.4) and a strong convergence result of Algorithm (1.5) under some control
conditions.

In many areas, stability or equilibrium is a fundamental concept that
can be explained in terms of fixed points, and the fixed point theory is very
significant in nonlinear analysis and has been widely studied. In 2015, the
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problem of finding a common solution of the null point and fixed point prob-
lem was first studied by Takahashi et al. [33]. It is well known that the class
of demicontractive mappings [20,24] includes several common types of classes
of mappings occurring in nonlinear analysis and optimization problems. In
2017, Eslamain [16] considered the problem of finding a common solution of
the split null point problem and the fixed point problem for maximal mono-
tone operators and demicontractive mappings, respectively (see also [22]).
Furthermore, fixed point theory was also studied in the case of multivalued
mappings and it can be utilized in various areas such as game theory, control
theory, mathematical economics, etc.

In this article, inspired and motivated by these works, we are interested
to study the split null point problem and the fixed point problem for multi-
valued mappings in Hilbert spaces. In Sect. 3, we introduce a Halpern-type
algorithm [19] for finding a common solution of the split null point problem
and the fixed point problem for maximal monotone operators and demicon-
tractive multivalued mappings, respectively, and prove a strong convergence
theorem of the proposed algorithm under some suitable conditions. In Sect. 4,
we reduce our problem to other split problems, i.e., the split feasibility prob-
lem, the split equilibrium problem and the split minimization problem. In
Sect. 5, we also present the numerical example to demonstrate the conver-
gence of our algorithm.

2. Preliminaries

We denote the strong and weak convergence of a sequence {xn} ⊂ H to z ∈ H
by xn → z and xn ⇀ z, respectively. Let C be a nonempty closed convex
subset of H.

Recall that the (metric) projection from H onto C, denoted by PC is
defined for each x ∈ H, PCx is the unique element in C such that

‖x − PCx‖ = d(x,C) := inf{‖x − z‖ : z ∈ C}.

It is known that PCx ∈ C is characterized by the following property:

〈x − PCx, z − PCx〉 ≤ 0 for all z ∈ C.

Let T : C → 2C be a multivalued mapping. An element p ∈ C is called a
fixed point of T if p ∈ Tp. The set of all fixed points of T is denoted by F (T ).
We say that T satisfies the endpoint condition if Tp = {p} for all p ∈ F (T ).

A subset D of C is said to be proximal if for each x ∈ C, there exists
y ∈ D such that

‖x − y‖ = d(x,D).

We denote by CB(C), K(C), and P (C) the families of all nonempty closed
bounded subsets of C, nonempty compact subsets of C, and nonempty prox-
imal bounded subsets of C, respectively. The Pompeiu–Hausdorff metric on
CB(C) is defined by

H(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
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for all A,B ∈ CB(C).
We now recall the definitions of some multivalued mappings in Hilbert

spaces.

Definition 2.1. Let C be a nonempty closed convex subset of H. A multivalued
mapping T : C → CB(C) is said to be

(i) nonexpansive if

H(Tx, Ty) ≤ ‖x − y‖ for all x, y ∈ C,

(ii) quasi-nonexpansive if F (T ) 	= ∅ and

H(Tx, Tp) ≤ ‖x − p‖ for all x ∈ C, p ∈ F (T ),

(iii) demicontractive [13,21] if F (T ) 	= ∅ and there exists k ∈ [0, 1) such that

H(Tx, Tp)2 ≤ ‖x − p‖2 + kd(x, Tx)2 for all x ∈ C, p ∈ F (T ).

It is noticed in Definition 2.1 that the class of demicontractive mappings
includes classes of nonexpansive and quasi-nonexpansive mappings.

We provide an example of a demicontractive multivalued mapping which
is not quasi-nonexpansive.

Example 2.2. Let H = R. Define a multivalued mapping T : R → 2R by

Tx :=

{[− 9x
2 ,−5x

]
, if x ≤ 0,[−5x,− 9x

2

]
, if x > 0.

Then F (T ) = {0}. For each 0 	= x ∈ R,

H(Tx, T0)2 = | − 5x − 0|2 = 25|x − 0|2 = |x − 0|2 + 24|x|2.
Clearly, T is not quasi-nonexpansive. We also have

d(x, Tx)2 =
∣∣∣∣x −

(
−9x

2

)∣∣∣∣
2

=
∣∣∣∣
11x

2

∣∣∣∣
2

=
121
4

|x|2.

Thus,

H(Tx, T0)2 = |x − 0|2 +
96
121

(
121
4

|x|2
)

=
96
121

d(x, Tx)2.

Hence, T is demicontractive with a constant k = 96
121 ∈ (0, 1).

For a multivalued mapping T : C → P (C), the best approximation
operator PT is defined by

PT (x) := {w ∈ Tx : ‖x − w‖ = d(x, Tx)}.

Note that F (T ) = F (PT ) and PT satisfies the endpoint condition. In [27],
they gave an example for the best approximation operator PT which is non-
expansive, but T is not necessary to be nonexpansive.

Definition 2.3. Let C be a nonempty closed convex subset of H and let
T : C → CB(C) be a multivalued mapping. The multivalued mapping I − T
is said to be demiclosed at zero if for any sequence {xn} in C which converges
weakly to x ∈ C and the sequence {‖xn −yn‖} converges strongly to 0, where
yn ∈ Txn, then x ∈ F (T ).
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Let us recall the maximal monotone operator. A multivalued mapping
B of H into 2H is called a maximal monotone operator if B is monotone, i.e.,

〈x − y, z − w〉 ≥ 0 for all x, y ∈ dom(B), z ∈ Bx,w ∈ By,

where dom(B) := {x ∈ H : Bx 	= ∅}, and the graph G(B) of B,

G(B) := {(x, z) ∈ H × H : z ∈ Bx},

is not properly contained in the graph of any other monotone operator, i.e.,

(x, z) ∈ G(B) ⇔ 〈x − y, z − w〉 ≥ 0 for all (y, w) ∈ G(B).

For a maximal monotone operator B : H → 2H and λ > 0, we define
the resolvent of B with parameter λ by

JB
λ := (I + λB)−1.

It is known [5] that JB
λ : H → dom(B) is single-valued, firmly nonexpansive,

i.e., for any x, y ∈ H,
∥∥JB

λ x − JB
λ y

∥∥2 ≤ 〈
JB

λ x − JB
λ y, x − y

〉
,

this is equivalent to〈
JB

λ x − JB
λ y, (JB

λ x − x) − (JB
λ y − y)

〉 ≤ 0,

and F (JB
λ ) = B−10 = {x ∈ H : 0 ∈ Bx}. Moreover, I − JB

λ is demiclosed at
zero.

Let f be a convex function of H into (−∞,∞], then a subdifferential
∂f of f at x ∈ H is defined by

∂f(x) := {y ∈ H : f(x) + 〈y, z − x〉 ≤ f(z), ∀z ∈ H}.
It was shown [26] that if f is a proper, lower semicontinuous and convex
function, then ∂f is a maximal monotone operator.

Example 2.4. (Indicator Function). Let C be a nonempty closed convex sub-
set of H. Define a function iC : H → (−∞,∞] of C by

iC(x) =

{
0, if x ∈ C,

∞, if x /∈ C.

Thus, iC is a proper, lower semicontinuous and convex function, and hence
∂iC is maximal monotone. It is not difficult to show that

∂iC(x) =

{
{y ∈ H : 〈y, z − x〉 ≤ 0, ∀z ∈ C}, if x ∈ C,

∅, if x /∈ C,

and J∂iC

λ = (I + λ∂iC)−1 = PC for all λ > 0.

Next, we give some significant tools and facts for proving our main
result.

Lemma 2.5. Let x, y ∈ H, α ∈ R. Then the following inequalities hold on H:
(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(ii) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2.
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Lemma 2.6 [34]. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → CB(C) be a k-demicontractive multivalued mapping.
Then, we have

(i) F (T ) is closed;
(ii) If T satisfies the endpoint condition, then F (T ) is convex.

Lemma 2.7 [35]. Suppose that {tn} is a sequence of nonnegative real numbers
such that

tn+1 ≤ (1 − αn)tn + αnβn + δn, n ∈ N,

where {αn}, {βn} and {δn} satisfy the following conditions:
(i) {αn} ⊂ [0, 1],

∑∞
n=1 αn = ∞;

(ii) lim supn βn ≤ 0 or
∑∞

n=1 |αnβn| < ∞;
(iii) δn ≥ 0 for all n ∈ N,

∑∞
n=1 δn < ∞.

Then, limn→∞ tn = 0.

Lemma 2.8 [25] Let {Γn} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} which satisfies Γni

< Γni+1 for all i ∈ N. Also
consider the sequence of positive integers {ρ(n)} defined by

ρ(n) := max{m ≤ n : Γm < Γm+1}
for all n ≥ n0 (for some n0 large enough). Then, {ρ(n)} is a nondecreasing
sequence such that ρ(n) → ∞ as n → ∞, and it holds that

Γρ(n) ≤ Γρ(n)+1, Γn ≤ Γρ(n)+1.

3. Main Results

In this section, we present an algorithm for finding a common solution of the
split null point problem and the fixed point problem for maximal monotone
operators and demicontractive multivalued mappings, respectively, and prove
a strong convergence result.

We now prove our main theorem.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces and C be a nonempty
closed convex subset of H1. Let A : H1 → H2 be a bounded linear opera-
tor. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be maximal monotone oper-
ators such that dom(B1) is included in C, and let JB1

λ and JB2
λ be resol-

vents of B1 and B2, respectively, for λ > 0. Let T : C → CB(C) be a
k-demicontractive multivalued mapping. Suppose that I − T is demiclosed at
zero and T satisfies the endpoint condition. Assume that Θ := F (T )∩Ω 	= ∅,
where Ω =

{
x ∈ B−1

1 0 : Ax ∈ B−1
2 0

}
. Suppose that u ∈ C and {xn} is a

sequence generated by x1 ∈ C and⎧
⎪⎨
⎪⎩

yn = JB1
λn

(xn + γA∗(JB2
λn

− I)Axn),
un = (1 − δ)yn + δzn,

xn+1 = αnu + (1 − αn)un, n ∈ N,

(3.1)

where zn ∈ Tyn, the parameters γ, δ and the sequences {αn}, {λn} satisfy
the following conditions:
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(i) γ ∈
(
0, 2

‖A‖2

)
and δ ∈ (0, 1 − k);

(ii) αn ∈ (0, 1) such that limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(iii) λn ∈ (0,∞) such that lim infn→∞ λn > 0.
Then, the sequence {xn} converges strongly to a point x∗ ∈ Θ, where x∗

= PΘu.

Proof. By Lemma 2.6, we have F (T ) is closed and convex, and hence Θ is
also closed and convex. Let x∗ = PΘu. By characterization of the metric
projection, we get

〈u − x∗, p − x∗〉 ≤ 0 for all p ∈ Θ. (3.2)

Since x∗ ∈ Θ, we obtain Tx∗ = {x∗}, JB1
λn

x∗ = x∗ and JB2
λn

(Ax∗) = Ax∗.
We first show that {xn} is bounded. Since JB1

λn
is nonexpansive and A is a

bounded linear operator, we have

‖yn − x∗‖2 =
∥∥∥JB1

λn

(
xn + γA∗

(
JB2

λn
− I

)
Axn

)
− JB1

λn
x∗

∥∥∥
2

≤
∥∥∥xn + γA∗

(
JB2

λn
− I

)
Axn − x∗

∥∥∥
2

= ‖xn − x∗‖2 + γ2
∥∥∥A∗(JB2

λn
− I)Axn

∥∥∥
2

+2γ
〈
xn − x∗, A∗

(
JB2

λn
− I

)
Axn

〉

≤ ‖xn − x∗‖2 + γ2‖A‖2
∥∥∥JB2

λn
(Axn) − Axn

∥∥∥
2

+ 2γ
〈
Axn − Ax∗, JB2

λn
(Axn) − Axn

〉
. (3.3)

Now we take

En := 2γ
〈
Axn − Ax∗, JB2

λn
(Axn) − Axn

〉
.

Since JB2
λn

is firmly nonexpansive, we have

En = 2γ
〈
Axn − Ax∗ +

(
JB2

λn
(Axn) − Axn

)

−
(
JB2

λn
(Axn) − Axn4

)
, JB2

λn
(Axn) − Axn

〉

= 2γ

(〈
JB2

λn
(Axn) − Ax∗, JB2

λn
(Axn) − Axn

〉
−

∥∥∥JB2
λn

(Axn) − Axn

∥∥∥
2
)

≤ −2γ
∥∥∥JB2

λn
(Axn) − Axn

∥∥∥
2

. (3.4)

By (3.3) and (3.4), we obtain that

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − γ(2 − γ‖A‖2)
∥∥∥JB2

λn
(Axn) − Axn

∥∥∥
2

.

By Lemma 2.5 (ii) and the demicontractivity of T with the constant k, we
have

‖un − x∗‖2 = ‖(1 − δ)(yn − x∗) + δ(zn − x∗)‖2

= (1 − δ)‖yn − x∗‖2 + δ‖zn − x∗‖2 − δ(1 − δ)‖yn − zn‖2
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= (1 − δ)‖yn − x∗‖2 + δd(zn, Tx∗)2 − δ(1 − δ)‖yn − zn‖2

≤ (1 − δ)‖yn − x∗‖2 + δH(Tyn, Tx∗)2 − δ(1 − δ)‖yn − zn‖2

≤ (1 − δ)‖yn − x∗‖2 + δ
(‖yn − x∗‖2 + k d(yn, T yn)2

)

− δ(1 − δ)‖yn − zn‖2

≤ (1 − δ)‖yn − x∗‖2 + δ‖yn − x∗‖2 + δk‖yn − zn‖2

− δ(1 − δ)‖yn − zn‖2

= ‖yn − x∗‖2 − δ(1 − k − δ)‖yn − zn‖2

≤ ‖xn − x∗‖2 − γ(2 − γ‖A‖2)‖JB2
λn

(Axn) − Axn‖2

− δ(1 − k − δ)‖yn − zn‖2. (3.5)

It follows that

‖un − x∗‖ ≤ ‖xn − x∗‖.

Thus, we have

‖xn+1 − x∗‖ = ‖αn(u − x∗) + (1 − αn)(un − x∗)‖
≤ αn‖u − x∗‖ + (1 − αn)‖un − x∗‖
≤ αn‖u − x∗‖ + (1 − αn)‖xn − x∗‖
≤ max {‖xn − x∗‖, ‖u − x∗‖} .

By continuously taking this process, we obtain

‖xn − x∗‖ ≤ max {‖x1 − x∗‖, ‖u − x∗‖}
for all n ∈ N. Therefore, {xn} is bounded. This implies that {yn} is also
bounded. It follows from (3.5) that

‖xn+1 − x∗‖2 = ‖αn(u − x∗) + (1 − αn)(un − x∗)‖2

≤ αn‖u − x∗‖2 + (1 − αn)‖un − x∗‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2

− γ(2 − γ‖A‖2)‖JB2
λn

(Axn) − Axn‖2

− δ(1 − k − δ)‖yn − zn‖2. (3.6)

Thus, by (3.6), we get the following two inequalities

γ(2−γ‖A‖2)‖JB2
λn

(Axn)−Axn‖2 ≤ αn‖u−x∗‖2 +‖xn −x∗‖2 −‖xn+1 −x∗‖2

(3.7)
and

δ(1 − k − δ)‖yn − zn‖2 ≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (3.8)

Now, we divide the rest of the proof into two cases.
Case 1 Assume that there exists n0 ∈ N such that {‖xn − x∗‖}n≥n0 is either
nonincreasing or nondecreasing. Since {‖xn − x∗‖} is bounded, then it con-
verges and ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 → 0 as n → ∞. Since γ ∈

(
0, 2

‖A‖2

)

and αn → 0 as n → ∞, then by (3.7) we deduce that

lim
n→∞

∥∥∥JB2
λn

(Axn) − Axn

∥∥∥ = 0. (3.9)
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Similarly, in view of (3.8), since δ ∈ (0, 1 − k) and αn → 0 as n → ∞, we
have

lim
n→∞ ‖yn − zn‖ = 0. (3.10)

By (3.3) and (3.4), we also have
∥∥∥xn + γA∗

(
JB2

λn
− I

)
Axn − x∗

∥∥∥
2

≤ ‖xn − x∗‖2. (3.11)

By the firmly nonexpansivity of JB1
λn

and (3.11), we have

‖yn − x∗‖2 =
∥∥∥JB1

λn

(
xn + γA∗

(
JB2

λn
− I

)
Axn

)
− JB1

λn
x∗

∥∥∥2

≤
〈
JB1

λn

(
xn + γA∗

(
JB2

λn
− I

)
Axn

)

−JB1
λn

x∗, xn + γA∗
(
JB2

λn
− I

)
Axn − x∗

〉

=
〈
yn − x∗, xn + γA∗

(
JB2

λn
− I

)
Axn − x∗

〉

=
1

2

(
‖yn − x∗‖2 +

∥∥∥xn + γA∗
(
JB2

λn
− I

)
Axn − x∗

∥∥∥2

−
∥∥∥yn − xn − γA∗

(
JB2

λn
− I

)
Axn

∥∥∥2
)

≤ 1

2

(
‖yn − x∗‖2 + ‖xn − x∗‖2 −

∥∥∥yn − xn − γA∗
(
JB2

λn
− I

)
Axn

∥∥∥2
)

=
1

2

(
‖yn − x∗‖2 + ‖xn − x∗‖2 − ‖yn − xn‖2 − γ2‖A∗

(
JB2

λn
− I

)
Axn‖2

+2γ
〈
yn − xn, A∗

(
JB2

λn
− I

)
Axn

〉)

≤ 1

2

(
‖yn − x∗‖2 + ‖xn − x∗‖2 − ‖yn − xn‖2 − γ2

∥∥∥A∗
(
JB2

λn
− I

)
Axn

∥∥∥2

+2γ‖yn − xn‖
∥∥∥A∗

(
JB2

λn
− I

)
Axn

∥∥∥
)

,

which implies that

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖yn − xn‖2 + 2γ‖yn − xn‖
∥∥∥A∗

(
JB2

λn
− I

)
Axn

∥∥∥ .

(3.12)

Since T is k-demicontractive, then it follows from (3.12) that

‖xn+1 − x∗‖2 ≤ αn‖u − x∗‖2 + (1 − αn)‖un − x∗‖2

≤ αn‖u − x∗‖2 + (1 − αn)
(
(1 − δ)‖yn − x∗‖2 + δ‖zn − x∗‖2

)

≤ αn‖u − x∗‖2 + (1 − δ)‖yn − x∗‖2 + δ d(zn, Tx∗)2

≤ αn‖u − x∗‖2 + (1 − δ)‖yn − x∗‖2 + δH(Tyn, Tx∗)2

≤ αn‖u − x∗‖2 + (1 − δ)‖yn − x∗‖2 + δ‖yn − x∗‖2

+δk d(yn, T yn)2

≤ αn‖u − x∗‖2 + ‖yn − x∗‖2 + δk‖yn − zn‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖yn − xn‖2

+ 2γ‖yn − xn‖
∥∥∥A∗

(
JB2

λn
− I

)
Axn

∥∥∥ + δk‖yn − zn‖2. (3.13)
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By (3.9), (3.10) and (3.13), we deduce that

‖yn − xn‖2 ≤ αn‖u − x∗‖2 + 2γ‖yn − xn‖
∥∥∥A∗

(
JB2

λn
− I

)
Axn

∥∥∥
+ δk‖yn − zn‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 → 0

as n → ∞, which implies that ‖yn −xn‖ → 0 as n → ∞. We next show that

lim sup
n→∞

〈u − x∗, xn − x∗〉 ≤ 0.

To show this, let {xnj
} be a subsequence of {xn} such that

lim
j→∞

〈u − x∗, xnj
− x∗〉 = lim sup

n→∞
〈u − x∗, xn − x∗〉.

Since {xnj
} is bounded, there exists a subsequence {xnjk

} of {xnj
} and p ∈

H1 such that xnjk
⇀ p. Without loss of generality, we can assume that xnj

⇀

p. Since A is a bounded linear operator, we have 〈z,Axnj
−Ap〉 = 〈A∗z, xnj

−
p〉 → 0 as j → ∞, for all z ∈ H2, this implies that Axnj

⇀ Ap. From (3.9)
and by the demiclosedness of I − JB2

λn
at zero, we get Ap ∈ F (JB2

λn
) = B−1

2 0.
Since xnj

⇀ p and ‖yn − xn‖ → 0 as n → ∞, we have ynj
⇀ p. From (3.10)

and by the demiclosedness of I − T at zero, we obtain p ∈ F (T ). Now let us
show that p ∈ B−1

1 0. From yn = JB1
λn

(xn + γA∗(JB2
λn

− I)Axn), then we can
easily prove that

1
λn

(
xn − yn + γA∗

(
JB2

λn
− I

)
Axn

)
∈ B1yn.

By the monotonicity of B1, we have〈
yn − v,

1
λn

(
xn − yn + γA∗

(
JB2

λn
− I

)
Axn

)
− w

〉
≥ 0

for all (v, w) ∈ G(B1). Thus, we also have〈
ynj

− v,
1

λnj

(
xnj

− ynj
+ γA∗

(
JB2

λnj
− I

)
Axnj

)
− w

〉
≥ 0 (3.14)

for all (v, w) ∈ G(B1). Since ynj
⇀ p, ‖xnj

− ynj
‖ → 0 and ‖(JB2

λnj

− I)Axnj
‖ → 0 as j → ∞, then by taking the limit as j → ∞ in (3.14)

yields

〈p − v,−w〉 ≥ 0

for all (v, w) ∈ G(B1). By the maximal monotonicity of B1, we get 0 ∈ B1p,
i.e., p ∈ B−1

1 0. Therefore, p ∈ Θ. Since x∗ satisfies the inequality (3.2), we
have

lim sup
n→∞

〈u − x∗, xn − x∗〉 = lim
j→∞

〈u − x∗, xnj
− x∗〉 = 〈u − x∗, p − x∗〉 ≤ 0.

By using Lemma 2.5 (i), we deduce that

‖xn+1 − x∗‖2 = ‖(1 − αn)(un − x∗) + αn(u − x∗)‖2

≤ (1 − αn)2‖un − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉
≤ (1 − αn)‖xn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉.

Hence, by Lemma 2.7, we can conclude that xn → x∗ as n → ∞.
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Case 2 Suppose that {‖xn − x∗‖} is not a monotone sequence. Then, there
exists a subsequence {ni} of {n} such that ‖xni

− x∗‖ < ‖xni+1 − x∗‖ for all
i ∈ N. We now define a positive integer sequence {ρ(n)} by

ρ(n) := max{m ≤ n : ‖xm − x∗‖ < ‖xm+1 − x∗‖}
for all n ≥ n0 (for some n0 large enough). By Lemma 2.8, we have {ρ(n)} is
a nondecreasing sequence such that ρ(n) → ∞ as n → ∞ and

‖xρ(n) − x∗‖2 − ‖xρ(n)+1 − x∗‖2 ≤ 0

for all n ≥ n0. From (3.7), we obtain that

lim
n→∞

∥∥∥
(
JB2

λρ(n)
− I

)
Axρ(n)

∥∥∥ = 0. (3.15)

From (3.8), we have
lim

n→∞ ‖yρ(n) − zρ(n)‖ = 0. (3.16)

By (3.15), (3.16) and by the same proof as in case 1, we obtain that

lim sup
n→∞

〈u − x∗, xρ(n) − x∗〉 ≤ 0.

By the same computation as in case 1, we deduce that

‖xρ(n)+1 − x∗‖2 ≤ (1 − αρ(n))‖xρ(n) − x∗‖2 + 2αρ(n)〈u − x∗, xρ(n)+1 − x∗〉.
By applying Lemma 2.7 again, we obtain that ‖xρ(n) − x∗‖ → 0 as n → ∞.
It follows from Lemma 2.8 that

0 ≤ ‖xn − x∗‖ ≤ ‖xρ(n)+1 − x∗‖ → 0

as n → ∞. Hence {xn} converges strongly to x∗. This completes the proof.
�

By properties of the best approximation operator, we have the following
corollary.

Corollary 3.2. Let H1 and H2 be two real Hilbert spaces and C be a nonempty
closed convex subset of H1. Let A : H1 → H2 be a bounded linear operator.
Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be maximal monotone operators such
that dom(B1) is included in C, and let JB1

λ and JB2
λ be resolvents of B1 and

B2, respectively, for λ > 0. Let T : C → P (C) be a multivalued mapping
such that PT is k-demicontractive. Assume that I − PT is demiclosed at zero
and Θ := F (T ) ∩ Ω 	= ∅, where Ω =

{
x ∈ B−1

1 0 : Ax ∈ B−1
2 0

}
. Suppose that

u ∈ C and {xn} is a sequence generated by x1 ∈ C and⎧
⎪⎨
⎪⎩

yn = JB1
λn

(xn + γA∗(JB2
λn

− I)Axn),
un = (1 − δ)yn + δzn,

xn+1 = αnu + (1 − αn)un, n ∈ N,

(3.17)

where zn ∈ PT (yn), the parameters γ, δ and the sequences {αn}, {λn} satisfy
conditions (i)–(iii) in Theorem 3.1. Then, the sequence {xn} defined by (3.17)
converges strongly to x∗ ∈ Θ, where x∗ = PΘu.

Proof. Since PT satisfies the end point condition and F (T ) = F (PT ), then
the result is obtained directly by Theorem 3.1. �
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We also obtain a result for solving the fixed point problem for demicon-
tractive multivalued mappings as follows.

Theorem 3.3. Let H be a real Hilbert space and C be a nonempty closed
convex subset of H. Let T : C → CB(C) be a k-demicontractive multivalued
mapping. Assume that I−T is demiclosed at zero and T satisfies the endpoint
condition. Let u ∈ C and {xn} be a sequence generated by x1 ∈ C, and

{
un = (1 − δ)xn + δzn,

xn+1 = αnu + (1 − αn)un, n ∈ N,
(3.18)

where zn ∈ Txn, δ ∈ (0, 1 − k) and αn ∈ (0, 1) such that limn→∞ αn = 0 and∑∞
n=1 αn = ∞. Then, the sequence {xn} defined by (3.18) converges strongly

to x∗ ∈ F (T ), where x∗ = PF (T )u.

Proof. Set H1 = H2 = H, A := I, B1 := ∂iC and B2 := 0, where iC is the
indicator function of C and 0 is a zero operator. Then B1 and B2 are maximal
monotone such that dom(B1) = C, JB1

λ = PC and JB2
λ = I for λ > 0. We

also have Ω :=
{
x ∈ B−1

1 0 : Ax ∈ B−1
2 0

}
= C, then Θ := F (T ) ∩ Ω = F (T ).

So the result is obtained directly by Theorem 3.1. �

When we take C = H1 and T = I is a single-valued mapping in The-
orem 3.1, then the result of Byrne et al. [6] for solving the SNPP (1.3) for
maximal monotone operators is a consequence of our main result.

Corollary 3.4 [6] Let H1 and H2 be two real Hilbert spaces, and let A :
H1 → H2 be a bounded linear operator. Let B1 : H1 → 2H1 and B2 :
H2 → 2H2 be two maximal monotone operators, and let JB1

λ and JB2
λ

be resolvents of B1 and B2, respectively, for λ > 0. Assume that Ω ={
x ∈ B−1

1 0 : Ax ∈ B−1
2 0

} 	= ∅. Suppose that u ∈ H1 and {xn} is a sequence
generated by x1 ∈ H1 and

xn+1 = αnu + (1 − αn)JB1
λ

(
xn + γA∗

(
JB2

λ − I
)

Axn

)
, n ∈ N, (3.19)

where γ ∈
(
0, 2

‖A‖2

)
and αn ∈ (0, 1) such that limn→∞ αn = 0 and∑∞

n=1 αn = ∞ Then, the sequence {xn} defined by (3.19) converges strongly
to a point x∗ ∈ Ω.

4. Other Split Problems Deduced from Main Problem

In this section, we reduce our main problem to the following split problems:

4.1. The Split Feasibility Problem

Let C and Q are nonempty closed convex subsets of H1 and H2, respectively,
and let A : H1 → H2 be a bounded linear operator. The split feasibility
problem (SFP) which was introduced by Censor and Elfving [8] for modeling
inverse problems is formulated as finding a point

x∗ ∈ C such that Ax∗ ∈ Q. (4.1)
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Byrne [3] was the first who introduced the so-called CQ algorithm which
does not involve matrix inverses in finite-dimensional spaces for solving the
SFP (4.1).

Now, we obtain a result for finding a common solution of the split fea-
sibility problem and the fixed point problem for demicontractive multivalued
mappings as follows.

Theorem 4.1. Let C and Q be nonempty closed convex subsets of H1 and
H2, respectively, and let A : H1 → H2 be a bounded linear operator. Let
T : C → CB(C) be a k-demicontractive multivalued mapping. Suppose that
I − T is demiclosed at zero and T satisfies the endpoint condition. Assume
that Θ := F (T ) ∩ A−1(Q) 	= ∅. Suppose that u ∈ C and {xn} is a sequence
generated by x1 ∈ C and

⎧
⎪⎨
⎪⎩

yn = PC(xn + γA∗(PQ − I)Axn),
un = (1 − δ)yn + δzn,

xn+1 = αnu + (1 − αn)un, n ∈ N,

(4.2)

where zn ∈ Tyn, the parameters γ, δ and the sequence {αn} satisfy the fol-
lowing conditions:

(i) γ ∈
(
0, 2

‖A‖2

)
and δ ∈ (0, 1 − k);

(ii) αn ∈ (0, 1) such that limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.

Then {xn} defined by (4.2) converges strongly to a point x∗ ∈ Θ, where
x∗ = PΘu.

Proof. Set B1 := ∂iC and B2 := ∂iQ. Then B1 and B2 are maximal monotone
such that JB1

λ = PC and JB2
λ = PQ for λ > 0. We also have B−1

1 0 = C and
B−1

2 0 = Q. Hence the result is obtained directly by Theorem 3.1. �

4.2. The Split Equilibrium Problem

Let K be a nonempty closed convex subset of H, and let h : K × K → R be
a bifunction. Recall that the equilibrium problem is to find a point x∗ ∈ K
such that

h(x∗, y) ≥ 0 for all y ∈ K. (4.3)

The solution set of Problem (4.3) is denoted by EP (h). To study the equi-
librium problem, we assume that the bifunction h : K × K → R satisfies the
following assumptions:

(A1) h(x, x) = 0 for all x ∈ K;
(A2) h is monotone, i.e., h(x, y) + h(y, x) ≤ 0 for all x, y ∈ K;
(A3) For each x, y, z ∈ K, lim supt→o h(tz + (1 − t)x, y) ≤ h(x, y);
(A4) For each x ∈ K, the function y �→ h(x, y) is convex and lower semicon-

tinuous.

Kazmi and Rizvi [23] introduced and studied the split equilibrium prob-
lem (SEP): Let K1 and K2 be nonempty closed convex subsets of H1 and
H2, respectively. Let h1 : K1 × K1 → R and h2 : K2 × K2 → R be two



204 Page 14 of 19 P. Jailoka and S. Suantai MJOM

bifunctions, and A : H1 → H2 a bounded linear operator, the problem is to
find a point x∗ ∈ K1 such that

x∗ ∈ EP (h1) and Ax∗ ∈ EP (h2). (4.4)

We also need the following lemma and theorem.

Lemma 4.2. [14] Let C be a nonempty closed convex subset of H and let h
be a bifunction from C × C to R satisfying (A1)-(A4). For any r > 0 and
x ∈ H, define Th

r : H → C by

Th
r (x) =

{
y ∈ C : h(y, z) +

1
r
〈z − y, y − x〉 ≥ 0, ∀z ∈ C

}
.

Then, the following hold:
(i) Th

r is nonempty and single-valued;
(ii) Th

r is firmly nonexpansive;
(iii) F (Th

r ) = EP (h);
(iv) EP (h) is closed and convex.

Theorem 4.3 [32]. Let C be a nonempty closed convex subset of H and let h
be a bifunction from C × C to R satisfying (A1)-(A4). Define a multivalued
mapping Ah : H → 2H by

Ah(x) =

{
{y ∈ H : h(x, z) ≥ 〈z − x, y〉, ∀z ∈ C}, if x ∈ C,

∅, if x /∈ C.

Then, the following hold:
(i) Ah is maximal monotone;
(ii) EP (h) = A−1

h 0;
(iii) Th

r = (I + rAh)−1 for r > 0, i.e., Th
r is the resolvent of Ah.

Recently, Suantai et al. [28] studied a problem of finding a common
solution of the split equilibrium problem and the fixed point problem for
1
2 -nonspreading multivalued mappings, and proved a weak convergence the-
orem.

Now, we obtain a strong convergence result for solving the split equilib-
rium problem and the fixed point problem for demicontractive multivalued
mappings as follows.

Theorem 4.4. Let C and Q be nonempty closed convex subsets of H1 and H2,
respectively. Let A : H1 → H2 be a bounded linear operator. Let h1 : C ×C →
R and h2 : Q × Q → R be bifunctions satisfying (A1)-(A4), and let Th1

r and
Th2

r be resolvents of Ah1 and Ah2 in Theorem 4.3, respectively, for r > 0. Let
T : C → CB(C) be a k-demicontractive multivalued mapping. Suppose that
I − T is demiclosed at zero and T satisfies the endpoint condition. Assume
that Θ := F (T ) ∩ Ω 	= ∅, where Ω = {x ∈ EP (h1) : Ax ∈ EP (h2)}. Suppose
that u ∈ C and {xn} is a sequence generated by x1 ∈ C and⎧

⎪⎨
⎪⎩

yn = Th1
rn

(
xn + γA∗(Th2

rn
− I)Axn

)
,

un = (1 − δ)yn + δzn,

xn+1 = αnu + (1 − αn)un, n ∈ N,

(4.5)
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where zn ∈ Tyn, the parameters γ, δ and the sequences {αn}, {rn} satisfy
the following conditions:

(i) γ ∈
(
0, 2

‖A‖2

)
and δ ∈ (0, 1 − k);

(ii) αn ∈ (0, 1) such that limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(iii) rn ∈ (0,∞) such that lim infn→∞ rn > 0.
Then, {xn} defined by (4.5) converges strongly to a point x∗ ∈ Θ, where
x∗ = PΘu.

Proof. Set B1 := Ah1 and B2 := Ah2 . By Theorem 4.3, we know that B1 and
B2 are maximal monotone, EP (h1) = B−1

1 0, EP (h2) = B−1
2 0, Th1

rn
= JB1

rn

and Th2
rn

= JB2
rn

. Then the result is obtained directly by Theorem 3.2. �
4.3. The Split Minimization Problem

Let f : H → (−∞,∞] be a function, we define the set of minimizer of f by

Argmin f := {x ∈ H : f(x) ≤ f(z), ∀z ∈ H}.
If f is a proper, lower semicontinuous and convex function, then ∂f is a
maximal monotone operator. Moreover,

x ∈ (∂f)−10 ⇔ 0 ∈ ∂f(x) ⇔ f(x) ≤ f(z), ∀z ∈ H ⇔ x ∈ Argmin f,

i.e., Argmin f = (∂f)−10. In this case, the resolvent of ∂f is called the
proximity operator of f (see [15]).

Let f1 : H1 → (−∞,∞] and f2 : H2 → (−∞,∞] be two proper, lower
semicontinuous and convex functions, and let A : H1 → H2 be a bounded
linear operator. The split minimization problem (SMP) is to find a point
x∗ ∈ H1 such that

x∗ ∈ Argmin f1 and Ax∗ ∈ Argmin f2. (4.6)

The following result is immediately obtained when we take B1 = ∂f1

and B2 = ∂f2 in Theorem 3.2.

Theorem 4.5. Let f1 : H1 → (−∞,∞] and f2 : H2 → (−∞,∞] be two
proper, lower semicontinuous and convex functions, and let A : H1 → H2

be a bounded linear operator. Let T : H1 → CB(H1) be a k-demicontractive
multivalued mapping. Suppose that I − T is demiclosed at zero and T sat-
isfies the endpoint condition. Assume that Θ := F (T ) ∩ Ω 	= ∅, where
Ω = {x ∈ Argmin f1 : Ax ∈ Argmin f2}. Suppose that u ∈ H1 and {xn} is
a sequence generated by x1 ∈ H1 and⎧

⎪⎪⎨
⎪⎪⎩

yn = J∂f1
λn

(
xn + γA∗

(
J∂f2

λn
− I

)
Axn

)
,

un = (1 − δ)yn + δzn,

xn+1 = αnu + (1 − αn)un, n ∈ N,

(4.7)

where zn ∈ Tyn, the parameters γ, δ and the sequences {αn}, {λn} satisfy
the following conditions:

(i) γ ∈
(
0, 2

‖A‖2

)
and δ ∈ (0, 1 − k);

(ii) αn ∈ (0, 1) such that limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(iii) λn ∈ (0,∞) such that lim infn→∞ λn > 0.
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Then, {xn} defined by (4.7) converges strongly to a point x∗ ∈ Θ, where
x∗ = PΘu.

5. A Numerical Example

In this section, we provide a numerical result for supporting our main.

Example 5.1. Let H1 = R and H2 = R
3 with the usual norms. Define a

multivalued mapping T : R → CB(R) by

Tx :=

{[− 9x
2 ,−5x

]
, if x ≤ 0,[−5x,− 9x

2

]
, if x > 0.

By Example 2.2, it was shown that T is demicontractive with a constant
k = 96

121 . Let h : [−9, 3] × [−9, 3] → R be a bifunction defined by h(x, y) =
y2 + xy − 2x2 and let f : R3 → (−∞,∞] be a function defined by f(z) =
1
2‖Pz‖2, where P =

[−4 2 7
1 −5 8

]
. We define two maximal monotone operators

B1 : R → 2R and B2 : R
3 → 2R

3
by B1 := Ah (see Theorem 4.3) and

B2 := ∂f . By [29] and [15], we can write the explicit resolvents of B1 and B2

in the following forms:

JB1
1 x =

x

4
and JB2

1 z =
(
PT P + I

)−1
z

for all x ∈ R and z ∈ R
3. Define a bounded linear operator A :

R → R
3 by Ax := (2x,−5x, 3x). Let Θ := F (T ) ∩ Ω, where Ω ={

x ∈ B−1
1 0 : Ax ∈ B−1

2 0
}
. Take αn = 1

9500n , λn = 1, δ = 1
8 , γ = 1

‖A‖2 , u = 1
2

and choose zn = −5yn. Thus, Algorithm (3.1) in our main result becomes

xn+1 =
1

19000n
+

1
16

(
1 − 1

9500n

)

×
{

xn +
1

‖A‖2
A∗

[(
PT P + I

)−1
(Axn) − Axn

]}
. (5.1)

We first start with the initial point x1 = 14 and the stopping criterion for our
testing process is set as: |xn−xn−1| < 10−7. Now, a convergence of Algorithm
(5.1) is shown by Table 1 and it converges to 0 ∈ Θ.

6. Concluding Remarks

Our problem is the problem of finding a common solution of the split null
point problem and the fixed point problem for multivalued mappings in
Hilbert spaces. We focus on the class of maximal monotone operators for
the split null point problem and the class of demicontractive multivalued
mappings for the fixed point problem. We present an algorithm based on
Halpern’s method for solving the problem and also obtain some sufficient
conditions for the strong convergence of the proposed algorithm. The result
of Byrne et al. [6, Theorem 4.5] for solving the split null point problem and
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Table 1. Numerical experiment of Algorithm (5.1)

n xn |xn − xn−1|
2 0.0250010 13.974999
3 0.0000709 0.0249301
4 0.0000177 0.0000532
5 0.0000132 0.0000045
...

...
...

15 0.0000038 0.0000003
...

...
...

24 0.0000023 0.0000001
25 0.0000022 0.00000009

the result for solving the fixed point problems for demicontractive multival-
ued mappings are consequences of our main result. Moreover, our problem of
main result can be applied to other split problems, i.e., the split feasibility
problem, the split equilibrium problem, and the split minimization problem.
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[24] Măruşter, Ş.: The solution by iteration of nonlinear equations in Hilbert spaces.
Proc. Am. Math. Soc. 63, 69–73 (1977)
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