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Abstract. Rigging technique introduced in Gutiérrez and Olea (Math
Nachr 289:1219–1236, 2016) is a convenient way to address the study of
null hypersurfaces. It offers, in addition, the extra benefit of inducing a
Riemannian structure on the null hypersurface which is used to study
geometric and topological properties on it. In this paper, we develop
this technique showing new properties and applications. We first discuss
the very existence of the rigging fields under prescribed geometric and
topological constraints. We consider the completeness of the induced
rigged Riemannian structure. This is potentially important, because it
allows to use most of the usual Riemannian techniques.
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1. Introduction

A null hypersurface in a spacetime is a smooth codimension one submani-
fold, such that the ambient metric degenerates when restricted to it. Null
hypersurfaces play an important role in general relativity, as they represent
horizons of various sorts (event horizon of a black hole, killing horizon, etc.)
and include light cones. The main drawback to study them as part of standard
submanifold theory is the degeneracy of the induced metric. Some attempts
to overcome this difficulty have had remarkable success. In [11], the approach
consists in fixing a geometric data formed by a null section and a screen
distribution on the null hypersurface. This allows to induce some geometric
objects such as a connection, a null second fundamental form, and Gauss–
Codazzi-type equations. In [22], the author uses the quotient vector bundle
TM/TM⊥ to “get rid” of the degeneracy of the induced metric. Returning to
the approach in [11], the basic question is how to reduce as much as possible
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the arbitrary choices and to have a reasonable coupling between the proper-
ties of the null hypersurface and the ambient space. In [20], the authors used
the rigging technique to study null hypersurfaces. It is based on the arbitrary
choice of a unique vector field in a neighborhood of the null hypersurface,
called rigging vector field, from which is constructed both a null section de-
fined on the null hypersurface, called rigged vector field, and a screen dis-
tribution. This rigging technique has also the advantage to induce, on the
whole null hypersurface, a Riemannian structure coupled with the rigging,
which is used as a bridge to study the null hypersurface. The null geometry
of the hypersurface is related to the properties of the induced Riemannian
structure on the hypersurface, allowing handle it using Riemannian geometry.
The question now arises of knowing whether it is always possible to operate
a choice of a rigging vector field with fixed geometric properties (closedness,
conformality, causality conditions, etc.) but also with geometric prescribed
properties for the induced rigged Riemannian structure (completeness, pinch-
ing constraints, geodesibility, etc.). This is our concern in the present paper.
The fact that there is a positive answer to a reasonable amount of the above
questions reinforces our opinion that the rigging technique can be a good tool
in this theory.

In Sect. 2, we review some facts about null hypersurfaces, fix notations,
and give two technical lemmas. Obstruction results involving both topology
and prescribed geometric conditions on the rigging vector field are established
in Sect. 3, e.g., Theorem 3.1. The completeness properties of the induced
Riemannian metric are considered in Sect. 4. The first part is concerned
with some splitting results on the hypersurface equipped with its rigged Rie-
mannian structure. This allows us to get completeness sufficient conditions
in Robertson–Walker spaces, e.g., Theorem 4.1 and Proposition 4.3. After
this, we consider the case of generalized Robertson–Walker (GRW) spaces.
We show that there is natural rigging using the warping function leading
to a complete induced Riemannian structure, e.g., Proposition 4.4. Finally,
we show using closedness argument on the rigging field and compactness of
the screen leaves that the induced Riemannian structure is complete, e.g.,
Theorem 4.9. In Sect. 5, we establish some results on null hypersurfaces un-
der completeness assumption of the induced Riemannian metric. In Sect. 5.1,
we establish some estimates on mean curvature on null hypersurfaces with
complete rigged Riemannian structure, e.g., Theorems 5.1, 5.5, 5.7. Finally,
Sect. 5.2 deals with null hypersurfaces for which the screen shape operator
is semi-definite. We prove some obstruction results on the existence of closed
geodesics, e.g., Proposition 5.10, and show, under a completeness condition,
that the manifold structure of the null hypersurface (say) M in a three-
dimensional simply connected Lorentzian manifold with no closed null curve
is diffeomorphic to the plane or the cylinder, e.g., Theorem 5.13. Finally, we
investigate about the existence of topologically closed totally geodesic null
hypersurfaces in Robertson–Walker spaces and prove non-existence of light-
like line in some cases, e.g., Theorem 5.16 and Corollary 5.17.
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2. Normalization and Rigged Riemannian Structure

Let (M, g) be a (n + 2)-dimensional Lorentzian manifold and M a null hy-
persurface in M . This means that, at each p ∈ M , the restriction gp|TpM

is degenerate; that is, there exists a non-zero vector U ∈ TpM , such that
g(U,X) = 0 for all X ∈ TpM . Hence, in null setting, the normal bundle
TM⊥ of the null hypersurface Mn+1 is a rank 1 vector subbundle of the
tangent bundle TM , contrary to the classical theory of non-degenerate hy-
persurfaces for which the normal bundle has trivial intersection {0} with the
tangent one playing an important role in introducing the main induced geo-
metric objects on M . Let us start with the usual tools involved in the study
of such hypersurfaces according to [11]. They consist in fixing, on the null
hypersurface, geometric data formed by a null section and a screen distribu-
tion. By screen distribution on Mn+1, we mean a complementary bundle of
TM⊥ in TM . It is then a rank n non-degenerate distribution over M . In fact,
there are infinitely many possibilities of choices for such a distribution. Each
of them is canonically isomorphic to the factor vector bundle TM/TM⊥. For
reasons that will become obvious in a few lines below, let us denote such a
distribution by S (N). We then have

TM = S (N) ⊕ TM⊥, (2.1)

where ⊕ denotes the orthogonal direct sum. From [11], it is known that, for
a null hypersurface equipped with a screen distribution, there exists a unique
rank 1 vector subbundle tr(TM) of TM over M , such that for any non-zero
section ξ of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a
unique section N of tr(TM) on U satisfying

g(N, ξ) = 1, g(N,N) = g(N,W ) = 0, ∀W ∈ S (N)|U ). (2.2)

Then, TM admits the splitting:

TM |M = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕ S (N). (2.3)

We call tr(TM) a (null) transverse vector bundle along M . In fact, from
(2.2) and (2.3), one shows that, conversely, a choice of a transversal bundle
tr(TM) determines uniquely the screen distribution S (N). A vector field N
as in (2.2) is called a null transverse vector field of M . It is then noteworthy
that the choice of a null transversal vector field N along M determines both
the null transverse vector bundle, the screen distribution S (N), and a unique
radical vector field, say ξ, satisfying (2.2).

Before continuing our discussion, we need to clarify the (general) con-
cept of rigging for our null hypersurface.

Definition 2.1. Let M be a null hypersurface in a Lorentzian manifold. A
rigging for M is a vector field ζ defined on some open set containing M , such
that ζp /∈ TpM for each p ∈ M .

Given a rigging ζ in a neighborhood of M in (M, g), let α denote the
1-form g-metrically equivalent to ζ, i.e., α = g(ζ, .). Take ω = i�α, being
i : M ↪→ M the canonical inclusion. Next, consider the tensors

�
g = g + α ⊗ α and g̃ = i�

�
g . (2.4)
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It is easy to show that g̃ defines a Riemannian metric on the (whole)
hypersurface M . The rigged vector field of ζ is the g̃-metrically equivalent
vector field to the 1-form ω and it is denoted by ξ. In fact, the rigged vector
field ξ is the unique lightlike vector field in M , such that g(ζ, ξ) = 1. Moreover,
ξ is g̃-unitary. A screen distribution on M is given by S (ζ) = TM ∩ ζ⊥. It is
the g̃-orthogonal subspace to ξ and the corresponding null transverse vector
field to S (ζ) is as follows:

N = ζ − 1
2
g(ζ, ζ)ξ. (2.5)

A null hypersurface M equipped with a rigging ζ is said to be normal-
ized and is denoted (M, ζ) (the latter is called a normalization of the null
hypersurface). A normalization (M, ζ) is said to be closed (resp. conformal)
if the rigging ζ is closed, i.e., the 1-form α is closed (resp. ζ is a confor-
mal vector field, i.e., there exists a function ρ on the domain of ζ, such that
Lζg = 2ρg). We say that ζ is a null rigging for M if the restriction of ζ to
the null hypersurface M is a null vector at each point in M .

Let ζ be a rigging for a null hypersurface in a Lorentzian manifold
(M, g). The screen distribution S (ζ) = ker ω is integrable whenever ω is
closed, in particular if the rigging is closed. On a normalized null hypersurface
(M, ζ), the Gauss and Weingarten formulas are given by the following:

∇XY = ∇XY + B(X,Y )N, (2.6)

∇XN = −ANX + τ(X)N, (2.7)

∇XPY =
�

∇XPY + C(X,PY )ξ, (2.8)

∇Xξ = −
�

AξX − τ(X)ξ, (2.9)

for any X,Y ∈ Γ(TM), where ∇ denotes the Levi-Civita connection on
(M, g), ∇ denotes the connection on M induced from ∇ through the projec-

tion along the null transverse vector field N , and
�

∇ denotes the connection
on the screen distribution S (ζ) induced from ∇ through the projection mor-
phism P of Γ(TM) onto Γ (S (ζ)) with respect to the decomposition (2.1).

The (0, 2) tensor B is the null second fundamental form on TM ,
�

Aξ is the
shape operator on TM with respect to the rigged vector field ξ, and τ is a
1-form on TM defined by the following:

τ(X) = g(∇XN, ξ).

The null second fundamental form B is symmetric, whereas the tensor
C is not in general. The following holds:

B(X,Y ) = g(
�

AξX,Y ), C(X,PY ) = g(ANX,Y ) ∀X,Y ∈ Γ(TM), (2.10)

and

B(X, ξ) = 0,
�

Aξξ = 0. (2.11)

It follows from (2.11) that the integral curves of ξ are pregeodesics in
both M and (M,∇), as ∇ξξ = ∇ξξ = −τ(ξ)ξ.
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A null hypersurface M is said to be totally umbilic (resp. totally geo-
desic) if there exists a smooth function ρ on M , such that at each p ∈ M
and for all u, v ∈ TpM , B(p)(u, v) = ρ(p)g(u, v) (resp. B vanishes identically
on M). These are intrinsic notions on any null hypersurface in the sense that
they are independent of the normalization. Note that M is totally umbilic

(resp. totally geodesic) if and only if
�

Aξ = ρP (resp.
�

Aξ = 0). It is notewor-

thy to mention that the shape operators
�

Aξ and AN are S (ζ)-valued.
The induced connection ∇ is torsion-free, but it does not preserve g

except M is totally geodesic. In fact, we have for all tangent vector fields
X,Y , and Z in TM :

(∇Xg)(Y,Z) = B(X,Y )ω(Z) + B(X,Z)ω(Y ). (2.12)

The trace of
�

Aξ is the null mean curvature of M , explicitly given by

Hp =
n+1
∑

i=2

g(
�

Aξ(ei), ei) =
n+1
∑

i=2

B(ei, ei),

being (e2, . . . , en+1) an orthonormal basis of S (ζ) at p.

The (shape) operator
�

Aξ is self-adjoint as the null second fundamental
form B is symmetric. However, this is not the case for the operator AN as it
is shown in the following lemma.

Lemma 2.2 [5]. For all X,Y ∈ Γ(TM):

g(ANX,Y ) − g(ANY,X) = τ(X)α(Y ) − τ(Y )α(X) − dα(X,Y ). (2.13)

In case the normalization is closed, the 1-form τ is related to the shape
operator of M as follows.

Lemma 2.3. Let (M, ζ) be a closed normalization of a null hypersurface M
in a Lorentzian manifold. Then

τ = −g(ANξ, · ) + τ(ξ)α. (2.14)

In particular if τ(ξ) = 0, then ANξ = −τ �g̃ .

Proof. By the closedness of α, the condition

X · α(Y ) − Y · α(X) − α([X,Y ]) = 0

is equivalent to

g(∇XN,Y ) = g(∇Y N,X).

Then, by the Weingarten formula, we get

g(−ANX,Y ) + τ(X)α(Y ) = g(−ANY,X) + τ(Y )α(X).

In this relation, take Y = ξ to get

τ(X) = −g(ANξ,X) + τ(ξ)α(X)

which gives the desired formula.
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Assume now that τ(ξ) = 0. Then

τ(X) = −g(ANξ,X) = −g̃(ANξ,X),

for all X ∈ TM , as ANξ ∈ S (ζ). Hence, ANξ = −τ �g̃ . �

3. Compact Null Hypersurfaces

The existence of a rigging vector for a null hypersurface is the first step in
the rigging technique. It is clear that, in general, it is not possible to choose
a rigging vector field, so it is interesting to identify the situations where you
cannot choose it. Despite the trivial cases where there is an obstruction due
to the existence of a nowhere zero vector, the rigged vector, on a compact null
hypersurface which forces it to have zero Euler characteristic, there are more
subtle situations that we explore here. Given a compact null hypersurface M
in a Lorentzian manifold (M, g), we give some restriction on the geometric
properties of the admissible rigging of M due to the topology of M that can
prevent the existence of some kind of normalization.

Theorem 3.1. Let (M, g) be a Lorentzian manifold and M a compact null
hypersurface in M with trivial first De Rham cohomology group H1(M, R).
Then, M admits no closed normalization.

Proof. Suppose that M is compact and that b1(M) = 0. If there exists a
closed rigging ζ, then the 1-form ω = i�α is closed and there exists a function
f on M , such that df = ω; that is, ˜∇f = ξ. As a consequence, we have
g̃(˜∇f, ˜∇f) = 1 which is not possible as f has at least one critical point on
the compact manifold M . �

This allows us to prove the following result.

Corollary 3.2. Let (M, g) be a Lorentzian manifold with a closed timelike
vector field. Then, there is no compact simply connected null hypersurface in
M .

Proof. Let M be a compact null hypersurface in M . Since (M, g) has a closed
timelike vector field say ζ, the later can be used (due to signature consid-
erations) as a rigging for M . If we suppose, in addition, π1(M) = 0, which
implies that b1(M) = 0, we get a contradiction using above Theorem 3.1. We
conclude that if M is compact, then b1(M) ≥ 1, and hence, M is not simply
connected. �

Remark 3.3. In fact, the above proof shows that if (M, g) has a closed timelike
vector field, then there is no compact null hypersurface with trivial first De
Rham cohomology group in M .

Proposition 3.4. Let (M, g) be a simply connected Lorentzian manifold, then
there is no closed normalization for any compact null hypersurface in M .
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Proof. Suppose that there exists a compact null hypersurface in M with a
closed normalization ζ, then α = g(ζ, .) is a closed 1-form on M , and since
M is simply connected, there exists f : M −→ R, such that α = df . This
imply that the g̃-equivalent 1-form ω to the rigged vector field ξ satisfies

ω = i�α = i�df = d(i�f) = d(f ◦ i).

It follows that ˜∇(f ◦ i) = ξ and then g̃(˜∇(f ◦ i), ˜∇(f ◦ i)) = 1 which is
a contradiction, because f ◦ i has at least one critical point. �
Definition 3.5 [4]. A normalized null hypersurface (M, ζ) of a semi-Riemannian

manifold is screen conformal if the shape operators AN and
�

Aξ are related
by

AN = ϕ
�

Aξ, (3.1)
where ϕ is a non-vanishing smooth function on M .

As stated in the following theorem, such class of lightlike hypersurfaces
has a geometry which is essentially the same as that of their chosen screen
distribution.

Theorem 3.6 [4]. Let (M,S (ζ)) be a screen conformal lightlike hypersurface
of a semi-Riemannian manifold (M, g). Then, the screen distribution is in-
tegrable. Moreover, M is totally geodesic (resp. totally umbilical or minimal)
in M if and only if any leaf M ′ of S (ζ) is totally geodesic (resp. totally
umbilical or minimal) in M as a codimension 2 non-degenerate submanifold.

Our aim is to show that, in a four-dimensional Lorentzian manifold,
compact null hypersurfaces with finite fundamental group cannot admit such
normalizations. We prove first the following:

Proposition 3.7. Let ζ be a rigging for a compact null hypersurface M in
a Lorentzian manifold (M, g) of constant curvature. If the screen S (ζ) is
conformal and the first De Rham cohomology group H1(M, R) is trivial, then
M is totally geodesic.

Proof. Since M is screen conformal, there exists a non-vanishing function ρ

defined on M , such that AN = ρ
�

Aξ. From the Gauss–Codazzi equations, see
[11, Page 95, Eq. (3.12)]:

g(R(X,Y )ξ,N) = C(Y,
�

AξX) − C(X,
�

AξY )
−2dτ(X,Y ), ∀X,Y ∈ Γ(TM). (3.2)

However, the left-hand side of (3.2) vanishes, since M has constant
curvature, and ξ is orthogonal to both X and Y . Moreover

C(Y,
�

AξX) − C(X,
�

AξY ) = g(ANY,
�

AξX) − g(ANX,
�

AξY ) = 0,

since AN = ρ
�

Aξ. Using the fact that H1(M, R) is trivial, there exists a
function (say) φ defined on M , such that τ = dφ. Define a new rigging vector
field by ̂ζ = exp(−φ)ζ, so ̂N = exp(−φ)N . Moreover, it follows (from [2,
Lemma 2.1]) that τ̂ = τ +d(ln(exp(−φ)) = 0 as τ = dφ. Denote, respectively,
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by ̂ξ, ̂H,
�

A
̂ξ the rigged vector field, the mean curvature function, and the

screen shape operator form of ̂ζ, we have [5, Remark 3]

Ric(̂ξ) = ̂ξ.( ̂H) + τ̂(̂ξ) ̂H − |
�

A
̂ξ|2.

However, Ric(̂ξ) = 0, since M has constant curvature and τ̂(̂ξ) = 0, it

follows that ̂ξ.( ̂H) − |
�

A
̂ξ|2= 0. Using the inequality |

�

A
̂ξ|2≥ 1

n
̂H2, we obtain

̂ξ.( ̂H) − 1
n

̂H2 ≥ 0, and since ̂ξ is complete (M being compact), we get that
̂H = 0. From the relation ̂ξ.( ̂H) − |

�

A
̂ξ|2= 0, it follows that |

�

A
̂ξ|2= 0 which

leads to
�

A
̂ξ = 0. We conclude that M is totally geodesic. �

We can get now the following result.

Proposition 3.8. Let (M
4
, g) be a 4-dimensional Lorentzian manifold of con-

stant curvature and M be a compact null hypersurface. If M has finite fun-
damental group, then there is no normalization, such that M is screen con-
formal.

Proof. Let M be as above. Suppose that there is a normalization, such that
M is screen conformal. Since M has finite fundamental group, the first De
Rham cohomology group H1(M, R) is trivial. It follows from Proposition 3.7
that M is totally geodesic. Elsewhere, M being screen conformal, S (ζ) is
integrable and induces a foliation on M . We show that the leaves of the
screen distribution S (ζ) are totally geodesic in (M, g̃). For this, recall (from
[20], Proposition 3.7) that for X and Y in S (ζ):

˜∇XY =
�

∇XY − g̃(˜∇Xξ, Y )ξ,

but we also have

g̃(˜∇Xξ, Y ) + g̃(˜∇Y ξ,X) = Lξ g̃(X,Y ) = −2B(X,Y ).

Now, since the screen structure S (ζ) is integrable, we have g̃(˜∇Xξ, Y ) =
g̃(˜∇Y ξ,X). It follows that g̃(˜∇Xξ, Y ) = −B(X,Y ), which implies that

˜∇XY =
�

∇XY + B(X,Y )ξ.

In other words, the second fundamental form of each leaf of S (ζ) in (M, g̃)
is B, and then, each of them is totally geodesic in (M, g̃) as M is totally
geodesic in (M

4
, g). It follows that there exits a totally geodesic codimension

one foliation on the compact 3-manifold M , and hence, M must have infinite
fundamental group (see [7]), which is a contradiction. �

4. Completeness of (M, g̃)

On a normalized null hypersurface in a Lorentzian manifold, there is a bridge
between the Riemannian geometry of the couple (M, g̃) and the null geome-
try of M . The key is to use Riemannian techniques, so it is worth to inves-
tigate on its completeness. We consider first this problem in some particular
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Lorentzian manifold (Robertson–Walker spaces and generalized Robertson–
Walker spaces) and finish with the case of arbitrary Lorentzian manifold.

It is known that a totally umbilic null hypersurface with a closed nor-
malization splits locally as a twisted product; the decomposition being global
if M is simply connected and the rigged vector field complete [20, Theorem
5.3]. We show here that if, moreover, it admits a closed conformal rigging
in an ambient space form, the local twisted product structure of the rigged
metric is, in fact, a warped product. Elsewhere, we show that, in a Robertson–
Walker space case, using a specific rigging, we also get warped decomposition
of totally umbilic null hypersurfaces. This allows us to state some sufficient
conditions for (M, g̃) to be complete.

Theorem 4.1. Let (M
n+2

, g) be a Lorentzian manifold with constant curva-
ture (with n ≥ 2) and M be a totally umbilic null hypersurface admitting
a closed conformal normalization ζ. Then, given p ∈ M , the Riemannian
structure(M, g̃) is locally isometric to a warped product (R × S, dr2 + f2g0),
where S is the leaf of S (ζ) through p, and g0 is a conformal metric to g|S .
Moreover, if M is simply connected and the rigged vector field ξ complete,
the decomposition is global.

Proof. Using [20, Theorem 5.3], the only point which we are going to show
is the warped decomposition of (M, g̃).

In [20, Theorem 4.8] it is shown that, for U, V ∈ TM , the following
holds:

R(U, V )ξ − ˜R(U, V )ξ = g(R(U, V )ξ,N)ξ − τ(U)
�

Aξ(V ) + τ(V )
�

Aξ(U).

We also know that, if ζ is closed and conformal, the 1−form τ vanishes iden-
tically. Using the Gauss–Codazzi equation, we have R(U, V )ξ = R(U, V )ξ.
Finally, R(U, V )ξ = 0, since (M, g) has constant curvature and the above
equality becomes ˜R(U, V )ξ = 0 for all tangent vector fields U and V . Then,
˜Ric(X, ξ) = 0 for all S (ζ)−valued vector field X (in fact, for all tangent
vector field X). The result follows from the mixed Ricci flat condition [12,
Theorem 1]. �

Remark 4.2. The global decomposition of (M, g̃) as warped product still holds
in Theorem 4.1 if M is not simply connected, but the rigging is a gradient
vector field (see [20, Remark 5.4]).

In case M = I ×f L is a Robertson–Walker space, we use the classical
rigging ζ = f ∂

∂t which is a gradient conformal vector field to get the following.

Proposition 4.3. Let M = I ×f L be a Robertson–Walker space and M a
totally umbilic null hypersurface equipped with the (natural) rigging ζ = f ∂

∂t .

1. Then, (M, g̃) is locally isometric to a warped product. Moreover, if ξ is
complete, the decomposition is global.

2. If ξ is complete and the screen distribution S (ζ) (which is integrable)
has compact leaves, then (M, g̃) is complete.
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Proof. 1. Since M = I ×f L is a Robertson–Walker space and L being of con-
stant curvature c, we know that R(U, V )W = (f ′)2+c

f2 (g(V,W )U −g(U,W )V )
and R(U, V ) ∂

∂t = 0 for all U, V,W tangent to the factor L. Using the classical
rigging ζ = f ∂

∂t which is closed (in fact a gradient) and conformal, decom-
pose the associated rigged vector field as ξ = a ∂

∂t + X0 with X0 ∈ TL; we
have g(X0,X) = 0 ∀ X ∈ S (ζ). Remark also that S (ζ) ⊂ TL. Taking into
account the above considerations, we get: R(Y,X)ξ = 0,∀ X,Y ∈ S (ζ). Fol-
lowing the proof of previous Theorem 4.1, we get that ˜R(Y,X)ξ = 0,∀ X,Y ∈
S (ζ), and then, ˜Ric(X, ξ) = 0 for all S (ζ)−valued vector field X. The con-
clusion follows as in the last theorem. Taking into account Remark 4.2, the
global decomposition holds if ξ is complete.

2. From point 1, (M, g̃) is globally isometric to a warped product (R ×
S, dr2 + f2g0), and being S compact, it is complete. �

We study now the g̃-completeness of null hypersurfaces in generalized
Robertson–Walker spaces. Let M = I ×f L be a generalized Robertson–
Walker space and M a null hypersurface of M . Take h to be any primitive of
−f . Then, ∇h = f ∂

∂t . Using ζ = f ∂
∂t as a rigging of M , we get ˜∇(h ◦ i) = ξ

and g̃(˜∇(h ◦ i), ˜∇(h ◦ i)) = 1, where i is the canonical inclusion of M in M .
Recall, from [14,15], the following important fact: A Riemannian manifold
(M, g) is complete if and only if it supports a proper C3 function say f ,
such that g(∇f,∇f) is bounded. Hence, if h is proper on M , then (M, g̃) is
complete. We have shown the following:

Proposition 4.4. Let M = I ×f L be a generalized Robertson–Walker space
and M be a null hypersurface equipped with the rigging ζ = f ∂

∂t , such that
h ◦ i is a proper function on M (where h is any primitive of −f). Then, its
rigged Riemannian structure (M, g̃) is complete.

Remark 4.5. In case L is compact, h : M −→ R is proper if and only if M
is null complete. Recall also that if h : M −→ R is proper and M is a closed
subset, then h ◦ i : M −→ R is also proper.

Proposition 4.6. Let M = I ×f L be a generalized Robertson–Walker space
with compact Riemannian factor L. If M is null complete, any topologically
closed null hypersurface M in M is g̃-complete for the usual rigging ζ = f ∂

∂t .

Example 4.7. Consider M = R ×t2+1 L with L compact. It is null complete,
and then, any (topologically) closed null hypersurface M in M is g̃-complete
for the usual rigging ζ = f ∂

∂t .

For GRW spaces with complete Riemannian factors, we show the fol-
lowing.

Theorem 4.8. Let M = R ×f L be a generalized Robertson–Walker space
with complete Riemannian factor (L, g0) and M be a topologically closed null
hypersurface of M . Then, the Riemannian structure (M, g̃) induced by the

rigging ζ =
√

2
∂

∂t
is complete.
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Proof. The Lorentzian metric on M is given by g = −dt2+f2g0. Then, using

the rigging ζ =
√

2
∂

∂t
and the first equality in (2.4), we get

�
g = dt2 + f2g0,

which shows that (M,
�
g ) is a complete Riemannian manifold as (L, g0) is

complete. Then, since M is topologically closed, using the second equality in
(2.4), we see that (M, g̃) is a complete Riemannian manifold. �

The following theorem gives some sufficient conditions to get a complete
induced Riemannian structure on a given null hypersurface in any Lorentzian
manifold. It is an improvement of Proposition 4.3 point 2.

Theorem 4.9. Let (M
n+2

, g) be a Lorentzian manifold and (M, ζ) be a closed
normalization of a connected non-compact null hypersurface. If ξ is complete
and S (ζ) has compact leaves, then (M, g̃) is complete.

Proof. Let Φ be the flow of ξ. Since ξ is complete, closed with compact
orthogonal leaves:

Φ : R × L −→ M

(t, p) −→ Φt(p)

is a diffeomorphism, where L is a leaf of S (ζ) [18, Proof of Lemma 3.1], [19,
Theorem 4.1]. Suppose the inverse of Φ decomposes as

Φ−1 : M −→ R × L

x −→ (f(x), ψ(x)),

then we have ˜∇f = ξ, and since ξ is nowhere-vanishing, f is a submersion.
Since

∣

∣

∣

˜∇f
∣

∣

∣ = 1 and ξ is complete, there exists a diffeomorphism F : R ×
f−1(0) → M , [13, Theorem 6.2]. Moreover, pr1 : R × f−1(0) → R being the
projection on the first factor, we have f = pr1 ◦ F−1. By hypothesis, M is
connected and F is a diffeomorphism, so f−1(0) is connected too. It follows
that f−1(0) is a leaf of S (ζ) which is compact, so pr1 is a proper map. Thus,
f is a proper map. Since its gradient is bounded, we conclude that (M, g̃) is
complete. �

Theorem 4.10. Let (M, g) be a Lorentzian manifold furnished with a proper
function f whose gradient is timelike everywhere. Then, for any topologically
closed null hypersurface in M , the rigging ζ = ∇f makes (M, g̃) complete.

Proof. Let us denote by h the restriction of f on M . Since M is closed in
M , h is also a proper function on M . Considering the rigging ζ = ∇f , a
straightforward argument shows that ˜∇h = ξ, so g̃(˜∇h, ˜∇h) = 1. It follows
that h is a proper function on M whose gradient is bounded, then (M, g̃) is
complete. �
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5. Applications

Let (M, ζ) be a normalized null hypersurface of a Lorentzian manifold M ,
we show several results under the hypothesis that (M, g̃) is a complete Rie-
mannian manifold. In the first part, we show that the non-normalized null
mean curvature of M is strongly controlled by the Ricci curvature of M eval-
uated on the associated rigged vector field ξ. We also investigate about mean
curvature of null hypersurfaces all of whose screen principal curvatures are
constant. The second part deals with null hypersurface with semi-definite
shape. Non-existence of closed geodesic in (M, g̃) is proved for some special
cases which allows us to give a classification theorem, e.g., Theorem 5.13 and
Corollary 5.14. Finally, we investigate about the existence of topologically
closed totally geodesic null hypersurfaces in Robertson–Walker spaces.

5.1. Ricci Estimates and Mean Curvature Boundedness

Given a normalized null hypersurface (M, ζ) of a Lorentzian manifold M , we
prove some results about M under hypothesis on the Ricci curvature of M
evaluated on the associated rigged vector field ξ.

Theorem 5.1. Let (M, g) be a Lorentzian manifold and (M, ζ) be a closed
normalization of a null hypersurface, such that τ(ξ) = 0. Assume M to be
g̃−complete and there exists a non-negative constant k, such that Ric(ξ) ≥
−k. Then, we have |H|≤ k where H stands for the (non-normalized) mean
curvature of M .

The proof uses the following.

Theorem 5.2 [24]. Let (M, g) be a complete connected Riemannian manifold,
such that there exists f : M −→ R satisfying |∇f | = 1 and Ric(∇f,∇f) ≥
−k (k a non-negative constant), then |Δf |≤ k.

We give now the proof of Theorem 5.1.

Proof. Let π : (M
′
, g′) → (M, g) be the semi-Riemannian universal covering

of M . Define M ′ = π−1(M) which is a null hypersurface, because π is a local
isometry and call i′ : M ′ → M

′
the canonical inclusion. The closed rigging

ζ can be lifted to a closed rigging ζ ′ on M ′. Call α′ = π∗α its equivalent
1-form being α the equivalent 1-form to ζ. The rigged metric on M ′ is g̃′ =
i′∗(g′ + α′ ⊗ α′). Using the following commutative diagram:

M
′ π �� M

M ′

i′

��

π �� M

i

��
,

where π is the canonical projection from M ′ onto M , it is clear that ω′ = π∗ω,
where ω is the equivalent 1-form to the rigged field ξ on M , and g̃′ = π∗g̃. If
we call ξ′ the rigged vector field on M ′ induced by ζ ′, we have π∗ξ′ = ξ ◦ π.

Using that π is a local isometry, we have τ ′(ξ′) = 0; g̃′ is complete and
Ric

′
(ξ′) ≥ −k.
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Since M
′
is simply connected and ζ ′ is closed, we know that there exists

f : M ′ −→ R, such that ˜∇′f = ξ′, and thus, g̃′(˜∇′f, ˜∇′f) = 1. Moreover, for
a closed normalization, we have (see [20])

Ric
′
(ξ′) = ˜Ric

′
(ξ′) + τ ′(ξ′)H ′

being H ′ the null mean curvature of M ′. Since τ ′(ξ′) = 0, we get Ric
′
(ξ′) =

˜Ric
′
(ξ′). From this, we get ˜Ric

′
(˜∇′f) = ˜Ric

′
(ξ′) ≥ −k. Finally, using the

g̃′-completeness and Theorem 5.2, we have |˜Δ′f |≤ k on each connected com-
ponent of M ′, so on M ′ itself. However, H ′ = − ˜div

′
(˜∇′f) = ε˜Δ′f (ε = ±1

according to the sign convention of the Laplacian), then |H ′|g̃′≤ k. Using
again that π is a local isometry and H ′ = π∗H, we get |H| ≤ k. �

Corollary 5.3. Let (M
n+2

, g) be a Lorentzian manifold and (M, ζ) be a closed
normalization of a totally umbilic null hypersurface with umbilicity factor ρ
(i.e., B = ρg), such that τ(ξ) = 0. If there exists a non-negative constant k,
such that Ric(ξ) ≥ −k and M is g̃-complete, then it holds |ρ|≤ k

n .

Proof. The proof is straightforward using H = nρ. �

Since any Riemannian metric on a compact manifold is complete, the
following also holds:

Corollary 5.4. Let (M, g) be a Lorentzian manifold and (M, ζ) be a closed
normalization of a compact null hypersurface, such that τ(ξ) = 0. Assume
there exists a non-negative constant k, such that Ric(ξ) ≥ −k. Then, we have
|H|≤ k, where H stands for the (non-normalized) mean curvature of M .

Theorem 5.5. Let (M
n+2

, g) be a simply connected Lorentzian manifold and
(M, ζ) be a closed normalization of a non-compact null hypersurface, such
that τ(ξ) = 0. Suppose that there exists a positive constant k, such that
Ric(ξ) ≥ −nk2. If M is g̃−complete and |H|= nk, then the hypersurface M
endowed with the Riemannian structure g̃ is isometric to the warped product
R ×e±kt Z, where Z inherits a Riemannian structure from M . In particular,
M is totally umbilic.

The proof makes use of the following.

Theorem 5.6 [23, Theorem 1 · 1]. Let (M, g) be a complete connected Rie-
mannian manifold, such that there exists f : M −→ R satisfying |∇f | = 1.
Suppose that Ric(∇f,∇f)≥−nφ′′(f(x))

φ(f(x)) (resp Ric(∇f,∇f) ≥ −n (φ�)′′(f(x))
φ�(f(x)) ).

If Δf = −nφ′(f(x))
φ(f(x)) (resp Δf = nφ′(−f(x))

φ(−f(x)) ), then

Φ : R ×φ Z −→ M

(s, p) −→ ψs(p)

is an isometry (resp

Φ : R ×φ� Z −→ M

(s, p) −→ ψs(p)
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is an isometry), where ψs is the flow of ∇f , φ : R −→ R
+ a smooth positive

function, φ�(t) = φ(−t), and Z = f−1(0).

Proof of Theorem 5.5. We know that there exists f : M −→ R, such that
˜∇f = ξ, and then, g̃(˜∇f, ˜∇f) = 1. Let φ(t) = ekt (t ∈ R). It follows that
φ′′(f(x))
φ(f(x)) = k2 and φ′(f(x))

φ(f(x)) = k. We deduce using the assumption on the

Ricci curvature that Ric(ξ) = ˜Ric(ξ) ≥ −nφ′′(f(x))
φ(f(x)) , that is, ˜Ric(˜∇f, ˜∇f) ≥

−nφ′′(f(x))
φ(f(x)) . Moreover, if H = −nk, then H = ˜Δf = −nφ′(f(x))

φ(f(x)) . Using
Theorem 5.6, we conclude that (M, g̃) is isometric to the warped product
R×ekt Z, where Z = f−1(0) is endowed with the induced Riemannian metric.
If H = nk, (M, g̃) is isometric to the warped product R×e−kt Z. Finally, since
each Z with the Riemannian structure induced from the warped structure
is totally umbilic in (M, g̃), the null hypersurface M is totally umbilic [20,
Corollary 3.14]. �

Theorem 5.7. Let (M, g) be a simply connected Lorentzian manifold and
(M, ζ) be a g̃-complete closed normalization of a null hypersurface M , all

of whose screen principal curvatures are constant. Then, it holds |H|≤ |
∗

Aξ|2.

Proof. We know that Ric(ξ) = ξ(H)+ τ(ξ)H − |
∗

Aξ|2 [5]. Observe that, since

the screen principal curvatures are constant, H and |
∗

Aξ| are constant quan-
tities, and that for closed normalizations, ˜Ric(ξ) = Ric(ξ) − τ(ξ)H. Then,
˜Ric(ξ) = −|

∗
Aξ|2 = constant. Using the fact that M is simply connected and

ζ is closed, we know there exists f : M −→ R, such that ˜∇f = ξ, and thus,

g̃(˜∇f, ˜∇f) = 1. By Theorem 5.2, it follows that |˜Δf |= |H|≤ |
∗

Aξ|2. �

Corollary 5.8. Let (M
n+2

, g) be a simply connected Lorentzian manifold and
(M, ζ) be a g̃-complete closed normalization of a non-totally geodesic null
hypersurface M all of whose screen principal curvatures are non-negative
constants. Then, at least one of them is greater or equal to 1.

Proof. Since all the eigenvalues of
�

Aξ are non-negative, the inequality in

Theorem 5.7 becomes H ≤ |
∗

Aξ|2. Let denote the eigenvalues by λi. If we
suppose that all of them are less than 1, then we have λi ≥ λ2

i . However,
as M is non-totally geodesic, there exist i0, such that λi0 is positive, and

then, λi0 > λ2
i0

. It follows that H > |
∗

Aξ|2, which is in contradiction with

H ≤ |
∗

Aξ|2. �

Corollary 5.9. Let (M
n+2

, g) be a simply connected Lorentzian manifold and
(M, ζ) a g̃-complete closed normalization of a proper totally umbilic null hy-
persurface M with constant umbilicity factor ρ. Then, |ρ| ≥ 1.

Proof. Because ρ is constant, all the eigenvalues of
∗

Aξ are constant. Using

Theorem (5.7), we have |H| ≤ |
∗

Aξ|2. However, since M is proper totally
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umbilic, H = nρ �= 0 and |
∗

Aξ|2 = nρ2, so the inequality becomes n|ρ| ≤ nρ2,
and we get |ρ| ≥ 1. �

5.2. Null Hypersurfaces with Semi-definite Shape B

Positive definiteness of the second fundamental form of hypersurfaces have
many consequences in Riemannian geometry. A well-known theorem due to
Hadamard [17] (see also [16, Theorem 2.4]) states that if the second funda-
mental form of a compact immersed hypersurface M of a Euclidean space
is positive definite, then M is embedded as the boundary of a convex body.
This also implies an equivalence between definiteness of the second funda-
mental form and the fact that M is orientable and its (spherical) Gauss map
is a diffeomorphism. Equivalently, the Gaussian curvature of M is nowhere-
vanishing. In the present section, we present some facts about definiteness
of the second fundamental form B and geodesics relative to the rigged Rie-
mannian structure. Recall that if a complete Riemannian manifold supports
a convex function, the latter is constant along any closed geodesic [6, Propo-
sition 2.1].

Proposition 5.10. Let (M, ζ) be a closed normalization of a null hypersurface
M in a simply connected Lorentzian manifold (M, g). Assume that M is g̃-
complete and B restricts to a definite form on S (ζ). Then, (M, g̃) contains
no closed geodesics.

Proof. By a change of rigging ζ ←− −ζ if necessary, we can suppose without
loss of generality that M is connected and that the restriction of B to S (ζ)
is negative definite which implies that B is negative semi-definite onM . In
addition, by the simply connectedness of M and the closedness of the nor-
malization, we know that there exists f : M −→ R, such that ˜∇f = ξ. Let us
remark that fibers of f are leaves of S (ζ) (see proof of Theorem 4.9). Using
[20, Proposition 3.15.], we have H̃essf(U, V ) = −B(U, V ) for all U, V ∈ TM .
B being negative semi-definite and f is a convex function on M . Suppose
that there exists a closed geodesic γ in M . Then, f ◦ γ is a constant say c (as
stated above [6]) and γ is contained in the leaf f−1(c) of S (ζ), and hence,
γ′ ∈ S (ζ), and then, H̃essf((γ′, γ′) > 0, which gives the contradiction as
H̃essf(γ′, γ′) = (f ◦ γ)′′ = 0; f ◦ γ being constant. We conclude that (M, g̃)
contains no closed geodesics. �

Remark 5.11. The proposition remain true if M is not simply connected, but
the first De Rham cohomology group H1(M, R) is trivial or the one form ω
is exact, so that the rigged vector field ξ is a gradient vector field.

Since, for proper totally umbilic null hypersurfaces, the restriction of B
to the screen structure S (ζ) is always definite form, we easily deduce the
following.

Corollary 5.12. Let (M, ζ) be a closed normalization of a proper totally um-
bilic null hypersurface M in a simply connected Lorentzian manifold (M, g),
such that M is g̃-complete. Then, (M, g̃) contains no closed geodesics.
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The next result gives a restriction on the topology of proper totally
umbilic null surface (in 3-dimensional Lorentzian manifold) which can admit
a g̃-complete Riemannian metric for a given rigging.

Theorem 5.13. Let (M, ζ) be a closed normalization of a null surface M non-
totally geodesic at any point in a simply connected 3-dimensional Lorentzian
manifold (M

3
, g), such that M is g̃-complete; then, M is homeomorphic to

the plane or the cylinder.

Proof. From Corollary 5.12, the null hypersurface (M, g̃) contains no closed
geodesics. It follows from the classification of complete surfaces without closed
geodesic (see [21, Theorem 3.2]) that M is homeomorphic to the plane or the
cylinder. �
Corollary 5.14. Let M = R ×f L be a 3-dimensional generalized Robertson–
Walker (GRW) space with complete Riemannian factor (L, g0). Any topolog-
ically closed null surface and non-totally geodesic at any point is homeomor-
phic to the plane or the cylinder.

Proof. Let M be a topologically closed proper totally umbilic null surface.
Consider the normalizing rigging ζ =

√
2 ∂

∂t for M . Then, from Theorem 4.8,
(M, g̃) is complete. Moreover, the 1−form ω is exact. From Remark 5.11 and
Theorem 5.13, M is homeomorphic to the plane or the cylinder. �
5.3. Totally Geodesic Null Hypersurfaces in Robertson–Walker Spaces

Totally geodesic null hypersurfaces are intensively used in general relativity
as they represent horizons of various sorts (Non-expanding horizon, isolated
horizon, Killing horizon, etc.). We investigate here the existence of totally
geodesic null hypersurfaces in Robertson–Walker spaces. For this, we use the
Hilbert theorem which we recall here.

Theorem 5.15 [9,10]. Let Σ be a complete surface with negative constant
Gauss curvature K. Then, there exists no isometric immersion f : Σ →
M

3(c) (with K < −1 for c = −1), where M
3(c) stands for the simply

connected complete Riemannian 3-space with constant sectional curvature
c = −1, 0, 1.

We prove the following.

Theorem 5.16. Let M = R×f M
3(c) be a Robertson–Walker space. Then, the

followings hold:
1. If c = 0 or c = −1 and f is strictly monotone, then there is no topolog-

ically closed totally geodesic null hypersurface in M .
2. If c = 1 and f ′(t) > 1∀ t, then there is no topologically closed totally

geodesic null hypersurface in M .

Proof. Let M = R ×f M
3(c) be a Robertson–Walker space. Suppose that

there exists a topologically closed totally geodesic null hypersurface M in M .
Consider the normalizing rigging ζ =

√
2 ∂

∂t for M . Let Π : R × M
3(c) → R

be the projection on the first factor. Then, a leaf of S (ζ) is the intersection
of M with a fiber of Π, and hence, a leaf of S (ζ) is a closed subset contained
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in some slice {t0} × M
3(c). Let us call g the Riemannian metric on M

3(c).
Since the Lorentzian metric on M is given by g = −dt2 + f2g, using the
equalities in (2.4), we get that g̃|S = f2(t0)g, so that (S, ĝ = 1

f2(t0)
g̃|S ) is a

complete surface isometrically immersed in M
3(c). Elsewhere, the following

relation [20] holds:

K(X,Y ) = ˜KS(X,Y ) − C(X,X)B(Y, Y ) −B(X,X)C(Y, Y ) + 2C(X,Y )B(X,Y )

∀ X,Y ∈ S (ζ), where K(X,Y ) is the sectional curvature in (M, g) and
˜KS(X,Y ) is the induced sectional curvature from (M, g̃); that is, ˜KS(X,Y )
is the Gauss curvature of (S, g̃|S ). Since the null hypersurface M is totally

geodesic, B = 0. Hence, ˜KS(X,Y ) = K(X,Y ) = c−(f ′)2

f2 . Note that S being

contained in some slice {t0}×M
3(c), ˜KS(X,Y ) = c−(f ′)2(t0)

f2(t0)
and is constant.

Finally, since ĝ = 1
f2(t0)

g̃|S , the Gauss curvature of the surface (S, ĝ) is ̂K =
c−(f ′)2(t0) If c = 0 or c = −1 and f is strictly monotone or c = 1 and f ′(t) >

1∀ t, then (S, ĝ) has negative constant Gauss curvature (with ̂K < −1, in
case c = −1). The contradiction follows from the Hilbert Theorem. �

In [8, TheoremIV.1], Galloway shows that if a Lorentzian manifold is
null complete and satisfies the null convergence condition, then any null line
is contained in a smooth (topologically) closed achronal totally geodesic null
hypersurface. Therefore, under null completeness and null convergence con-
dition hypothesis, the absence of topologically closed totally geodesic null
hypersurface implies the absence of null line. The following holds:

Corollary 5.17. Let M = R ×f M
3(c) be a null complete Robertson–Walker

space satisfying the null convergence condition. Then, we have:
1. If c = 0 or c = −1 and f is strictly monotone, M contains no lightlike

line.
2. If c = 1 and f ′(t) > 1∀ t, M contains no lightlike line.
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