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Asymptotically Almost Periodicity for a
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Equations
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Abstract. This paper is devoted to study a class of abstract fractional
evolution equation in a Banach space X:

Dα
+x(t) + Ax(t) = F (t, x(t)), t ∈ R, (1)

where 0 < α < 1, −A is the infinitesimal generator of a C0-semigroup
on X, and F (t, x) is an appropriate function defined on phase space; the
fractional derivative is understood in the Weyl–Liouville sense. Combin-
ing the fixed point theorem due to Krasnoselskii and a decomposition
technique, we obtain some new sufficient conditions to ensure the exis-
tence of asymptotically almost periodic mild solutions for (1). Our result
generalizes and improves some previous results, since the Lipschitz con-
tinuity on the nonlinearity F (t, x) with respect to x is not required. An
example is also presented as an application to illustrate the feasibility
of the abstract result.

Mathematics Subject Classification. 34A08, 43A60, 26A33.
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1. Introduction

The theory of almost periodic functions was introduced in the literature
around 1924–1926 with the pioneering works of the Danish mathematician
Bohr [1,2]. Loosely speaking, almost periodic functions are those functions
which come arbitrarily close to being periodic when one looks over long
enough time scales, they play an important role in describing the phenomena
that are similar to the periodic oscillations which can be observed frequently
in many fields, such as celestial mechanics, nonlinear vibration, electromag-
netic theory, plasma physics, engineering, ecosphere, and so on [3–5].

As a natural extension of almost periodicity, the concept of asymptotic
almost periodicity, which was the central issue to be discussed in this paper,
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was introduced in the literature [6,7] by Fréchet in the early 1940s. Since then,
the theory of asymptotically almost periodic functions and their various ex-
tensions has attracted a great deal of attention of many mathematicians due
to both their mathematical interest and significance as well as applications
in physics, mathematical biology, control theory, and so forth. In particular,
asymptotically almost periodic functions have been utilized to study vari-
ous ordinary differential equations, partial differential equations, functional
differential equations, integro-differential equations, as well as stochastic dif-
ferential equations (see, for instance, [8–14] and the references therein), and
due to their significance and applications in control theory, mathematical bi-
ology, physics, etc., the study of asymptotically almost periodic solutions to
various differential equations becomes an attractive topic in the qualitative
theory of differential equations.

With motivation coming from a wide range of engineering and physical
applications, fractional differential equations have recently attracted great
attention of mathematicians and scientists. This kind of equation is a gen-
eralization of ordinary differential equations to arbitrary noninteger orders.
Fractional differential equations find numerous applications in the field of vis-
coelasticity, feedback amplifiers, electrical circuits, electro analytical chem-
istry, fractional multipoles, neuron modeling encompassing different branches
of physics, chemistry, and biological sciences [15–18]. Many physical processes
appear to exhibit fractional order behavior that may vary with time or space.
In recent years, there has been a significant development in ordinary and par-
tial differential equations involving fractional derivatives; we only enumerate
here the monographs of Kilbas et al. [15], Podlubny [16], Miller [17], Zhou
[18], and a series of papers [19–30], and the references therein. The study of
almost periodic type solutions to fractional differential equations was initi-
ated by Araya and Lizama [31]. In their work, they investigated the existence
and uniqueness of an almost automorphic mild solution of the semilinear frac-
tional differential equation:

Dα
t x(t) = Ax(t) + F (t, x(t)), t ∈ R, 1 < α < 2,

when A is a generator of an α-resolvent family and Dα
t is the Riemann–

Liouville fractional derivative. For more on almost periodic type solutions to
fractional differential equations, one can refer to [32–39] and the references
therein. Especially, very recently, in [39], Mu, Zhou, and Peng considered the
fractional differential equation in an ordered Banach space X:

Dα
+x(t) + Ax(t) = F (t, x(t)), t ∈ R, (2)

where 0 < α < 1, −A is the infinitesimal generator of a C0-semigroup on X,
and F (t, x) is an appropriate function defined on phase space; the fractional
derivative is understood in the Weyl–Liouville sense. Applying Fourier trans-
form, they first gave reasonable definition of mild solutions of Eq. (2). Then,
they established the existence and uniqueness results for the corresponding
linear fractional evolution equations, and accurately estimated the spectral
radius of resolvent operator. Finally, they established some sufficient condi-
tions for the existence and uniqueness of periodic solutions, asymptotically
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periodic solutions, asymptotically almost periodic solutions, asymptotically
almost automorphic solutions, and other types of bounded solutions when
F (t, x) satisfies some ordered or Lipschitz conditions.

To the best of our knowledge, much less is known about the existence
of asymptotically almost periodic solutions to Eq. (2) when the nonlinearity
F (t, x) as a whole loses the Lipschitz continuity with respect to x. Motivated
by the above mentioned works, the purpose of this paper is to establish a
new existence result of asymptotically almost periodic mild solutions to the
Eq. (2). In our result, the nonlinearity F (t, x) does not have to satisfy a
Lipschitz condition with respect to x (see Remark 3.5). As can be seen, the
hypotheses in our result are reasonably weak (see Remark 3.7), and our result
generalizes those as well as related research and has more broad applications.
In particular, as application and to illustrate the feasibility of the abstract
result, we will examine some sufficient conditions for the existence of asymp-
totically almost periodic mild solutions to the fractional partial differential
equation given by the following:

∂α
t u(t, x) = ∂2

xu(t, x) + μ(sin t + sin
√

2t) sin u(t, x)

+ νe−|t|u(t, x) sin u2(t, x), t ∈ R, x ∈ [0, π],

with Dirichlet boundary conditions u(t, 0) = u(t, π) = 0, t ∈ R, where μ and
ν are constants.

The rest of this paper is organized as follows. In Sect. 2, some concepts,
the related notations, and some useful lemmas are introduced. In Sect. 3, we
present some criteria ensuring the existence of asymptotically almost periodic
mild solutions. An example is given to illustrate the feasibility of the abstract
result in Sect. 4.

2. Preliminaries

This section is concerned with some notations, definitions, lemmas, and pre-
liminary facts which are used in what follows.

Throughout this work, N, Z, R, and C stand for the set of natural num-
bers, integral numbers, real numbers, and complex numbers, respectively. Let
(X, ‖ · ‖), (Y, ‖ · ‖Y ) be two Banach spaces, BC(R,X) (resp., BC(R× Y,X))
is the space of all X-valued bounded continuous functions (resp., jointly
bounded continuous functions F : R×Y → X). Furthermore, C0(R,X) (resp.,
C0(R×Y,X)) is the closed subspace of BC(R,X) (resp., BC(R×Y,X)) con-
sisting of functions vanishing at infinity (vanishing at infinity uniformly in
any compact subset of Y , and in other words:

lim
|t|→+∞

‖g(t, x)‖ = 0 uniformly for x ∈ K,

where K is an any compact subset of Y ). Let also L(X) be the Banach space
of all bounded linear operators from X into itself endowed with the norm:

‖T‖L(X) = sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}.
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First, we recall some basic definitions and results on almost periodic and
asymptotically almost periodic functions.

Definition 2.1. [1,2, Bohr] A continuous function F : R → X is said to be
(Bohr) almost periodic in t ∈ R if, for every ε > 0, there exists l(ε) > 0,
such that every interval of length l(ε) contains a number τ with the property
that:

‖F (t + τ) − F (t)‖ < ε for every t ∈ R.

The number τ is called an ε-translation number of F (t) and the collection of
those functions is denoted by AP (R,X).

Lemma 2.2. [12] AP (R,X) is a Banach space with the norm
‖F‖∞ = supt∈R

‖F (t)‖.
Definition 2.3. [12] A function F : R × Y → X is said to be almost periodic
if F (t, x) is almost periodic in t ∈ R uniformly for x ∈ K, where K is any
compact subset of Y .
The collection of those functions is denoted by AP (R × Y,X).

Lemma 2.4. [12] Let F (t, x) ∈ AP (R × X,X) and ϕ(t) ∈ AP (R,X), then
Φ(t) = F (t, ϕ(t)) belongs to AP (R,X).

Definition 2.5. [6,7, Fréchet] A continuous function F : R → X is said to be
asymptotically almost periodic if it can be decomposed as F (t) = G(t)+Φ(t),
where

G(t) ∈ AP (R,X), Φ(t) ∈ C0(R,X).

Denote by AAP (R,X) the set of all such functions.

Lemma 2.6. [12] AAP (R,X) is also a Banach space with the norm ‖ · ‖∞.

Definition 2.7. [12] A function F : R × Y → X is said to be asymptotically
almost periodic if it can be decomposed as F (t, x) = G(t, x)+Φ(t, x), where

G(t, x) ∈ AP (R × Y,X), Φ(t, x) ∈ C0(R × Y,X).

Denote by AAP (R × Y,X) the set of all such functions.

Next, we recall the definitions of some fractional derivatives and inte-
grals which are used in this paper (see [40]).

Definition 2.8. [40] Let f ∈ Lp(R/2πZ) (1 ≤ p < +∞) be a periodic function
with period 2π and the property that its integral over a period vanishes. The
Weyl fractional integral of order α is defined as follows:

(Iα
±f)(t) =

1
2π

∫ 2π

0

Ψα
±(t − s)f(s)ds,

where

Ψα
±(t) =

∞∑
k=−∞,k �=0

eikt

(±ik)α
for 0 < α < 1.
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The above Weyl definition is accordant with the Riemann–Liouville def-
inition [15]:

(Iα
+f)(t) =

1
Γ(α)

∫ t

−∞
(t − s)α−1f(s)ds, (Iα

−f)(t)

=
1

Γ(α)

∫ ∞

t

(t − s)α−1f(s)ds

for 2π periodic functions whose integrals over a period vanish, see [39].

Definition 2.9. [40] The Weyl–Liouville fractional derivative is defined as

(Dα
±f)(t) = ± d

dt
(I1−α

± f)(t) for 0 < α < 1.

It is shown that the Weyl–Liouville derivative (0 < α < 1)

(Dα
+f)(t) =

1
Γ(1 − α)

d
dt

∫ t

−∞
(t − s)−αf(s)ds

coincides with the Caputo, Riemann–Liouville, and Grunwald–Letnikov de-
rivative with lower limit −∞ [16]. It is known that Dα+β

± = Dα
±(Dβ

±) for
any α, β ∈ R, where D0

± = Id denotes the identity operator and (−1)nDn
− =

Dn
+ = dn/dtn holds with n ∈ N, see [17].

Let us now recall the definitions and properties of semigroups of linear
operators (see [41] for details) and a new operator which was introduced in
[39].

Assume that −A is the infinitesimal generator of a C0-semigroup
{T (t)}t≥0. If there are M ≥ 0 and ν ∈ R, such that ‖T (t)‖L(X) ≤ Meνt,
then

(λI + A)−1x =
∫ ∞

0

e−λtT (t)xdt, Reλ > ν, x ∈ X.

A C0-semigroup {T (t)}t≥0 is said to be uniformly exponentially stable
if there exist two constants M, δ > 0, such that

‖T (t)‖ ≤ Me−δt for all t ≥ 0. (3)

In addition, a C0-semigroup {T (t)}t≥0 is said to be uniformly bounded if
there exists a constant M > 0, such that

‖T (t)‖ ≤ M for all t ≥ 0. (4)

Let

V (t) = α

∫ ∞

0

θζα(θ)T (tαθ)dθ, t ≥ 0, (5)

where {T (t)}t≥0 is a C0-semigroup and ζα(θ) is a probability density function
with

ζα(θ) =
1

πα

∞∑
n=0

(−1)n−1θn−1Γ(nα + 1)
n!

sin(nπα).

One has the following results.

Lemma 2.10. [39]



155 Page 6 of 22 J. Cao et al. MJOM

1. Assume that {T (t)}t≥0 is a uniformly bounded C0-semigroup satisfying
(4). Then, for any fixed t ≥ 0, V (t) is a linear and bounded operator,
that is, for any x ∈ X, one has ‖V (t)x‖ ≤ M‖x‖/Γ(α).

2. If {T (t)}t≥0 is a C0-semigroup, then {V (t)}t≥0 is strongly continuous.
3. If {T (t)}t≥0 is exponentially stable satisfying (3), then

‖V (t)‖L(X) ≤ MEα,α(−δtα) for all t ≥ 0.

In the following, we recall the definitions and properties of Mittag–Lefer
functions [15]:

Eα(t) =
∞∑

k=0

tk

Γ(αk + 1)
, Eα,α(t) =

∞∑
k=0

tk

Γ(α(k + 1))
, t ∈ C.

These functions have the following properties for α ∈ (0, 1) and t ∈ R:

Lemma 2.11. [42]
1. Eα(t) > 0, Eα,α(t) > 0.
2. [43] (Eα(t))′ = (1/α)Eα,α(t).
3. [44,45] lim

t→−∞ Eα(t) = lim
t→−∞ Eα,α(t) = 0.

Now, we present the following compactness criterion, which is a special
case of the general compactness result of Theorem 2.1 in [37].

Lemma 2.12. [46] A set D ⊂ C0(R,X) is relatively compact if
1. D is equicontinuous.
2. lim

|t|→+∞
x(t) = 0 uniformly for x ∈ D.

3. the set D(t) := {x(t) : x ∈ D} is relatively compact in X for every
t ∈ R.

The following Krasnoselskii’s fixed point theorem plays a key role in the
proofs of our main results, which can be found in many books.

Lemma 2.13. [47] Let B be a bounded closed and convex subset of X, and
J1, J2 be maps of B into X, such that J1x+J2y ∈ B for every pair x, y ∈ B.
If J1 is a contraction and J2 is completely continuous, then the equation
J1x + J2x = x has a solution on B.

3. Asymptotically Almost Periodic Mild Solutions

In this section, we study the existence of asymptotically almost periodic mild
solutions for the fractional evolution equations in a Banach space X of the
form:

Dα
+x(t) + Ax(t) = F (t, x(t)), t ∈ R, (6)

where the fractional derivative is understood in the Weyl–Liouville sense,
0 < α < 1, −A is the infinitesimal generator of a C0-semigroup on X, and
F : R × X → X is a given function to be specified later.

In [39], applying Fourier transform, Mu, Zhou, and Peng proved the
following Lemma.
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Lemma 3.1. Assume that −A generates an exponentially stable C0-semigroup
{T (t)}t≥0. If x : R → X is a function satisfying the equation Dα

+x(t) +
Ax(t) = F (t) for t ∈ R, then x satisfies the integral equation:

x(t) =
∫ t

−∞
(t − s)α−1V (t − s)F (s)ds, t ∈ R,

where V (t) is defined by (5).

The above Lemma motivates the following definition of mild solution to
Eq. (6), which is a reasonable definition and also given in [39], it is essential
for us.

Definition 3.2. A function x : R → X is said to be a mild solution to Eq. (6)
if

x(t) =
∫ t

−∞
(t − s)α−1V (t − s)F (s, x(s))ds, t ∈ R,

where V (t) is given by (5).

In the proof of our result, we need the following auxiliary results.

Lemma 3.3. Assume that {T (t)}t≥0 is exponentially stable satisfying (3).
Given Y (t) ∈ AP (R,X). Let

Φ1(t) :=
∫ t

−∞
(t − s)α−1V (t − s)Y (s)ds, t ∈ R.

Then, Φ1(t) ∈ AP (R,X).

Proof. First, from Lemmas 2.10(3), 2.11, and Eα(0) = 1, it follows that:

‖Φ1(t)‖ =
∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)Y (s)ds

∥∥∥∥
≤ ‖Y ‖∞

∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)ds

∥∥∥∥
L(X)

≤ M‖Y ‖∞
∫ t

−∞
(t − s)α−1Eα,α(−δ(t − s)α)ds

= M‖Y ‖∞Eα(−δ(t − s)α)
∣∣∣t
−∞

=
M‖Y ‖∞

δ
,

which implies Φ1(t) is well defined and continuous on R. Since Y (t) ∈
AP (R,X), then for every ε > 0, there exists l(ε) > 0, such that every interval
of length l(ε) contains a number τ with the property that:

‖Y (s + τ) − Y (s)‖ < ε for every s ∈ R,
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which together with Lemmas 2.10(3), 2.11, and Eα(0) = 1, implies that

‖Φ1(t + τ) − Φ1(t)‖ =
∥∥∥∥
∫ t+τ

−∞
(t + τ − s)α−1V (t + τ − s)Y (s)ds

−
∫ t

−∞
(t − s)α−1V (t − s)Y (s)ds

∥∥∥∥
=

∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)Y (s + τ)ds

−
∫ t

−∞
(t − s)α−1V (t − s)Y (s)ds

∥∥∥∥
≤

∫ t

−∞
‖(t − s)α−1V (t − s)[Y (s + τ) − Y (s)]‖ds

≤ ε

∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)ds

∥∥∥∥
L(X)

≤ Mε

∫ t

−∞
(t − s)α−1Eα,α(−δ(t − s)α)ds

= MεEα(−δ(t − s)α)
∣∣∣t
−∞

=
Mε

δ
,

which implies that Φ1(t) ∈ AP (R,X). �

Lemma 3.4. Assume that {T (t)}t≥0 is exponentially stable satisfying (3).
Given Z(t) ∈ C0(R,X). Let

Φ2(t) :=
∫ t

−∞
(t − s)α−1V (t − s)Z(s)ds, t ∈ R.

Then, Φ2(t) ∈ C0(R,X).

Proof. First, similar to the proof of Lemma 3.3, it is easy to see that Φ2(t) is
well defined and continuous on R. Since Z(t) ∈ C0(R,X), one can choose
an N1 > 0, such that ‖Z(t)‖ < ε for all t > N1. This together with
Lemma 2.10(3), Lemma 2.11, and Eα(0) = 1, enables us to conclude that
for all t > N1:

‖Φ2(t)‖ ≤
∥∥∥∥∥
∫ N1

−∞
(t − s)α−1V (t − s)Z(s)ds

∥∥∥∥∥
+

∥∥∥∥
∫ t

N1

(t − s)α−1V (t − s)Z(s)ds

∥∥∥∥

≤ ‖Z‖∞

∥∥∥∥∥
∫ N1

−∞
(t − s)α−1V (t − s)ds

∥∥∥∥∥
L(X)

+ε

∥∥∥∥
∫ t

N1

(t − s)α−1V (t − s)ds

∥∥∥∥
L(X)



MJOM Asymptotically Almost Periodicity for a Class Page 9 of 22 155

≤ M‖Z‖∞
∫ N1

−∞
(t − s)α−1Eα,α(−δ(t − s)α)ds

+Mε

∫ t

N1

(t − s)α−1Eα,α(−δ(t − s)α)ds

= M‖Z‖∞Eα(−δ(t − s)α)
∣∣∣N1

−∞
+ MεEα(−δ(t − s)α)

∣∣∣t
N1

≤ M‖Z‖∞Eα(−δ(t − N1)α) +
Mε

δ
,

which together with Lemma 2.11(3), implies that limt→+∞ ‖Φ2(t)‖ = 0.
On the other hand, from Z(t) ∈ C0(R,X), it follows that there exists

an N2 > 0, such that ‖Z(t)‖ < ε for all t < −N2. This together with
Lemma 2.10(3), Lemma 2.11 and Eα(0) = 1, enables us to conclude that for
all t < −N2:

‖Φ2(t)‖ =
∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)Z(s)ds

∥∥∥∥
≤ ε

∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)ds

∥∥∥∥
L(X)

≤ Mε

∫ t

−∞
(t − s)α−1Eα,α(−δ(t − s)α)ds

= MεEα(−δ(t − s)α)
∣∣∣t
−∞

=
Mε

δ
,

which implies that limt→−∞ ‖Φ2(t)‖ = 0. �

Now, we are in position to state and prove our main result. For that,
let us introduce the following assumptions:
(H1) F (t, x) = F1(t, x) + F2(t, x) ∈ AAP (R × X,X) with

F1(t, x) ∈ AP (R × X,X), F2(t, x) ∈ C0(R × X,X),

and there exists a constant L > 0, such that

‖F1(t, x) − F1(t, y)‖ ≤ L‖x − y‖ for all t ∈ R, x, y ∈ X. (7)

(H2) There exist a function β(t) ∈ C0(R,R+) and a nondecreasing function
Φ : R+ → R

+, such that for all t ∈ R and x ∈ X with ‖x‖ ≤ r:

‖F2(t, x)‖ ≤ β(t)Φ(r) and lim inf
r→+∞

Φ(r)
r

= ρ1. (8)

Remark 3.5. Assuming that F (t, x) satisfies the assumption (H1), it is noted
that F (t, x) does not have to meet the Lipschitz continuity with respect
to x. Such class of asymptotically almost periodic functions F (t, x) is more
complicated than those with Lipschitz continuity and little is known about
them.

Lemma 3.6. Given F (t, x) = F1(t, x) + F2(t, x) ∈ AAP (R × X,X) with

F1(t, x) ∈ AP (R × X,X), F2(t, x) ∈ C0(R × X,X).
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Then, it yields that

sup
t∈R

‖F1(t, x) − F1(t, y)‖ ≤ sup
t∈R

‖F (t, x) − F (t, y)‖, x, y ∈ X. (9)

Proof. To show this result, it suffices to verify that

{F1(t, x) − F1(t, y) : t ∈ R} ⊂ {F (t, x) − F (t, y) : t ∈ R}, x, y ∈ X.

If this is not the case, then, for fixed x, y ∈ X, there exist some t0 ∈ R and
ε > 0, such that

‖(F1(t0, x) − F1(t0, y)) − (F (t, x) − F (t, y))‖ ≥ 3ε for all t ∈ R.

It is clear that limt→+∞ ‖F2(t, x) − F2(t, y)‖ = 0, which implies that there
exists a positive number T , such that for all t ≥ T :

‖F2(t, x) − F2(t, y)‖ < ε. (10)

Since F1(t, x) ∈ AP (R×X,X), one can take l = l(ε) > 0, such that [T, T + l]
of length l contains at least a τ with the properties:

‖F1(t0 + τ, x) − F1(t0, x)‖ < ε, ‖F1(t0 + τ, y) − F1(t0, y)‖ < ε,

which enable us to find that

‖F2(t0 + τ, x) − F2(t0 + τ, y)‖ ≥ ‖F (t0 + τ, x) − F (t0 + τ, y) − F1(t0, x) + F1(t0, y)‖
−‖F1(t0 + τ, x) − F1(t0, x)‖
−‖F1(t0 + τ, y) − F1(t0, y)‖ ≥ ε,

which contradicts (10), completing the proof. �

Remark 3.7. In Lemma 3.6, (9) implies that when F (t, x) meets the Lipschitz
continuity with respect to x with Lipschitz constant L, then F1(t, x) satisfies
(7). Note that in [39], to be able to apply the well-known Banach contrac-
tion principle, a Lipschitz condition for the nonlinearity F (t, x) of Eq. (6) is
needed. Thus, our condition in the assumption (H1) is weaker than those of
[39].

Let β(t) be the function involved in assumption (H2). Define

σ(t) :=
∫ t

−∞
β(s)(t − s)α−1Eα,α(−δ(t − s)α)ds, t ∈ R.

Lemma 3.8. σ(t) ∈ C0(R,R+).

Proof. Since β(t) ∈ C0(R,R+), one can choose a T1 > 0, such that ‖β(t)‖ < ε
for all t > T1. This together with Lemmas 2.10(3), 2.11, and Eα(0) = 1
enables us to conclude that for all t > T1:
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σ(t) ≤
∫ T1

−∞
β(s)(t − s)α−1Eα,α(−δ(t − s)α)ds

+
∫ t

T1

β(s)(t − s)α−1Eα,α(−δ(t − s)α)ds

≤ ‖β‖∞
∫ T1

−∞
(t − s)α−1Eα,α(−δ(t − s)α)ds

+Mε

∫ t

T1

(t − s)α−1Eα,α(−δ(t − s)α)ds

= M‖β‖∞Eα(−δ(t − s)α)
∣∣∣T1

−∞
+ MεEα(−δ(t − s)α)

∣∣∣t
T1

≤ M‖β‖∞Eα(−δ(t − T1)α) +
Mε

δ
,

which, together with Lemma 2.11(3), implies limt→+∞ σ(t) = 0.
On the other hand, from β(t) ∈ C0(R,R+), it follows that there ex-

ists a T2 > 0, such that ‖β(t)‖ < ε for all t < −T2. This together with
Lemma 2.10(3), Lemma 2.11, and Eα(0) = 1 enables us to conclude that for
all t < −T2,

σ(t) ≤ ε

∫ t

−∞
(t − s)α−1Eα,α(−δ(t − s)α)ds = εEα(−δ(t − s)α)

∣∣∣t
−∞

=
Mε

δ
,

which implies limt→−∞ σ(t) = 0. �

Theorem 3.9. Assume that −A generates an exponentially stable C0-semigroup
{T (t)}t≥0 satisfying (3). Let F : R×X → X satisfy the hypotheses (H1) and
(H2). Put ρ2 := supt∈R

σ(t). Then, Eq. (6) has at least one asymptotically
almost periodic mild solution whenever

MLδ−1 + Mρ1ρ2 < 1. (11)

Proof. Consider the coupled system of integral equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(t) =
∫ t

−∞
(t − s)α−1V (t − s)F1(s, v(s))ds, t ∈ R,

ω(t) =
∫ t

−∞
(t − s)α−1V (t − s)[F1(s, v(s) + ω(s)) − F1(s, v(s))]ds

+
∫ t

−∞
(t − s)α−1V (t − s)F2(s, v(s) + ω(s))ds, t ∈ R.

(12)

If (v(t), ω(t)) ∈ AP (R,X) × C0(R,X) is a solution to system (12), then
x(t) := v(t) + ω(t) ∈ AAP (R,X) and it is a solution to the integral equation

x(t) =
∫ t

−∞
(t − s)α−1V (t − s)F (s, x(s))ds, t ∈ R,
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that is, x(t) is an asymptotically almost periodic mild solution to Eq. (6).
Hence, the problem has shifted to show that system (12) has at least a solution
in AP (R,X) × C0(R,X).

Define a mapping Λ on AP (R,X) by

(Λv)(t) =
∫ t

−∞
(t − s)α−1V (t − s)F1(s, v(s))ds, t ∈ R.

First, since the function s → F1(s, v(s)) is bounded on R and

‖[Λv](t)‖ =
∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)F1(s, v(s))ds

∥∥∥∥
≤ ‖F1‖∞

∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)ds

∥∥∥∥
L(X)

≤ M‖F1‖∞
∫ t

−∞
(t − s)α−1Eα,α(−δ(t − s)α)ds

= M‖F1‖∞Eα(−δ(t − s)α)
∣∣∣t
−∞

=
M‖F1‖∞

δ
,

which implies that (Λv)(t) exists. Moreover, from F1(t, x) ∈ AP (R × X,X)
satisfying (7), together with Lemma 2.4, it follows that

F1(·, v(·)) ∈ AP (R,X) for every v(·) ∈ AP (R,X).

This, together with Lemma 3.3, implies that Λ is well defined and maps
AP (R,X) into itself.

In the sequel, we verify Λ is continuous.
Let vn(t), v(t) be in AP (R,X) with vn(t) → v(t) as n → ∞, then one

has

‖[Λvn](t) − [Λv](t)‖ =

∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)

[
F1(s, vn(s)) − F1(s, v(s))

]
ds

∥∥∥∥
≤ L

∫ t

−∞
‖(t − s)α−1V (t − s)[vn(s) − v(s)]‖ds

≤ ML‖vn − v‖∞

∫ t

−∞
(t − s)α−1Eα,α(−δ(t − s)α)ds

= ML‖vn − v‖∞Eα(−δ(t − s)α)
∣∣∣t
−∞

=
ML‖vn − v‖∞

δ
.

Therefore, as n → ∞, Λvn → Λv, and hence, Λ is continuous.
Next, we prove that Λ is a contraction on AP (R,X) and has a unique

fixed point v(t) ∈ AP (R,X).
Let v1(t), v2(t) be in AP (R,X), similar to the above proof of the conti-

nuity of Λ, one has

‖[Λv1](t) − [Λv2](t)‖ ≤ ML

δ
‖v1 − v2‖∞,
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which implies

‖[Λv1](t) − [Λv2](t)‖∞ ≤ ML

δ
‖v1 − v2‖∞.

This together with (11) proves that Λ is a contraction on AP (R,X). Thus,
the Banach’s fixed point theorem implies that Λ has a unique fixed point
v(t) ∈ AP (R,X).

For the above v(t), define Γ := Γ1 + Γ2 on C0(R,X) as follows:

(Γ1ω)(t) =

∫ t

−∞
(t − s)α−1V (t − s)[F1(s, v(s) + ω(s)) − F1(s, v(s))]ds, t ∈ R,

(Γ2ω)(t) =

∫ t

−∞
(t − s)α−1V (t − s)F2(s, v(s) + ω(s))ds, t ∈ R.

First, from (7), it follows that

‖F1(s, v(s) + ω(s)) − F1(s, v(s))‖ ≤ L‖ω(s)‖ for all s ∈ R, ω(s) ∈,

which implies that

F1(·, v(·) + ω(·)) − F1(·, v(·)) ∈ C0(R,X) for every ω(·) ∈ C0(R,X).

According to (8), one has

‖F2(s, v(s) + ω(s))‖ ≤ β(s)Φ
(
r + sup

s∈R

‖v(s)‖
)

for all s ∈ R and ω(s) ∈ X with ‖ω(s)‖ ≤ r, then

F2(·, v(·) + ω(·)) ∈ C0(R,X) as β(·) ∈ C0(R,R+).

Those, together with Lemma 3.4, yield that Γ is well defined and maps
C0(R,X) into itself.

To complete the proof, it suffices to prove that Γ has at least one fixed
point in C0(R,X).

Set Ωr := {ω(t) ∈ C0(R,X) : ‖ω‖∞ ≤ r}. In view of (8) and (11), it is
not difficult to see that there exists a constant k0 > 0, such that

ML

δ
k0 + Mρ2Φ

(
k0 + sup

s∈R

‖v(s)‖
)

≤ k0.
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This enables us to conclude that for any t ∈ R and ω1(t), ω2(t) ∈ Ωk0 :

‖(Γ1ω1)(t) + (Γ2ω2)(t)‖

≤
∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)[F1(s, v(s) + ω1(s)) − F1(s, v(s))]ds

∥∥∥∥
+

∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)F2(s, v(s) + ω2(s))ds

∥∥∥∥
≤

∫ t

−∞
‖(t − s)α−1V (t − s)[F1(s, v(s) + ω1(s)) − F1(s, v(s))]‖ds

+
∫ t

−∞
‖(t − s)α−1V (t − s)F2(s, v(s) + ω2(s))‖ds

≤ L

∫ t

−∞
‖(t − s)α−1V (t − s)ω1(s)‖ds

+Φ
(

‖ω2‖∞ + sup
s∈R

‖v(s)‖
) ∫ t

−∞
‖β(s)(t − s)α−1V (t − s)‖ds

≤ L‖ω1‖∞

∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)ds

∥∥∥∥
L(X)

+MΦ
(

‖ω2‖∞ + sup
s∈R

‖v(s)‖
) ∫ t

−∞
β(s)(t − s)α−1Eα,α(−δ(t − s)α)ds

≤ ML‖ω1‖∞
∫ t

−∞
(t − s)α−1Eα,α(−δ(t − s)α)ds

+Mσ(t)Φ
(

‖ω2‖∞ + sup
s∈R

‖v(s)‖
)

≤ ML‖ω1‖∞Eα(−δ(t − s)α)
∣∣∣t
−∞

+ Mρ2Φ
(

‖ω2‖∞ + sup
s∈R

‖v(s)‖
)

=
ML‖ω1‖∞

δ
+ Mρ2Φ

(
‖ω2‖∞ + sup

s∈R

‖v(s)‖
)

≤ ML

δ
k0

+Mρ2Φ
(

k0 + sup
s∈R

‖v(s)‖
)

≤ k0,

which implies that (Γ1ω1)(t)+(Γ2ω2)(t) ∈ Ωk0 . Thus, Γ maps Ωk0 into itself.

In the following, we show that Γ1 is a contraction on Ωk0 . For any
ω1(t), ω2(t) ∈ Ωk0 , from (7), it follows that

‖[F1(s, v(s) + ω1(s)) − F1(s, v(s))] − [F1(s, v(s) + ω2(s))
−F1(s, v(s))]‖ ≤ L‖ω1(s) − ω2(s)‖.
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Thus

‖(Γ1ω1)(t) − (Γ1ω2)(t)‖

=
∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)

[(
F1(s, v(s) + ω1(s)) − F1(s, v(s))

)

−
(
F1(s, v(s) + ω2(s)) − F1(s, v(s))

)]
ds

∥∥∥∥
≤ L

∫ t

−∞
‖(t − s)α−1V (t − s)[ω1(s) − ω2(s)]‖ds

≤ ML‖ω1 − ω2‖∞
∫ t

−∞
(t − s)α−1Eα,α(−δ(t − s)α)ds

= ML‖ω1 − ω2‖∞Eα(−δ(t − s)α)
∣∣∣t
−∞

=
ML‖ω1 − ω2‖∞

δ
,

which implies that

‖(Γ1ω1)(t) − (Γ1ω2)(t)‖∞ ≤ ML

δ
‖ω1 − ω2‖∞.

Thus, in view of (11), one obtains the conclusion.
From our assumption, it is clear that Γ2 is a continuous mapping from

Ωk0 to Ωk0 . Thus, to apply the well-known Krasnoselskii’s fixed point theorem
(see Lemma 2.13) to obtain a fixed point of Γ, one needs to verify that Γ2 is
completely continuous on Ωk0 .

Given ε > 0. Let {ωk}+∞
k=1 ⊂ Ωk0 with ωk → ω0 in C0(R,X) as k → +∞.

Since σ(t) ∈ C0(R,R+) which follows from Lemma 3.8, one may choose a
t1 > 0 big enough, such that for all t ≥ t1:

Φ
(
k0 + ‖v‖∞

)
σ(t) <

ε

3M
.

In addition, in view of (H1), we have

F2(s, v(s) + ωk(s)) → F2(s, v(s) + ω0(s)) for all s ∈ (−∞, t1] as k → +∞,

and

‖F2(·, v(·) + ωk(·)) − F2(·, v(·) + ω0(·))‖ ≤ 2Φ
(
k0 + ‖v‖∞

)
β(·) ∈ L1(−∞, t1].

Hence, by the Lebesgue dominated convergence theorem, we deduce that
there exists an N > 0, such that for any k ≥ N :

M

∫ t1

−∞
‖(t − s)α−1Eα,α(−δ(t − s)α)[F2(s, v(s) + ωk(s))

−F2(s, v(s) + ω0(s))]‖ds ≤ ε

3
.
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Thus, when k ≥ N :

‖(Γ2ωk)(t) − (Γ2ω0)(t)‖

=
∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)F2(s, v(s) + ωk(s))ds

−
∫ t

−∞
(t − s)α−1V (t − s)F2(s, v(s) + ω0(s))ds

∥∥∥∥
≤

∫ t1

−∞
‖(t − s)α−1V (t − s)[F2(s, v(s) + ωk(s)) − F2(s, v(s) + ω0(s))]‖ds

+
∫ max{t,t1}

t1

‖(t − s)α−1V (t − s)[F2(s, v(s) + ωk(s))

−F2(s, v(s) + ω0(s))]‖ds

≤ M

∫ t1

−∞
‖(t − s)α−1Eα,α(−δ(t − s)α)[F2(s, v(s) + ωk(s))

−F2(s, v(s) + ω0(s))]‖ds

+2MΦ
(
k0 + ‖v‖∞

) ∫ max{t,t1}

t1

β(s)(t − s)α−1Eα,α(−δ(t − s)α)ds

≤ M

∫ t1

−∞
‖(t − s)α−1Eα,α(−δ(t − s)α)[F2(s, v(s) + ωk(s))

−F2(s, v(s) + ω0(s))]‖ds + 2MΦ
(
k0 + ‖v‖∞

)
σ(t)

≤ ε

3
+

2ε

3
= ε.

Accordingly, Γ2 is continuous on Ωk0 .
In the sequel, we consider the compactness of Γ2.
Set Br(X) for the closed ball with center at 0 and radius r in X, Δ =

Γ2(Ωk0) and z(t) = Γ2(u(t)) for u(t) ∈ Ωk0 . First, for all ω(t) ∈ Ωk0 and
t ∈ R:

‖(Γ2ω)(t)‖ =
∥∥∥∥
∫ t

−∞
(t − s)α−1V (t − s)F2(s, v(s) + ω(s))ds

∥∥∥∥
≤ MΦ

(
k0 + sup

s∈R

‖v(s)‖
) ∫ t

−∞
β(s)(t − s)α−1Eα,α(−δ(t − s)α)ds

= Mσ(t)Φ
(

k0 + sup
s∈R

‖v(s)‖
)

,

in view of σ(t) ∈ C0(R,R+) which follows from Lemma 3.8, one concludes
that

lim
|t|→+∞

(Γ2ω)(t) = 0 uniformly for ω(t) ∈ Ωk0 .
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As

(Γ2ω)(t) =
∫ t

−∞
(t − s)α−1V (t − s)F2(s, v(s) + ω(s))ds

=
∫ +∞

0

τα−1V (τ)F2(t − τ, v(t − τ) + ω(t − τ))dτ.

Hence, for given ε0 > 0, one can choose a ξ > 0, such that∥∥∥∥
∫ +∞

ξ

τα−1V (τ)F2(t − τ, v(t − τ) + ω(t − τ))dτ

∥∥∥∥ < ε0.

Thus, we get

z(t) ∈ ξc({τα−1V (τ)F2(λ, v(λ) + ω(λ)) : 0 ≤ τ ≤ ξ, t − ξ ≤ λ ≤ ξ, ‖ω‖∞ ≤ r})

+Bε0(X),

where c(K) denotes the convex hull of K. Using that V (·) is strongly contin-
uous which follows from Lemma 2.10(2), we infer that

K = {τα−1V (τ)F2(λ, v(λ) + ω(λ)) : 0 ≤ τ ≤ ξ, t − ξ ≤ λ ≤ ξ, ‖ω‖∞ ≤ r}
is a relatively compact set, and Δ ⊂ ξc(K) + Bε0(X), which implies that Δ
is a relatively compact subset of X.

Next, we verify the equicontinuity of the set {(Γ2ω)(t) : ω(t) ∈ Ωk0}.
Let k > 0 be small enough and t1, t2 ∈ R, ω(t) ∈ Ωk0 . Then, by (8), we

have

‖(Γ2ω)(t2) − (Γ2ω)(t1)‖

=
∥∥∥∥
∫ t2

−∞
(t2 − s)α−1V (t2 − s)F2(s, v(s) + ω(s))ds

−
∫ t1

−∞
(t1 − s)α−1V (t1 − s)F2(s, v(s) + ω(s))ds

∥∥∥∥
≤

∫ t2

t1

‖(t2 − s)α−1V (t2 − s)F2(s, v(s) + ω(s))‖ds

+
∫ t1−k

−∞
‖[(t2 − s)α−1V (t2 − s) − (t1 − s)α−1V (t1 − s)]F2(s, v(s)

+ω(s))‖ds

+
∫ t1

t1−k

‖[(t2 − s)α−1V (t2 − s) − (t2 − s)α−1V (t1 − s)]F2(s, v(s)

+ω(s))‖ds

≤ MΦ
(
k0 + ‖v‖∞

)∫ t2

t1

β(s)(t2 − s)α−1Eα,α(−δ(t2 − s)α)ds

+ Φ
(
k0 + ‖v‖∞

)

× sup
s∈[−∞,t1−k]

‖[(t2 − s)α−1V (t2 − s) − (t2 − s)α−1V (t1 − s)]‖
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×
∫ t1−k

−∞
β(s)ds + MΦ

(
k0 + ‖v‖∞

)

×
∫ t1

t1−k

(
β(s)(t2 − s)α−1Eα,α(−δ(t2 − s)α)

+β(s)(t1 − s)α−1Eα,α(−δ(t1 − s)α)
)
ds

→ 0 as t2 − t1 → 0, k → 0,

which implies the equicontinuity of the set {(Γ2ω)(t) : ω(t) ∈ Ωk0}.
Now, an application of Lemma 2.12 justifies the compactness of Γ2.
Finally, from the Krasnoselskii’s fixed point theorem (see Lemma 2.13),

it follows that Γ has at least one fixed point in Ωk0 . This proves that system
(12) has at least one solution in AP (R,X) × C0(R,X). �

4. Applications

In this section, we give an example to illustrate the feasibility of the above
abstract result.

Consider the following fractional partial differential equation with
Dirichlet boundary conditions of the form:⎧⎪⎪⎨

⎪⎪⎩

∂α
t u(t, x) = ∂2

xu(t, x) + μ(sin t + sin
√

2t) sin u(t, x)

+ νe−|t|u(t, x) sin u2(t, x), t ∈ R, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ R,

(13)

where μ and ν are positive constants.
Take X = L2[0, π] with norm ‖ · ‖ and define A : D(A) ⊂ X → X given

by Ax = ∂2x(ξ)
∂ξ2 with the domain:

D(A) =
{

x(·) ∈ X : x′′ ∈ X,x′ ∈ X is absolutely

continuous on [0, π], x(0) = x(π) = 0
}

.

It is well known that A is self-adjoint, with compact resolvent and
is the infinitesimal generator of an analytic semigroup {T (t)}t≥0 satisfying
‖T (t)‖ ≤ e−t for t > 0. Let

F1(t, x(ξ)) := μ(sin t + sin
√

2t) sin x(ξ), F2(t, x(ξ)) := νe−|t|x(ξ) sin x2(ξ).

Then, it is easy to verify that F1, F2 : R× X → X are continuous, F1(t, x) ∈
AP (R × X,X) satisfying

‖F1(t, x) − F1(t, y)‖ ≤ 2μ‖x − y‖ for all t ∈ R, x, y ∈ X,

and

‖F2(t, x)‖ ≤ νe−|t|‖x‖ for all t ∈ R, x ∈ X,

which implies that F2(t, x) ∈ C0(R × X,X). Furthermore

F (t, x) = F1(t, x) + F2(t, x) ∈ AAP (R × X,X).
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Thus, (13) can be reformulated as the abstract problem (6) and the assump-
tions (H1) and (H2) hold with

L = 2μ, Φ(r) = r, β(t) = νe−|t|, ρ1 = 1, ρ2 ≤ ν.

Then, from Theorem 3.9, it follows that Eq. (13) has at least one asymptot-
ically almost periodic mild solution whenever 2μ + ν < 1.
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