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Abstract. In this paper, by composite previous-current-step idea, we
propose two numerical schemes for solving the Itô stochastic differen-
tial systems. Our approaches, which are based on the Euler–Maruyama
method, solve stochastic differential systems with strong sense. The
mean-square convergence theory of these methods are analyzed under
the Lipschitz and linear growth conditions. The accuracy and efficiency
of the proposed numerical methods are examined by linear and nonlinear
stochastic differential equations.
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1. Introduction

In this paper, we consider two numerical methods for strong solution of the
Itô stochastic differential system,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dX(t) = f(t,X(t))dt +
m∑

j=1

gj(t,X(t))dW j(t), t ∈ [t0, T ],

X(t0) = X0,

(1.1)
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where X ∈ R
d, f : [t0, T ] × R

d → R
d, is a drift vector, g = (g1, . . . , gm) :

[t0, T ] ×R
d → R

d×m is a diffusion matrix and W = (W1, . . . ,Wm)T is an m-
dimensional Wiener process whose increment ΔW j(t) = W j(t + Δ) − W j(t)
is a Gaussian random variable N (0,Δ).

During the several decades, many efficient methods have been developed
for solving different types of SDEs with different properties [3,4,8,12,15–
17,19]. The simplest of these methods to approximate solutions of the SDEs
(1.1) is the so-called Euler–Maruyama (EM) method with strong order 0.5
[15]. To improve the stability properties of numerical methods for solving
SDEs (1.1), some attempts have been made to propose modified EM method.
For example, Burrage and Tian [2], consider the composite Euler method,
which is a combination of the semi-implicit Euler method and the implicit Eu-
ler method. Furthermore, they introduced the implicit Euler–Taylor method,
based on relationship between the Itô stochastic integrals and backward sto-
chastic integrals [18]. In 2010, Wang and Li [21] presented two fully explicit
methods based on EM method, the drifting split-step forward Euler (DRSSE)
and the diffused split-step Euler (DISSE) methods. Higham et al. [9] have
analyzed the split-step backward Euler (SSBE) method for solving nonlin-
ear autonomous SDEs. Recently, Hutzenthaler et al. [10,11] developed the
tamed EM method, for solution of nonlinear SDEs. In addition, another new
approach called the truncated EM method [13,14],

Y (tk+1) = Y (tk) + Δf(q(Y )) + g(q(Y ))ΔWk,

has been developed by Mao to approximate SDEs with one-sided Lipschitz
drift coefficient and the linear growth diffusion coefficient. In the truncated
EM method,

q(Y ) =
(|Y | ∧ μ−1(h(Δ))

)
Y

|Y |

and μ : R+ → R+ is a strictly increasing continuous function such that
μ(r) → ∞ as r → ∞ and

sup
|x|≤r

(|f(x)| ∨ |g(x)|) ≤ μ(r), ∀r ≥ 0.

In this paper, we discuss on methods that use the stage values from only one
previous step. For deterministic differential equations the so-called two-step
Runge–Kutta methods, this method has been widely studied, for example
see [1], which includes also an extensive bibliography. In [5,6] the authors
extended the idea of deterministic two-step Runge–Kutta methods to the
solution of SDEs.

This paper is organized as follows. In Sect. 2, we introduce the composite
previous-current-step (CPCS) idea for original EM method and design two
EM methods based this idea. The convergence properties of these methods
are discussed in Sect. 3. The numerical results of these methods are discussed
in Sect. 4. In the last section, conclusions are given.
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2. Composite Previous-Current-Step Methods

In this section, we introduce composite general previous-current-step idea for
the original EM method, namely

Λ(t) = Υ(t) + Δf(t,Φ(t)) +
m∑

j=1

gj(t,Ψ(t))ΔW j
i , (2.1)

where i = 1, 2, . . . , N , ti = t0+iΔ which stepsize Δ is defined as Δ = ti−ti−1

and ΔW j
i = W j

ti+1
− W j

ti , and Λ(t), Υ(t), Φ(t) and Ψ(t) are combination of
the

Y0, Y
[0]
1 , Y

[1]
1 , . . . , Y

[k]
1 , Y

[0]
2 , Y

[1]
2 , . . . , Y

[k]
2 , . . . , Y

[0]
N , Y

[1]
N , . . . , Y

[k]
N .

By the CPCS idea for the EM method (2.1), we present fully explicit EM
methods, the CPCS Euler–Maruyama (CPCSEM) method,

Y
[k]
i+1 = Y

[k]
i + Δ

(
(1 − θ)f

(
ti, Y

[k−1]
i

)
+ θf

(
ti, Y

[k]
i

))

+
m∑

j=1

(
(1 − σ)gj

(
ti, Y

[k−1]
i

)
+ σgj

(
ti, Y

[k]
i

) )
ΔW j

i , θ, σ ∈ R

(2.2)
and the Maximum CPCS Euler–Maruyama (MCPCSEM) method,

Y
[k]
i+1 = Y

[k]
i + Δf

(
ti,max

(
Y

[k−1]
i , Y

[k]
i

))

+
m∑

j=1

gj

(
ti,max

(
Y

[k−1]
i , Y

[k]
i

))
ΔW j

i ,
(2.3)

where Y
[−1]
i = Y

[0]
i = Y0.

3. Convergence Properties

In this section, we prove the mean-square convergence of the CPCSEM (2.2)
and MCPCSEM (2.3) methods by the following assumption and convergence
lemma given in [15].

Assumption 3.1. The functions f and gj , j = 1, . . . , m in SDE (1.1) satisfy
in the Lipschitz condition

|f(t, x) − f(t, y)|2 ∨ |gj(t, x) − gj(t, y)|2 ≤ K1|x − y|2, (3.1)

and linear growth bounds

|f(t, x)|2 ∨ |gj(t, x)|2 ≤ K2(1 + |x|2), (3.2)

for the all real variables x, y. Here K1, K2 are positive constants, and ∨ is a
maximal operator.
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Lemma 3.2. Assume for a one-step discrete time approximation Y , the lo-
cal mean error and mean-square error for all i = 0, 1, . . . , N − 1 and r =
0, 1, . . . , k, satisfy the estimates

∣
∣
∣
∣
∣
E

[

Y
[k]
i+1 − Y [k](ti+1)

∣
∣
∣
∣
∣
Y

[k−r]
i = Y [k](ti)

]∣
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∣
∣
∣
≤ K

(

1 +
∣
∣
∣Y

[k]
i

∣
∣
∣
2
)1/2

hp1 , (3.3)

and
∣
∣
∣
∣
∣
E
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(
Y
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(3.4)
where p2 ≥ 1

2 and p1 ≥ p2 + 1
2 . Then

∣
∣
∣
∣
∣
E

[
(
Y

[k]
n − Y [k](tn)

)2
∣
∣
∣
∣
∣
Y0 = Y (t0)

]∣
∣
∣
∣
∣

1/2

≤ K
(
1 + |Y0|2

)1/2

hp2−1/2,

holds for each n = 0, 1, . . . , N . Here K is independent of Δ, but dependent
on the length of the time interval T − t0.

Theorem 3.3. For l = 0, 1, . . . , N , let Yl be the numerical approximation of
Y (tl) at time T after l steps with stepsize Δ = (T − t0)/N . Apply one of
the CPCSEM (2.2) and MCPCSEM (2.3) methods to the SDE (1.1) under
Assumption 3.1, then we have

∣
∣
∣E

[(
Y

[k]
l − Y [k](tl)

)2
∣
∣
∣Y0 = Y (t0)

] ∣
∣
∣
1/2

= O(Δ
1
2 ).

Proof. At first we deal with the local mean error. For i = 0, 1, . . . N − 1, we
have the EM approximation step

Ŷ
[k]
i+1 = Ŷ

[k]
i + Δf(ti, Ŷ

[k]
i ) +

m∑

j=1

gj(ti, Ŷ
[k]
i )ΔW j

i , (3.5)

with the local mean and mean-square errors
∣
∣
∣E

[(
Ŷ

[k]
i+1 − Y [k](ti+1)

)∣∣
∣Ŷ

[k]
i = Y [k](ti)

] ∣
∣
∣ = O(Δ2), (3.6a)
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Ŷ
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)2
∣
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∣Ŷ
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∣ = O(Δ2), (3.6b)

respectively. Then from (3.6a), we have
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∣
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∣Ŷ

[k]
i = Y [k](ti)

]∣
∣
∣

+
∣
∣
∣E

[(
Y

[k]
i+1 − Ŷ
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(3.7)

for the CPCSEM (2.2) and MCPCSEM (2.3) methods, it is easy to see that

H2 =
∣
∣
∣E

[(
Y
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[k]
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) ∣
∣
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[k]
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∣
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(3.8)
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Consequently, the estimates with p1 = 2 in Theorem 3.1 are satisfied for the
CPCSEM (2.2) and MCPCSEM (2.3) methods.

Next, we consider local mean-square error for the CPCSEM (2.2) and
MCPCSEM (2.3) methods, by the inequality (a + b)2 ≤ 2(a2 + b2)

H3 = E

[(
Y

[k]
i+1 − Y [k](ti+1)

)2 ∣
∣
∣Y

[k−r]
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]

≤ 2E
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(Ŷ [k]
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2
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i

]

≤ 2O(Δ2) + 2H4,

(3.9)

similarly, for the CPCSEM (2.2) and MCPCSEM (2.3) methods, we obtain

H4 =
∣
∣
∣
∣E
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(3.10)

Thus we can choose in Lemma 3.1 the exponent p2 = 1 together with p1 = 2
and apply it to finally prove the strong order p = p2− 1

2 = 1
2 of the CPCSEM

(2.2) and MCPCSEM (2.3) methods, as was claimed in Theorem 3.3. �

4. Results and Discussion

In this section, we give some numerical examples that demonstrate the com-
putational efficiency of the proposed methods in this paper. To compare their
accuracy, we present various examples of linear and nonlinear equations. In
some of these examples, despite of the absence of the established assumptions
of Theorem 3.3, our scheme is efficient; in other words, these examples show
that the analytical conditions of Theorem 3.3 are sufficient for mean-square
convergence rather than necessary for an appropriate numerical approxima-
tion.

In this paper, to estimate the error in the mean-square sense at time
T = NΔ for various step sizes Δ, we define εMS as follows:

εMS =

(

1
N

N∑

i=1

∣
∣
∣Y

(i)
N − X

(i)
tN

∣
∣
∣
2
) 1

2

. (4.1)

Denoting Y
(i)
N and X

(i)
tN as the numerical solutions and the exact solution

at step point tN in ith simulation, respectively. To simulate the ΔW j
i with

distribution N (0,Δ), we have used random numbers generated by randn in
MATLAB R2012a.

Example 1. For linear test system

dX(t) = λX(t)dt +
m∑

j=1

μjX(t)dW j(t), X0 = 1, (4.2)
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Figure 1. The convergence rate of the CPCSEM with θ =
σ = 0.1, and MCPCSEM methods for SDE (4.2)

with exact solution

X(t) = X0 exp

⎛

⎝

⎛

⎝λ − 1
2

m∑

j=1

μ2
j

⎞

⎠ t +
m∑

j=1

μjWj(t)

⎞

⎠ ,

we show the strong convergence rate of CPCSEM (2.2) and MCPCSEM (2.3)
methods at the terminal time T = NΔ = 1, for two groups of parameters

• Case I: λ = −μ = − 1
2 , N = 1000 [7],

• Case II: λ = 1.5, μ1 = −1.0, μ2 = −μ3 = μ4 = −μ5 = 0.5 and
N = 5000.

Figure 1 shows a log–log plot of the sample average approximation |Y [k]
i −

X
[k]
ti | against Δ, based on the N different discretized Wiener process paths

over [0, 1] with the stepsize δt = 2−9. Denoting Y
[k]
i and X

[k]
ti as the numerical

solutions and the exact solution at step point ti in ith simulation, respectively.
For each realization, we have applied the CPCSEM and MCPCSEM methods
with five different stepsizes Δ = 2j−1δt for 1 ≤ j ≤ 5. The reference line of
slope 1

2 is added in a dashed line type. This is consistent with the result that
the strong error is arbitrarily close to order 1

2 .

Example 2. Consider the nonlinear SDE [19],

dX(t) =
(

1
3X

1
3 (t) + 6X

2
3 (t)

)
dt + X

2
3 (t)dW (t), (4.3)

for t ∈ [0, 1], with the initial value X0 = 1. The exact solution of (4.3) is

X(t) =
(

1 + 2t +
W (t)

3

)3

.

In Fig. 2, we plot the mean-square errors εMS, with the timestep Δ = 2(1−i)

25 ,
i = 1, 2, . . . , 5 and N = 5000 independent simulations at t = 1 for EM,
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Figure 2. Value of the mean-square errors, εMS (4.1), of
the EM, CPCSEM and MCPCSEM, DRSSE [21] and
DISSE [21](up-left), tamed EM [10] (up-right) and truncated
EM [13,14] (down) methods for nonlinear SDE (4.3).

DRSSE [21] and DISSE [21], tamed EM [10], CPCSEM and MCPCSEM
methods. In the second row of Fig. 2, the our methods compared with the
truncated EM method [13,14], with μ(r) = 1

3r
1
3 + 6r

2
3 , h(Δ) = Δ−1/4,

timestep Δ = 10(−i), i = 4, 5, 6 and N = 1000. It is obvious that the ac-
curacies of the CPCSEM and MCPCSEM methods are better than of the
EM, DRSSE, DISSE, tamed EM and truncated EM methods.

Example 3. Third example is a two-dimensional linear SDE system whose
Itô form,

dX(t) = UX(t)dt + V X(t)dW (t), X0 = X(t0), t ∈ [0, 1], X ∈ R
2,
(4.4)

where U and V are the matrices

U =
(−u u

u −u

)

, V =
(

v 0
0 v

)

. (4.5)
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Figure 3. Value of the mean-square errors, εMS (4.1), of the
EM, DRSSE [21], DISSE [21], tamed EM [10], CPCSEM and
MCPCSEM methods for nonlinear SDE (4.4)–(4.5).

The exact solution of this equation is given by [12],

X(t) = P

(
exp(ρ+(t)) 0

0 exp(ρ−(t))

)

P−1X0, P =
1√
2

(
1 1
1 −1

)

.

where ρ±(t) = (u − 1
2v2 ± u)t + vW (t).

Figure 3 gives the mean-square errors εMS of the EM, DRSSE [21],
DISSE [21], tamed EM [10], CPCSEM and MCPCSEM methods, for solving
(4.4)–(4.5) with X0 = [1, 2]T , u = 1, v = 0.01, timestep Δ = 2(−i), i =
1, 2, . . . , 5 and N = 5000 independent simulations. It can be seen that the
accuracies of the CPCSEM method with parameters (θ, σ) = (1.25, 0.25),
(1.5, 0.5) and (1.75, 0.75) are better than of the EM, DRSSE, DISSE, tamed
EM, MCPCSEM methods and the CPCSEM method with parameter (θ, σ) =
(2.0, 1.0).

Example 4. The last test equation is a stochastic version of the Brusselator
system, for modeling unforced periodic oscillations in the certain chemical
reactions [20],

dX1(t) =
(
(α − 1)X1(t) + αX2

1 (t) + (X1(t) + 1)2X2(t)
)
dt

+γX1(t)(1 + X1(t))dW (t),

dX2(t) =
(

− αX1(t) − αX2
1 (t) − (X1(t) + 1)2X2(t)

)
dt

−γX1(t)(1 + X1(t))dW (t).

(4.6)

Comparison of numerical simulations of system (4.6) for 0 ≤ t ≤ 125, step-
size Δ = 0.025, constant parameters α = 1.9, γ = 0.1, and starting point
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Figure 4. Numerical simulations of the system (4.6) by the
EM, DRSSE, DISSE, tamed EM and CPCSEM (with θ =
σ = 0.1) methods

(X1(0),X2(0)) = (−0.1, 0) by the EM, DRSSE, DISSE, tamed EM meth-
ods and the CPCSEM method, with θ = σ = 0.1, and the MCPCSEM
method, are plotted in Figs. 4 and 5, respectively. Observe that the approx-
imate trajectories of the CPCSEM and MCPCSEM methods stay close to
the origin, replicating the behavior of the exact solution, and yielding the
better approximations than the EM, DRSSE, DISSE and tamed EM meth-
ods.

5. Conclusions

In this paper, we have constructed the CPCS idea for solving SDEs and de-
rived the CPCSEM and MCPCSEM methods based on the CPCS scheme.
Further, the mean-square convergence order of 1

2 is obtained for the presented
methods by fundamental theorem derived in [15]. To highlight the conver-
gence, the numerical results are reported for both one- and two-dimensional
SDEs, in linear and nonlinear cases. In addition, we compared our methods
against the EM, DRSSE, DISSE, tamed EM and truncated EM methods of
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Figure 5. Numerical simulations of the system (4.6) by the
EM, DRSSE, DISSE, tamed EM and MCPCSEM methods

the under investigation problems, and numerically showed that the CPCSEM
and MCPCSEM methods are computationally more efficient.
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