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Abstract. In this article, we are concerned with the following fractional
Schrödinger–Poisson system:{

(−Δ)su + V (x)u + φu = f(u) in R
3,

(−Δ)tφ = u2 in R
3,

where 0 < s ≤ t < 1, 2s + 2t > 3, and f ∈ C(R,R). Under more relaxed
assumptions on potential V (x) and f(x), we obtain the existence of
ground state solutions for the above problem by adopting some new
tricks. Our results here extend the existing study.
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1. Introduction

In the present paper, we deal with the existence of ground state solutions for
the following fractional Schrödinger–Poisson problem:{

(−Δ)su + V (x)u + φu = f(u) in R
3,

(−Δ)tφ = u2 in R
3,

(1.1)

where 0 < s ≤ t < 1, 2s + 2t > 3, and (−Δ)s is the fractional Laplacian of
order s. Here, the fractional Laplacian (−Δ)s is defined, up to normalization
factors, by the following singular integral:

(−Δ)su(x) = CsP.V.

∫
R3

u(x) − u(y)
|x − y|3+2s

dy,

where P.V. is a commonly used abbreviation for “in the principle value sense”
and Cs is a dimensional constant that depends on s. Via the Fourier transform
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F , (−Δ)s can also be computed by the following:

(−Δ)αu = F−1(|ξ|2α(Fu)), ∀ ξ ∈ R
3,

(see [13] and the references therein for further details on fractional Laplacian).
V and f satisfy
(V1) V ∈ L∞(R3) and infx∈R3 V (x) > 0;
(F1) f ∈ C(R,R), and there exists constants C0 > 0 and p ∈ (2, 2∗

s), where
2∗

s = 6
3−2s is the fractional critical Sobolev exponent, such that

|f(u)| ≤ C0(1 + |u|p−1), ∀ u ∈ R;

(F2) f(u) = o(u) as u → 0.
Recently, fractional Laplacian equations have concrete applications in

many fields, such as thin obstacle problem, optimization, finance, phase tran-
sitions, anomalous diffusion, and so on. For previous related results, see
[1,4,5,8,9,12,14,18,21–23,27,31,32] and the references therein.

System (1.1) is called a fractional Schrödinger–Poisson system, which
is also called fractional Schrödinger–Maxwell system, because it consists of
a fractional Schrödinger equation coupled with a Poisson term. It is well
known that a great attention has been devoted to the fractional and non-local
integro-differential operators like (1.1), for the thought-provoking theoretical
structure and their impressive applications in many fields. In fact, the frac-
tional Laplacian (−Δ)s is a non-local operator in the fractional Schrödinger
equation, which is obvious a difficulty. And then, Caffarelli and Silvestrein
made greatest achievement in overcoming this difficulty by the extension
theorem in [7]. The authors used some extension to transform the non-local
problem into a local problem, and established some existence and nonex-
istence of Dirichlet problem involving the fractional Laplacian on bounded
domain. Furthermore, a great deal of progress has been made to the fractional
Laplacian equations after the work [7].

If s = t = 1, x ∈ R
3, System (1.1) reduces to the classical Schrödinger–

Poisson system: {−Δu + V (x)u + φu = f(u) in R
3,

−Δφ = u2 in R
3,

(1.2)

which was first introduced by Benci and Fortunato in [3] to describe the
interaction of a charge particle with an electromagnetic field. The existence
and multiplicity of solutions of System (1.2) had been investigated extensively
by many authors in the past several years; we refer the interested readers to
see [2,5,16,19,24,28,30,33] and the references therein. The literature mainly
focuses on the study of System (1.2) with V (x) ≡ 1 or V (x) = V (|x|), and
f satisfies the following assumptions of Ambrosetti–Rabinowitz type and 4-
superlinear as follows:

(AR) f(u)u ≥ 4F (u) ≥ 0, ∀u ∈ R, where F (u) =
∫ u

0
f(s)ds;

(SF) lim|u|→∞
F (u)
u4 = ∞.

In fact, for (AR) and (SF), it is easy to verify the Mountain Pass geometry
and the boundedness of (PS) or (C)c sequences.
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When V (x) = 1 as follows:{−Δu + u + φu = f(u) in R
3,

−Δφ = u2 in R
3,

(1.3)

more specially, the case that f(u) = |u|p−2u associated with (1.3) has been
paid much attention by various authors. In detail, for p ∈ (4, 6), in [6,10], a
radial positive solution of (1.3) was obtained and the corresponding energy
functional was proved to attain a local minimum at zero by Mountain Pass
Theorem. On the other hand, for the aim of obtaining the nonexistence of
nontrivial solutions of (1.3) for p ≤ 2 or p ≥ 6, a related Pohozaev equality
was provided in [11]. Later, Ruiz [19] proved the existence of a positive radial
solution for 3 < p ≤ 4, and the nonexistence of any nontrivial solution for
2 < p ≤ 3. Obviously, the result fills the gap p ∈ (2, 4] left in the previous
study. Ruiz’s approach in [19] is to get the minimizer on the Nehari–Pohozaev
manifold M, which is defined as a linear combination of the Nehari mani-
fold and the Pohozaev manifold. However, we should also notice that Ruiz’s
method cannot be applied for general nonlinearity f . Then, Sun and Ma [20]
proved that (1.3) admits a least energy solution if f satisfies (F1), (F2) and
the following assumption of Ambrosetti–Rabinowitz type (AR′) there exists
μ > 3, such that f(u)u ≥ μF (u) > 0 for u ∈ R\{0}.

Actually, Sun and Ma [20] employed Jeanjean’s monotonicity trick [17]
to get a bounded (PS) sequence, then adopted Pohozaev identity and global
compactness lemma to obtain a series of nontrivial critical points, which were
used to construct a special (PS) sequence, and then proved the boundedness
of the special (PS) sequence, and hence, got a nontrivial critical point of
the initial problem. More recently, by exploiting some new tricks with mild
conditions on potential V and f , Tang and Chen [25] made a substantial
improvement to the main results in [20].

When f(u) = μ|u|q−2u + |u|2∗
s−2u, μ ∈ R

+ is a parameter, q ∈ (2, 2∗
s),

s, t ∈ (0, 1) and 2s + 2t > 3, taking advantage of Pohozaev–Nehari manifold,
the arguments of Brezis–Nirenberg, the monotonic tricks and global compact-
ness lemma, Teng [26] investigated the existence of a nontrivial ground state
solution for System (1.1). Moreover, in the situation, where the nonlinearity
f(u) = |u|p−2u has subcritical growth, p ∈ (3, 2∗

s), t = s ∈ ( 3
4 , 1), V satisfies

(V1) and the following assumptions:

(V2) V (∞) := lim inf |y|→∞ V (y) ≥ (	≡)V (x).
(V3) V (x) is weakly differentiable, and satisfies (∇V (x), x) ∈ L∞(R3) ∪

L
2∗

s
2∗

s−2 (R3):

2sV (x) + (∇V (x), x) ≥ 0 a.e. x ∈ R
3.

With the similar spirit of [30], Teng [29] studied the existence of ground
state solutions, which is a minimizer of the reduced functional restricted on
the manifold introduced in [19]. It is worth mentioning that the approach is
invalid for generally nonlinear case.

It is natural to ask whether or not the existence results got in those
classical contexts can be extended to non-local fractional systems. Motivated
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by the results mentioned above, especially [15,25], our main goal in the paper
is to prove the existence of a ground solution for System (1.1), which makes
a substantial improvement to the main results in [29].

Before stating our main results, we shall introduce the following as-
sumptions on the potential V and the nonlinearity f as follows:
(V4) V (x) is weakly differentiable, and satisfies (∇V (x), x) ∈ L∞(R3), and

for some �0 > 0

2sV (x) + (∇V (x), x) ≥ �0 a.e. x ∈ R
3,

(F3) lim|u|→∞
F (u)
|u|3 = ∞.

(F4) [(s + t)f(u)u − 3F (u)]/|u|(4s+2t)/(s+t) is a nondecreasing function of u
on R\{0}.

(F5) There exist κ > 3
2s and C1 > 0, such that

f(u)
u

>
γ0

2
⇒

∣∣∣∣f(u)
u

∣∣∣∣
κ

≤ C1

[
(s + t)f(u)u − (4s + 2t)F (u)

]
,

where γ0 is Sobolev imbedding constant, such that γ0‖u‖2
2 ≤ ‖u‖2 for

u ∈ Hs(R3).

Remark 1.1. There are indeed functions which satisfy (V1)−(V4). An exam-
ple is given by V (x) = V1 − 1

|x|+1 , where V1 > 1 is a positive constant.

We are now in a position to state the main results of this paper.

Theorem 1.2. Suppose that (V1)–(V3) and (F1)–(F5) hold. Then, System
(1.1) has a ground state solution u0 ∈ Hs(R3)\{0}.
Theorem 1.3. Suppose that (V1), (V2), (V4) and (F1)−(F4) hold. Then, Sys-
tem (1.1) has a ground state solution u0 ∈ Hs(R3)\{0}.

The plan of this paper is as follows. In Sect. 2, we present some notations
and preliminaries. In Sect. 3, we prove Theorems 1.2 and 1.3, respectively.

2. Preliminary Results

Throughout the paper, we denote by ‖ · ‖p the usual norm of the space
Lp(R3) and by û the usual Fourier transform of u, the letters ci, C, Ci stand
for different positive constants. Moreover, we set uτ = τs+tu(τx). Next, we
establish the variational setting of System (1.1) in fractional Sobolev spaces.

A complete introduction to fractional Sobolev spaces can be found in
[13]. For fixed α ∈ (0, 1), we define the homogeneous fractional Sobolev space
Dα,2(R3) as follows:

Dα,2(R3) =
{

u ∈ L2∗
α(R3)

∣∣∣|ξ|αû(ξ) ∈ L2(R3)
}

,

which is the completion of C∞
0 (R3) with the norm:

‖u‖Dα,2 =
∫
R3

|ξ|2α|û(ξ)|2dξ.



MJOM On the Existence of Ground State Solutions Page 5 of 15 132

From Plancherel’s theorem we have ‖u‖2 = ‖û‖2, and then ‖|ξ|αû‖2 =
‖(−Δ)

α
2 u‖2. The fractional Sobolev space Hα(R3) can be described through

the Fourier transform, that is

Hα(R3) =
{

u ∈ L2(R3)
∣∣∣
∫
R3

(
|ξ|2α|û(ξ)|2 + |û(ξ)|2

)
dξ < +∞

}
.

In this case, the inner product and the norm are defined, respectively, as

(u, v) =
∫
R3

(
|ξ|2αû(ξ)v̂(ξ) + û(ξ)v̂(ξ)

)
dξ,

and

‖u‖Hα =
(∫

R3

(
|ξ|2α|û(ξ)|2 + |û(ξ)|2

)
dξ

) 1
2

.

Hence

‖u‖Hα =

( ∫
R3

(|(−Δ)
α
2 u(x)|2 + |u(x)|2)dx

) 1
2

, ∀ u ∈ Hα(R3).

For simplicity, we denote ‖ · ‖ by ‖ · ‖Hα in the sequel.
In terms of finite differences, the fractional Sobolev space Hα(R3) can

also be defined as follows:

Hα(R3) =
{

u ∈ L2(R3)
∣∣∣ |u(x) − u(y)|

|x − y|α+ 3
2

∈ L2(R3 × R
3)

}

endowed with the natural norm:

‖u‖Hα =
(∫

R3

∫
R3

|u(x) − u(y)|2
|x − y|2α+3

dxdy +
∫
R3

|u|2dx

) 1
2

.

In addition, in light of Propositions 3.4 and 3.6 in [13], we have

‖(−Δ)
α
2 u‖2

2 =
∫
R3

|ξ|2α|û(ξ)|2dξ =
1

C(α)

∫
R3

∫
R3

|u(x) − u(y)|2
|x − y|2α+3

dxdy.

By [13], Hα(R3) ↪→ Lq(R3) is continuous for q ∈ [2, 2∗
α] and Hα(R3) ↪→

Lq
loc(R

3) is compact for q ∈ [2, 2∗
α), and for any α ∈ (0, 1), there exists a best

constant Sα > 0, such that

Sα = inf
u∈Dα,2

∫
R3 |(−Δ)

α
2 u|2dx(∫

R3 |u(x)|2∗
αdx

) 2
2∗

α

. (2.1)

Next, we assume that s, t ∈ (0, 1). Observe that if 4s + 2t ≥ 3, then
it follows that 2 ≤ 12

3+2t ≤ 6
3−2s and thus Hs(R3) ↪→ L

12
3+2t (R3). For u ∈

Hs(R3), the linear functional Lu : Dt,2(R3) → R is defined by

Lu(v) =
∫
R3

u2vdx. (2.2)

The Hölder inequality and (2.2) imply that

|Lu(v)| ≤
(∫

R3
|u(x)| 12

3+2t dx

) 3+2t
6

(∫
R3

|v(x)|2∗
t dx

) 1
2∗

t ≤ C‖u‖2‖v‖Dt,2 .

(2.3)
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Then, by the Lax–Milgram theorem, there exists a unique φt
u ∈ Dt,2(R3),

such that ∫
R3

(−Δ)
t
2 φt

u(−Δ)
t
2 vdx =

∫
R3

u2vdx, ∀ v ∈ Dt,2(R3), (2.4)

that is, φt
u is a weak solution of

(−Δ)tφt
u = u2, x ∈ R

3,

and the representation formula holds:

φt
u(x) = ct

∫
R3

u2(y)
|x − y|3−2t

dy, x ∈ R
3, (2.5)

which is called t-Riesz potential, where

ct = π− 3
2 2−2t Γ(3 − 2t)

Γ(t)
.

Throughout the sequel, we often omit the constant ct in (2.5) for convenience.
Substituting φt

u in (1.1), it leads to the following fractional Schrödinger equa-
tion, when V (x) = 1:

(−Δ)su + u + φt
uu = f(u), x ∈ R

3, (2.6)

whose solutions can be obtained by seeking critical points of the functional
ϕ : Hs(R3) → R defined by

ϕ(u) =
1
2

∫
R3

(|(−Δ)
s
2 u|2 + u2

)
dx +

1
4

∫
R3

φt
uu2dx −

∫
R3

F (u)dx.

From (2.1)–(2.3), we can deduce that
∫
R3

|(−Δ)
t

2 φt
u|2dx =

∫
R3

φt
uu2dx ≤

(∫
R3

|u(x)| 12
3+2t dx

) 3+2t

6
(∫

R3
|φt

u|2∗
t dx

) 1
2∗

t

≤ 1√St

(∫
R3

|u(x)| 12
3+2t dx

) 3+2t

6 ‖φt
u‖Dt,2 ≤ C‖u‖2‖φt

u‖Dt,2 .

(2.7)
Therefore, (F1) and (F2) imply that ϕ is well defined in Hs(R3) and

ϕ ∈ C1(Hs(R3),R). For (V1), we define the functional in Hs(R3) as follows:

Φ(u) =
1
2

∫
R3

(|(−Δ)
s
2 u|2 + V (x)u2

)
dx +

1
4

∫
R3

φt
uu2dx −

∫
R3

F (u)dx,

which is also well defined in Hs(R3) and Φ ∈ C1(Hs(R3),R) with derivative
given by

〈Φ′(u), v〉 =

∫
R3

(
(−Δ)

s

2 u(−Δ)
s

2 v + V (x)uv + φt
uuv − f(u)v

)
dx, ∀ v ∈ Hs(R3).

Evidently, the critical points of Φ are weak solutions of System (1.1).

Lemma 2.1. (see [23, Lemma 2.4]) Assume that {un} is bounded in Hα(RN )
and

lim
n→∞ sup

y∈RN

∫
BR(y)

|un|2dx = 0,

where R > 0. Then, un → 0 in Lq(RN ) for 2 < q < 2∗
α.
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Proposition 2.2. [17] Let X be a Banach space and Λ ⊂ R
+ be an interval.

Consider a family Iλ of C1 functionals on X with the form:

Iλ(u) = A(u) − λB(u), ∀ λ ∈ Λ,

where B(u) ≥ 0, ∀u ∈ X, and such that either A(u) → +∞ or B(u) → +∞
as ‖u‖ → ∞. If there exist v1, v2 ∈ X, such that

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > max
{

Iλ(v1), Iλ(v2)
}

, ∀λ ∈ Λ,

where Γ =
{

γ ∈ C([0, 1],X) : γ(0) = v1, γ(1) = v2

}
.

Then, for almost every λ ∈ Λ, there exists a sequence {vn} ⊂ X, such
that

(i) {vn} is bounded in X.
(ii) Iλ(vn) → cλ.
(iii) I ′

λ(vn) → 0 in the dual X∗ of X.

Moreover, the map λ → cλ is non-increasing and left continuous.

Next, we introduce two families of functional defined by

Φλ(u) =
1

2

∫
R3

|(−Δ)s/2u|2dx +
1

2

∫
R3

V (x)u2dx +
1

4

∫
R3

φu(x)u2dx − λ

∫
R3

F (u)dx

(2.8)
and

Φ∞
λ (u) =

1

2

∫
R3

|(−Δ)s/2u|2dx +
V (∞)

2

∫
R3

u2dx +
1

4

∫
R3

φu(x)u2dx − λ

∫
R3

F (u)dx,

(2.9)
for λ ∈ [1/2, 1].

Lemma 2.3. Assume that (V1)−(V3), (F1) and (F2) hold. Let u be a critical
point of Φλ in Hs(R3), then we have the following Pohozaev-type identity:

Pλ(u) : =
3 − 2s

2

∫
R3

|(−Δ)s/2u|2dx +
1
2

∫
R3

[
3V (x) + (∇V (x), x)

]
u2dx

+
3 + 2t

4

∫
R3

φu(x)u2dx − 3λ

∫
R3

F (u)dx = 0.

(2.10)

With the virtue of Pohozaev-type identity, we set Jλ(u) := (s+t)〈Φ′
λ(u),

u〉 − Pλ(u), then

Jλ(u) =
4s + 2t − 3

2

∫
R3

|(−Δ)s/2u|2dx +
1

2

∫
R3

[
(2s + 2t − 3)V (x) − (∇V (x), x)

]
u2dx

+
4s + 2t − 3

4

∫
R3

φu(x)u2dx − λ

∫
R3

[
(s + t)f(u)u − 3F (u)

]
dx,

(2.11)
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for λ ∈ [1/2, 1]. Moreover, we also let

J∞
λ (u) =

4s + 2t − 3
2

∫
R3

|(−Δ)s/2u|2dx +
(2s + 2t − 3)V (∞)

2
‖u‖2

2

+
4s + 2t − 3

4

∫
R3

φu(x)u2dx − λ

∫
R3

[
(s + t)f(u)u − 3F (u)

]
dx,

(2.12)
for λ ∈ [1/2, 1].

To state our results, we define

M :=
{

u ∈ Hs(R3)\{0} : Jλ(u) = 0
}

,

M∞
λ :=

{
u ∈ Hs(R3)\{0} : J∞

λ (u) = 0
}

,

and
m∞

λ := inf
u∈M∞

λ

Φ∞
λ (u).

Similar to Lemma 3.2 in [15], we have the following lemma.

Lemma 2.4. Assume that (F1), (F2) and (F4) hold. Then

Φ∞
λ (u) ≥ Φ∞

λ (uτ ) +
1 − τ4s+2t−3

4s + 2t − 3
J∞

λ (u) + λh(τ)‖u‖2
2, ∀ u ∈ Hs(R3),

τ ≥ 0, 0 ≤ λ ≤ 1, (2.13)

where

h(τ) :=
s

4s + 2t − 3
− τ2s+2t−3

2

(
1 − 2s + 2t − 3

4s + 2t − 3
τ2s

)
.

In view of Theorem 1.1 and Remark 3.11 in [15], Φ∞
1 has a minimizer

u∞
1 on M∞

1 , that is to say:

u∞
1 ∈ M∞

1 , (Φ∞
1 )′(u∞

1 ) = 0 and m∞
1 = Φ∞

1 (u∞
1 ). (2.14)

Lemma 2.5. Suppose that (V1)−(V3) and (F1)−(F3) hold. Then
(i) There exists τ̃ > 0 independent of λ, such that Φλ((u∞

1 )τ̃ ) < 0 for all
λ ∈ [1/2, 1].

(ii) There exists a positive constant κ0 independent of λ, such that for all
λ ∈ [1/2, 1]:

cλ := inf
γ∈Γ

max
θ∈[0,1]

Φλ(γ(θ)) ≥ κ0 > max{Φλ(0),Φλ((u∞
1 )τ̃ )},

where

Γ = {γ ∈ C([0, 1],Hs(R3)) : γ(0) = 0, γ(1) = (u∞
1 )τ̃}.

(iii) if (s + t)f(u)u ≥ 3F (u) ≥ 0 for u ≥ 0, then cλ and m∞
λ are non-

increasing on λ ∈ [1/2, 1].
The proof of Lemma 2.5 is standard, so we omit it.

Lemma 2.6. Suppose that (V1)−(V3) and (F1)−(F4) hold. Then there exists
a λ̄ ∈ [1/2, 1), such that cλ < m∞

λ for λ ∈ [λ̄, 1].
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Proof. We can easily check that Φλ((u∞
1 )τ ) is continuous with respect to

τ ∈ [0,∞). Then, for any λ ∈ [1/2, 1), we can choose τλ ∈ (0, τ̃), such that

Φλ((u∞
1 )τλ

) = max
τ∈[0,τ̃ ]

Φλ((u∞
1 )τ ).

Since Φ1/2((u∞
1 )τ ) → −∞ as τ → ∞, then there exists τ , such that

Φ1/2((u∞
1 )τ ) ≤ Φ1(u∞

1 ) − 1, ∀ τ ≥ τ . (2.15)

By (2.8) and the definition of τλ, we obtain

Φ1(u∞
1 ) ≤ Φλ(u∞

1 ) ≤ Φλ((u∞
1 )τλ

) ≤ Φ1/2((u∞
1 )τλ

), ∀ λ ∈ [1/2, 1],

which, together with (2.15), implies τλ < τ for λ ∈ [1/2, 1]. Let β0 =
infλ∈[1/2,1] τλ. If β0 = 0, then there exists a sequence {λn} ⊂ [1/2, 1], such
that

λn → λ0 ∈ [1/2, 1] and τλn
→ 0.

Then, we get
0 < c1 ≤ cλn

≤ Φλn
((u∞

1 )τλn
) = o(1),

which implies β0 > 0. Therefore

0 < β0 ≤ τλ < τ, ∀ λ ∈ [1/2, 1]. (2.16)

Set

λ := max

{
1
2
, 1 − β2s+2t

0 minβ0≤ϑ≤τ

∫
R3

[
V (∞) − V (ϑ−1x)

]|u∞
1 |2dx

2
∫
R3 F (τs+tu∞

1 )dx

}
,

(2.17)
then we have 1/2 ≤ λ < 1. By (2.8), (2.9), (2.13), (2.16), (2.17), and
Lemma 2.5 (iii), we have

m∞
λ ≥ m∞

1

= Φ∞
1 (u∞

1 ) ≥ Φ∞
1 ((u∞

1 )τλ
)

= Φλ((u∞
1 )τλ

) − 1 − λ

τ3
λ

∫
R3

F (τs+t
λ u∞

1 )dx

+
τ2s+2t−3
λ

2

∫
R3

[
V (∞) − V (τ−1

λ x)
]|u∞

1 |2dx

> cλ − 1 − λ

β3
0

∫
R3

F (τs+tu∞
1 )dx

+
β2s+2t−3

0

2
min

β0≤ϑ≤τ

∫
R3

[
V (∞) − V (ϑ−1x)

]|u∞
1 |2dx

≥ cλ, ∀ λ ∈ [λ, 1].

�

Lemma 2.7. Suppose that (V1)−(V3) and (F1)−(F3) hold. Let {un} be a
bounded (PS) sequence of Φλ, for λ ∈ [1/2, 1]. Then, there exists a subse-
quence of {un}, still denoted by {un} for convenience, an integer l ∈ N∪{0},
wk ∈ Hs(R3) for 1 ≤ k ≤ l, such that

(i) un ⇀ u0 with Φ′
λ(u0) = 0.

(ii) wk 	= 0 and 〈(Φ∞
λ )′wk, wk〉 = 0 for 1 ≤ k ≤ l.
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(iii) Φλ(un) → Φλ(u0) + Σl
i=1Φ

∞
λ (wi),

where we agree that in the case l = 0 the above holds without wk.

It is clear that (3.13) and (3.14) of Lemma 3.8 in [15] hold. So we can
prove Lemma 2.7 in a standard way, and we omit it here.

Lemma 2.8. Suppose that (V1)−(V3) and (F1)−(F4) hold. Then, for almost
every λ ∈ [λ̄, 1], there exists uλ ∈ Hs(R3)\{0}, such that

Φ′
λ(uλ) = 0, Φλ(uλ) = cλ. (2.18)

Proof. From (F1), (F3) and Lemma 2.5, we get that Φλ(u) satisfies the as-
sumptions of Proposition 2.2 with X = Hs(R3) and Iλ = Φλ. So for almost
every λ ∈ [1/2, 1], there exists a bounded sequence {un(λ)} ⊂ Hs(R3), de-
noted by {un} for simplicity, such that

Φλ(un) → cλ > 0, ‖Φ′
λ(un)‖ → 0.

From Lemma 2.7, there exist l ∈ N ∪ {0} and uλ ∈ Hs(R3), such that
Φ′

λ(uλ) = 0 and

un ⇀ uλ in Hs(R3), Φλ(un) → Φλ(uλ) + Σl
i=1Φ

∞
λ (wi),

where {wi}l
i=1 are critical points of Φ∞

λ . Since Φ′
λ(uλ) = 0, we get Jλ(uλ) = 0.

Combining (2.8) and (2.11), one has

Φλ(uλ) = Φλ(uλ) − 1
4s + 2t − 3

Jλ(uλ)

=
1

2(4s + 2t − 3)

∫
R3

[
2sV (x) + (∇V (x), x)

]
u2

λdx

+
λ

4s + 2t − 3

∫
R3

[
(s + t)f(uλ)uλ − (4s + 2t)F (uλ)

]
dx

≥ 0.

If l 	= 0, then we have

cλ = lim
n→∞ Φλ(un) = Φλ(uλ) + Σl

i=1Φ
∞
λ (wi) ≥ m∞

λ , ∀ λ ∈ [λ, 1],

which contradicts with Lemma 2.6. Thus, l = 0, and then from Lemma 2.7,
we get that un → uλ in Hs(R3) and Φλ(uλ) = cλ. �

3. Existence of Ground State Solutions

In this section, we are going to show that System (1.1) possesses ground state
solutions.

Proof of Theorem 1.2. From Lemma 2.8, we know that for a.e. λ ∈ [1/2, 1],
there has a nontrivial critical point uλ ∈ Hs(R3) of Φλ, with Φ′

λ(uλ) = 0 and
Φλ(uλ) = cλ. We can choose a sequence λn ∈ [1/2, 1] satisfying λn → 1, then
there exists a sequence of nontrivial critical points {uλn

} for Φλn
, denoted

by {un} for convenience, such that Φ′
λn

(un) = 0 and Φλn
(un) = cλn

.
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By (V3), (2.8) and (2.11), we obtain

cλn
= Φλn

(un) − 1
4s + 2t − 3

Jλn
(un)

=
1

2(4s + 2t − 3)

∫
R3

[
2sV (x) + (∇V (x), x)

]
u2

ndx

+
λn

4s + 2t − 3

∫
R3

[
(s + t)f(un)un − (4s + 2t)F (un)

]
dx

≥ λn

4s + 2t − 3

∫
R3

[
(s + t)f(un)un − (4s + 2t)F (un)

]
dx.

(3.1)

Then, we need to prove the boundness of {un} in Hs(R3). Arguing indirectly,
assume that ‖un‖ → ∞. Let vn = un/‖un‖, then ‖vn‖ = 1. If

δ := lim sup
n→∞

sup
y∈R3

∫
B2(y)

|vn|2dx = 0,

By the virtue of Lemma 2.1, we have un → 0 in Lq(R3) for all q ∈ (2, 2∗
s).

Set κ′ = κ/(κ − 1) and

Ωn :=
{

x ∈ R
3 :

f(un)
un

≤ γ0

2

}
.

Then we get ∫
Ωn

f(un)
un

v2
ndx ≤ γ0

2
‖vn‖2

2 ≤ 1
2
. (3.2)

On the other hand, from (F5), (3.1) and the Hölder inequality, one has

∫
R3\Ωn

f(un)

un
v2

ndx ≤
[∫

R3\Ωn

∣∣∣∣f(un)

un

∣∣∣∣
κ

dx

]1/κ

‖vn‖2
2κ′

≤ C1

( ∫
R3\Ωn

[
(s + t)f(un)un − (4s + 2t)F (un)

]
dx

)1/κ

‖vn‖2
2κ′

≤ C2‖vn‖2
2κ′ = o(1).

(3.3)
For (2.16), (2.17) and Φ′

λn
(un) = 0, we obtain

1 ≤ 1
‖un‖2

[∫
R3

(
|(−Δ)s/2un|2 + V (x)u2

n

)
dx +

∫
R3

φt
un

u2
ndx

]

= λn

∫
R3

f(un)
un

v2
ndx

= λn

∫
Ωn

f(un)
un

v2
ndx + λn

∫
R3\Ωn

f(un)
un

v2
ndx

≤ 1
2

+ o(1).

The contradiction implies that δ := lim supn→∞ supy∈R3

∫
B2(y)

|vn|2dx > 0.
Passing to a subsequence, we may assume the existence of yn ∈ R

3, such
that

∫
B2(yn)

|vn|2dx > δ
2 . Set wn(x) = vn(x + yn), then ‖wn‖ = ‖vn‖ = 1,
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and ∫
B1(0)

|wn|2dx >
δ

2
. (3.4)

Going if necessary to a subsequence, we obtain wn ⇀ w in Hs(R3), wn → w
in Lq

loc(R
3), 2 ≤ q < 2∗

s, wn → w a.e. on R
3. Clearly, (3.4) shows that w 	= 0.

Next we set ũn(x) = un(x + yn), then ũn/‖un‖ = wn → w a.e. on R
3,

w 	= 0. For x ∈ {y ∈ R
3 : w(y) 	= 0}, we have limn→∞ |ũn(x)| = ∞. It follows

from (2.8), (2.10) and 〈Φ′
λn

(un), un〉 = 0 that

s

3 − 2t

∫
R3

|(−Δ)s/2un|2dx − 1
2(3 − 2t)

∫
R3

(∇V (x), x)u2
ndx − Φλn

(un)

=
λnt

3 − 2t

∫
R3

[
f(un)un − 2F (un)

]
dx.

(3.5)
For (4.21) in [15], together with (F3) and (3.5), we have that

o(1) ≥ 1

‖un‖3
[

s

3 − 2t

∫
R3

|(−Δ)s/2un|2dx − 1

2(3 − 2t)

∫
R3

(∇V (x), x)u2
ndx − Φλn (un)

]

=
tλn

(3 − 2t)‖un‖3
∫
R3

[
f(un)un − 2F (un)

]
dx

=
tλn

(3 − 2t)‖ũn‖3
∫
R3

[
f(ũn)ũn − 2F (ũn)

]
dx

≥ 2stλn

(s + t)(3 − 2t)

∫
R3

F (ũn)

|ũn|3 w3
ndx → ∞.

(3.6)
This implies that {un} is bounded in Hs(R3). The rest proof is standard,
and we omit it. �

Proof of Theorem 1.3. Owing to Lemma 2.8, there exist two sequences of
{λn} ⊂ [λ̄, 1] and {uλn

} ⊂ Hs(R3), denoted by {un} for convenience, such
that

λn → 1, Φ′
λn

(un) = 0, Φλn
(un) = cλn

. (3.7)

By (V4), (2.8), (2.11) and (3.7), we get

c1/2 ≥ cλn
= Φλn

(un) − 1

4s + 2t − 3
Jλn

(un)

=
1

2(4s + 2t − 3)

∫
R3

[
2sV (x) + (∇V (x), x)

]
u2

ndx

+
λn

4s + 2t − 3

∫
R3

[
(s + t)f(un)un − (4s + 2t)F (un)

]
dx

≥ �0

2(4s + 2t − 3)
‖un‖2

2 +
λn

4s + 2t − 3

∫
R3

[
(s + t)f(un)un − (4s + 2t)F (un)

]
dx.

Which, together with (4.21) in [15], implies the boundedness of {‖un‖2}.
Next, we need to show

{ ∫
R3 |(−Δ)s/2un|2dx

}
is also bounded. Arguing indi-

rectly, assume that
∫
R3 |(−Δ)s/2un|2dx → ∞. Choose M0 > 1, such that

cλn
+

∫
R3

[
(2s + 2t − 3)(V (∞) − V (x)) + |(∇V (x), x)|]u2

ndx ≤ M0. (3.8)
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We set

τn = min

{
1,

( 6M0∫
R3 |(−Δ)s/2un|2dx

) 1
4s+2t−3

}
.

Then, from (2.8), (2.9), (2.11), (2.12) and (3.8), we have

Φ∞
λn

((un)τn
) ≤ Φ∞

λn
(un) − 1 − τ4s+2t−3

n

4s + 2t − 3
J∞

λn
(un)

= Φλn
(un) +

1

2

∫
R3

[
V (∞) − V (x)

]
u2

ndx

− 1 − τ4s+2t−3
n

4s + 2t − 3

[
Jλn

(un) +
1

2

∫
R3

[
(2s + 2t − 3)(V (∞) − V (x))

+ (∇V (x), x)
]
u2

ndx

]

≤ cλn
+

∫
R3

[
(2s + 2t − 3)(V (∞) − V (x)) +

∣∣(∇V (x), x)
∣∣]u2

ndx

≤ M0.

(3.9)
It is similar to the proof of (3.26) in [15], we can provide a contradiction by
(3.9). Hence {∫

R3 |(−Δ)s/2un|2dx} is also bounded, so {un} is also bounded
in Hs(R3). The rest proof is standard, and we omit it. �
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