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for Solving Linear and Nonlinear Fractional
Differential Equations
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Abstract. In this paper, a new approximation method for fractional dif-
ferential equations based on Mittag-Leffler function is developed. Finite
Mittag-Leffler function and its fractional-order derivatives are investi-
gated. An efficient technique for solving linear and nonlinear fractional
order differential equations is developed. The proposed method combines
Mittag-Leffler collocation method and optimization technique. Error es-
timation of the approximation is stated and proved. We present numer-
ical results and comparisons of previous treatments to demonstrate the
efficiency and applicability of the proposed method. Making use of small
number of unknowns, the resulting solution converges to the exact one
in the linear case and it has a very small error in the nonlinear case.
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1. Introduction

Fractional differential equations arise in different fields of science and engi-
neering (see, for example [1–3]). A deep theory of the existence and uniqueness
of solution to linear and nonlinear fractional differential equations has been
discussed by many authors (see, for example [4–6]). Numerical treatment of
most fractional differential equations becomes in the last two decays wide and
flourishing because no exact solution of such problems is available. Pedas and
Tamme [7] investigated the numerical solution of fractional differential equa-
tions with initial values by piecewise polynomial collocation methods. They
studied order of convergence and established super convergence effect for a
special choice of collocation points. Yan et al. [8] introduced an accurate nu-
merical technique for solving differential equations of fractional order. They
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introduced two approaches: the first is based on a direct substitution of the
fractional differential formula in the given problem. The second method is
based on insertion of the fractional differential equation of integral form to
obtain a fractional Adams-type method. Mittag-Leffler function becomes a
good mathematical formula to represent most observed facts in science and
engineering. It arises nowadays in many applications such as fractional re-
laxation and diffusion problem [9]. Arafa et al. developed an application of
the Mittag-Leffler function method for solving linear differential equations
with fractional order [10], nonlinear fractional differential equations [11] and
Lorenz system, [12]. Yasmin et al. [13] introduced truncated Mittag-Leffler
polynomials of exponential-based and discussed their properties. They estab-
lished the relation between these polynomials and Mittag-Leffler polynomials.
Arafa and Rida [14] presented numerical solutions of the fractional order of
coupled evolution equations making use of Adomian decomposition method.
They obtained approximate and analytic solutions for the problem. They de-
scribed the fractional derivatives in the Caputo sense and compared given
solutions with the traveling wave solutions.

In this article, we develop a new numerical approximation based on
Mittag-Leffler function. We state a new suitable formula of finite Mittag-
Leffler function and evaluate its derivative of fractional-order. We construct
a numerical method depends on Mittag-Leffler collocation approximation and
optimization technique. We apply the proposed method for solving linear and
nonlinear differential equations of fractional order. We discuss error analysis
and derive a formula for the error estimation of the approximation. We apply
the proposed method on some different examples to ensure the applicability
and efficiency of the proposed method.

This article is organized as follows. In Sect. 2, we introduce some neces-
sary definitions and give some properties of Mittag-Leffler function. In Sect. 3,
we define Mittag-Leffler function of integer degree and derive its fractional-
order derivatives. In Sect. 4, we develop approaches for handling linear and
nonlinear differential equations of fractional order using Mittag-Leffler collo-
cation optimization method (MCOM). In Sect. 5, we estimate the error of
the approximation. In Sect. 6, the proposed methods are applied to several
examples. Finally, conclusion is drawn in Sect. 7.

2. Basic Concepts

2.1. Some Definitions of Derivative in the Caputo Sense

Definition 2.1. [14] The Caputo fractional derivative Dα
z of order α > 0 is

given by

Dα
z f(z) =

1
Γ(m − α)

∫ z

0

(z − t)m−α−1f (m−1)dt, z > 0, (2.1)

where m − 1 < α ≤ m,m ∈ N. �
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The Caputo fractional derivative operator satisfies the following prop-
erties [15]: For constants ζk, k = 1, 2, , n, we have

Dα
z

n∑
k=1

ζkfk(z) =
n∑

k=1

ζkDα
z fk(z), (2.2)

and [14]

Dα
z zn =

Γ(n + 1)
Γ(n + 1 − F )

zn−α, n > α − 1. (2.3)

In fact If α is an integer, the Caputo differential operator will be identical
with the usual differential operator.

2.2. Some Properties and Relations of Mittag-Leffler Function

The Mittag-Leffler function of one-parameter is defined as [16]:

Eξ(z) =
∞∑

k=0

zk

Γ(ξk + 1)
, ξ > 0, z ∈ R. (2.4)

The Mittag-Leffler function of two-parameter is given by [16]

Eξ,η(z) =
∞∑

k=0

zk

Γ(ξk + η)
, ξ > 0, η > 0, z ∈ R. (2.5)

As a special cases, we have Eξ,1(z) = Eξ(z) and E1,1(z) = E1(z) = ez.

3. Finite Mittag-Leffler Function and its Fractional Derivative

Now, we define two-parameter finite Mittag-Leffler function of any integer n
by

Eξ,η
n (z) =

n∑
k=0

zk

Γ(ξk + η)
, ξ > 0, η > 0, z ∈ R, (3.1)

that is Eξ,η(z) = zn

Γ(ξn+η) + zn−1

Γ(ξ(n−1)+η) + · · ·+ z
Γ(ξ+η) + 1

Γ(η) , so, we can write

Eξ,η
n (z) =

zn

Γ(ξn + η)
+ polynomial of lower degrees. (3.2)

The fractional-order derivative of Mittag-Leffler function (3.1) can be derived
making use of (2.3) to be

Dα
z Eξ,η

n (z) =
n∑

k=0

Dα
z zk

Γ(ξk + η)
=

n∑
k=0

Γ(k + 1)
Γ(k + 1 − α)

zk−α

Γ(ξk + η)
, (3.3)

ξ > 0, η > 0, z ∈ R.
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4. Derivation of the Method

The main aim of this section is to develop numerical treatment for handling
linear and nonlinear fractional differential equations. The method, namely
Mittag collocation optimization method (MCOM), uses the two- parameters
Mittag-Leffler function introduced in Eq. (3.1) as a basis function of approx-
imation.

4.1. Linear Fractional Differential Equations

We consider the linear fractional differential equation with variable coeffi-
cients of the form:

ν∑
k=1

ck(z)Dαk
z u(z) = f(z), c1(z) = 1, α1 > α2 > · · · > αν−1 > αν = 0, (4.1)

and z ∈ [0, 1]. This fractional differential equation is of fractional order α1.
It must be associated with the initial conditions

u(i)(0) = ϕi, i = 0, 1, . . . , �α1�. (4.2)

The ceiling function �α1� in this equation denotes the smallest integer that
is ≥ α1. All coefficients ck(z), k = 1, 2, . . . , ν, constants A = {ϕi}�α1�

i=0 and the
functions f(z) are given.
Now, assume that u(z) is approximated as:

un(z) =
n∑

�=0

a�E
ξ,η
� (z), (4.3)

where A = {a�}n
�=0 are unknowns and {Eξ,η

� (z)}n
�=0 are defined in equation

(3.1).
Now, if we approximate u(z) at selected points zj , j = 0, 1, , n, Eq. (4.1)
becomes:

∑ν
k=1 ck(z)

∑n
�=0 a�D

αk
z Eξ,η

� (z) = f(z),
n∑

�=0

a�

ν∑
k=1

ck(zj)Dαk
z Eξ,η

� (zj) = f(zj), zj , j = 0, 1, , n, (4.4)

where Dα
z Eξ,η

� (z) is defined in (3.3). The initial conditions (4.2) can be ap-
proximated also by

n∑
�=0

a�D
i
zE

ξ,η
� (z0) = ϕi, i = 0, 1, . . . , �α1�. (4.5)

The unknown values A = {a�}n
�=0 can be obtained by solving (4.4) together

with (4.5). Since the initial condition (4.2) corresponds to (4.5) is multiple,
expressing (4.4)–(4.5) as a square linear system of equation seems to be not
available. So, we shall express it as an unconstrained optimization problem
with a least squares cost function,

R̄ =
n∑

j=1

[ ν∑
k=1

ck(zj)Dαk
z Eξ,η

� (zj) − f(zj)
]2

+
�α1�∑
i=0

[ n∑
�=0

a�D
i
zE

ξ,η
� (z0) − ϕi

]2

.

(4.6)
We shall use Leap frog optimization procedure [15] for solving (4.6).



MJOM Efficient Mittag-Leffler Collocation Method for Solving Linear Page 5 of 15 130

4.2. Nonlinear Fractional Differential Equations

We consider the nonlinear fractional-order differential equation:

Dα1
z u(z) = f

(
Dα2

z u(z),Dα3
z u(z), . . . , Dαν

z u(z), u(z), z
)
, α1

> α2 > · · · > αν−1 > αν , z ∈ [0, 1],
(4.7)

subject to the initial conditions

u(i)(0) = ϕi, i = 0, 1, . . . , �α1�, (4.8)

the right hand side function f , is nonlinear in general and constants {ϕi}�α1�
i=0

are given.
Now, if we use Eq. (4.3) to approximate u(z) at selected points zj , j = 0, 1, , n,
Eq. (4.8) becomes:

n∑
�=0

a�D
α1
z Eξ,η

� (z) = f

( n∑
�=0

a�D
α2
z Eξ,η

� (z),
n∑

�=0

a�D
α3
z Eξ,η

� (z), . . . ,

n∑
�=0

a�D
αν
z Eξ,η

� (z),
n∑

�=0

a�E
ξ,η
� (z), z

)
,

(4.9)

where Dα
z Eξ,η

� (z) is defined in (3.3). The initial conditions can also be ap-
proximated by

n∑
�=0

a�D
i
zE

ξ,η
� (z0) = ϕi, i = 0, 1, . . . , �α1�. (4.10)

So, to obtain the unknown values {a�}n
�=0, we construct that the following

nonlinear programming problem minimize

R̄ =
[ n∑

�=0

a�D
α1
z Eξ,η

� (z) − f

( n∑
�=0

a�D
α2
z Eξ,η

� (z),
n∑

�=0

a�D
α3
z Eξ,η

� (z), . . . ,

n∑
�=0

a�D
αν
z Eξ,η

� (z),
n∑

�=0

a�E
ξ,η
� (z), z

)]2

+
[ �α1�∑

i=0

n∑
�=0

a�D
i
zE

ξ,η
� (z0) − ϕi

]2

.

(4.11)
We shall use Leap frog optimization procedure [17] with the cost function
R to obtain the unknown values {a�}n

�=0 and then the approximate solution
(4.3) of the problem.

5. Error Analysis

Theorem 5.1. Let u(z) ∈ C∞[0, 1] be approximated by (4.3), then for every
z ∈ [0, 1], there exists � ∈ [0, 1], such that

u(z) − un(z) =
Γ
(
ξ(n + 1) + η

)
(n + 1)!

Eξ,η
n+1(z)u(n+1)(�), (5.1)
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and the absolute estimated error,

||u(z) − un(z)|| ≤ Γ
(
ξ(n + 1) + η

)
(n + 1)!

Eξ,η
n+1(z)Max�∈[0,1]||u(n+1)(�)||. (5.2)

Proof. Let u(z) ∈ C∞[0, 1] be approximated by un(z) =
∑n

�=0 a�(z)Eξ,η
� (z).

Define the function: T (z) = u(z) − un(z) − θEξ,η
n+1(z). We can choose the

parameter θ such that the equation T (z) = 0 has a solution z0 with the
property Eξ,η

n+1(z) �= 0. In this case, we can write

u(z0) − un(z0) − θEξ,η
n+1(z0) = 0, so

θ =
u(z0) − un(z0)

Eξ,η
n+1(z0)

. (5.3)

Since u(z) ∈ C∞[0, 1], Eξ,η
n (z0) ∈ Cn[0,∞] and Eξ,η

n+1(z0) ∈ Cn+1[0,∞], thus,
T (z) ∈ Cn+1[0, 1] and so its (n+1) th order derivative, namely Tn+1(z), has
at least one root, that is

Tn+1(�) = un+1(�) − θ[Eξ,η
n+1(�)]n+1 − [Eξ,η

n (�)]n = 0, (5.4)

by (3.2) , the last term of (5.4), [Eξ,η
n (�)]n = 0. Also from (3.2), we have

Eξ,η
n+1(�) = �n+1

Γ(ξ(n+1)+η)+ polynomial of lower degrees, so

[Eξ,η
n+1(�)]n+1 = (n+1)n(n−1)3(2)1

Γ(ξ(n+1)+η) = (n+1)!
Γ((ξ(n+1))+η) .

Substituting in (5.4), we obtain

θ =
Γ((ξ(n + 1)) + η)

(n + 1)!
un+1(�). (5.5)

Equations (5.3)–(5.5) yield

u(z0) − un(z0) =
Γ((ξ(n + 1)) + η)

((n + 1)!
Eξ,η

n+1(z0)un+1(�) (5.6)

and so ||u(z0) − un(z0)|| = Γ((ξ(n+1))+η)
((n+1)! ||Eξ,η

n+1(z0)||||un+1(�)||.
Finally, we take the maximum of ||un+1(�)|| to obtain (5.2). �

Theorem 5.2. Let u(z) ∈ C∞[0, 1] satisfies the linear fractional differential
Eq. (4.1)and u(z) is approximated by (4.3) then for every z ∈ [0, 1], there
exists � ∈ [0, 1] such that the residual is estimated by

R(z) ≤ Γ
(
ξ(n + 1) + η

)
(n + 1)!

Eξ,η
n+1(z)

[ ν∑
k=1

ck(z)Dαk
z Eξ,η

n+1

]
Max�∈[0,1]||u(n+1)(�)||.

(5.7)

Proof. Let un(z) approximates u(z), so by Eq. (4.1) we have
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ν∑
k=1

ck(z)Dαk
z un(z) = f(z). (5.8)

Subtracting (5.8) from (4.1), we obtain
Re(z) =

∑ν
i=1 ci(z)Dαi

z [u(z) − un(z)] = 0,
Making use of (5.2),we have (5.7) Where Dα

z is defined in (3.3). �

6. Numerical Experiments

It is well known that not all the fractional differential equations have exact
solutions, especially if it is nonlinear. If the exact solution u(z) exists, we
measure the error by

Eu =
1
n

[ n∑
k=0

[
u(zk) − un(zk)

]2] 1
2

, (6.1)

otherwise, if the exact solution does not exist, we use the optimization error
index, that is, the value of the minimized cost function R̄ of Eq. (4.6) in
linear case or (4.11) in nonlinear case. Some numerical examples are presented
below.
Problem 6.1 Consider we have the following problem:

D
1
2
z u − 2u = f(z), z ∈ [0, 1], (6.2)

where f(z) = Γ(3)
Γ(5/2)z

3/2 − 2z2 and u(0) = 0. The exact solution of this
problem is u(z) = z2. We solve this problem with the proposed method,
taking n = 2, that is

u2(z) =
2∑

�=0

a�E
ξ,η
� (z) = a0E

ξ,η
0 (z) + a1(z)Eξ,η

1 (z) + a2E
ξ,η
2 (z), (6.3)

D
1
2
z u2(z) = a1D

1
2
z Eξ,η

1 (z) + a2D
1
2
z Eξ,η

2 (z). (6.4)

Substituting in (6.2):

a1D
1
2
z Eξ,η

1 (z) + a2D
1
2
z Eξ,η

2 (z) − 2
[
a0E

ξ,η
0 (z)

+ a1E
ξ,η
1 (z)a2E

ξ,η
2 (z)

]
= f(z).

Making use of (3.1)–(3.3), we obtain

a1
D

1
2
z z

Γ(ξ + η)
+ a2

[
D

1
2
z z

Γ(ξ + η)
+

D
1
2
z z2

Γ(2ξ + η)

]
− 2a0

1
Γ(η)

−2a1

[
1

Γ(η)
+

z

Γ(ξ + η)

]
− 2a2

[
1

Γ(η)
+

z

Γ(ξ + η)
+

z2

Γ(2ξ + η)

]
= f(z).
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Making some arrangements and using (2.3), we obtain

−2a0

Γ(η)
+ a1

[ −2
Γ(η)

+
−2z

Γ(ξ + η)
+

1
Γ(ξ + η)

Γ(2)
Γ( 3

2 )
z

1
2

]

+ a2

[ −2
Γ(η)

− 2z

Γ(ξ + η)
− 2z2

Γ(2ξ + η)
+

1
Γ(ξ + η)

Γ(2)
Γ( 1

2 )
z

3
2

+
1

Γ(2ξ + η)
Γ(3)
Γ( 5

2 )
z

3
2

]
= −2z2 +

Γ(3)
Γ( 5

2 )
z

3
2 .

(6.5)

Since n = 2, we choose the following set of points: z0 = 0, z1 = 1
2 , z2 = 1,

substituting in (6.5) with z1, z2 and applying the initial condition in (6.2) for
z0, we have

−2a0

Γ(η)
+ a1

[ −2
Γ(η)

+
−2( 1

2 )
Γ(ξ + η)

+
1

Γ(ξ + η)
Γ(2)
Γ( 3

2 )

(1
2
) 1

2

+a2

[ −2
Γ(η)

− 2( 1
2 )

Γ(ξ + η)
− 2( 1

2 )2

Γ(2ξ + η)
+

1
Γ(ξ + η)

Γ(2)
Γ( 3

2 )

(1
2
) 1

2

+
1

Γ(2ξ + η)
Γ(3)
Γ( 5

2 )

(1
2
) 3

2

]
= −2

(1
2
)2 +

Γ(3)
Γ( 5

2 )

(1
2
) 3

2

]
, (6.6)

−2a0

Γ(η)
+ a1

[ −2
Γ(η)

+
−2

Γ(ξ + η)
+

1
Γ(ξ + η)

Γ(2)
Γ( 3

2 )

]
+ a2

[ −2
Γ(η)

− 2
Γ(ξ + η)

− 2
Γ(2ξ + η)

+
1

Γ(ξ + η)
Γ(2)
Γ( 3

2 )
+

1
Γ(2ξ + η)

Γ(3)
Γ( 5

2 )

]
= −2 +

Γ(3)
Γ( 5

2 )
, (6.7)

a0 + a1 + a2 = 0. (6.8)

Selecting ξ = η = 1, solving the linear system (6.6)–(6.8) for a0, a1 and a2,
we obtain

−2a0 + a1

[
− 3 +

1
Γ( 3

2 )

(1
2
) 1

2

]
+ a2

[−13
4

+
1

Γ( 3
2 )

(1
2
) 1

2

+
1

Γ( 5
2 )

(1
2
) 3

2

]
= −1

2
+

2
Γ( 5

2 )

(1
2
) 3

2 , (6.9)

−2a0 + a1

[
− 4 +

1
Γ( 3

2 )

]
+ a2

[
− 5 +

1
Γ( 3

2 )
+

1
Γ( 5

2 )

]

= −2 +
2

Γ( 5
2 )

, (6.10)

a0 + a1 + a2 = 0. (6.11)

Solving this linear system of equations, we have a0 = 0, a1 = −2 and a2 = 2.
Thus, by Eq. (6.3), we have

u2(z) = a0E
ξ,η
0 (z) + a1(z)Eξ,η

1 (z) + a2E
ξ,η
2 (z)

= −2
[

1
Γ(1)

+
z

Γ(2)

]
+ 2

[
1

Γ(1
+

z

Γ(2)
+

z2

Γ(3)

]
= 2

[
z2

Γ(3)

]
= z2,

(6.12)
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Figure 1. Absolute error of problem 6.2, a α = 1, b α = 0.8
and c α = 0.5, n = 3, with some values of power of the exact
solution p

which is the exact solution. Any other choices for 0 ≤ ξ, η ≤ 1 and will give
the same solution.
Problem 6.2 We consider the next problem

Dα
z u + u =

Γ(p + 1)
Γ(p + 1 − α)

zp−α, z ∈ [0, 1], α ∈ (0, 1], (6.13)

with u(0) = 0. The exact solution of this problem is u(z) = zp.
A special case of this problem is discussed in [18] with p = 3.6. We introduce
in Fig. 1 the absolute error of this problem for some values of the fraction
order of differentiation α and the power of the exact solution p. In Fig. 2,
we plot log2e vis log2h to illustrate the order of convergence, with h = 1

n .
We take p = 3.6 with (a) α = 0.8 and (b) α = 0.25. We plot also the line
y = 6x − 4 as a guided line. We see that the guided line is parallel to the
approximation errors lines, which confirms that the rate of convergence is of
(h6), which is very good rate. The rate of convergence obtained for the same
data in [18] is approximately (h3).

In Table 1, we introduce the effects of Mittag-Leffler parameters and in
the approximation error. The error indices reported in this table are the error
Eu measured by Eq. (6.1) and the value of the minimized cost function R̄
of Eq. (4.6). We notice that R̄ is close to zero. This agrees with the residual
estimate R of Eq. (5.7) which is also zero.
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Figure 2. The experimental order of convergence for problem
6.2, a α = 0.8 and b α = 0.25

Table 1. Error indices for problem 6.2, n = p = 3 and α = 0.8

ξ η Eu R̄

0.0 9.48e-15 7.13e-27
0.5 0.0 1.69e-14 2.27e-26
1.5 9.16e-12 7.59e-21
2.0 4.55e-12 2.42e-21

0.5 3.13e-15 6.33e-28
0.5 1.0 7.58e-15 6.13e-27

1.5 5.77e-14 2.84e-25

Problem 6.3 Consider the problem

Dα
z u − z3u2 =

Γ(p + 1)
Γ(p + 1 − α)

zp−α − z2p+3, z ∈ [0, 1], α ∈ (0, 1], (6.14)

with u(0) = 0. The exact solution of this problem is u(z) = zp.
A simple case of this problem is solved in [19] with p = 1. Figure 3 illustrates
the absolute error for this problem for some values of the fraction order of
differentiation α and the power of the exact solution p with ξ = 1, and η = 0.
Sakar et al. in [19] obtained (10−7) of absolute error for p = 1 and α = 1 and
n = 4, which play agreement of our results.

In Table 2, we introduce the effects of Mittag-Leffler parameters ξ and η
in the approximation error. The error indices reported in this table are error
Eu measured by Eq. (6.1) and the value of the minimized cost function R̄ of
Eq. (4.11).



MJOM Efficient Mittag-Leffler Collocation Method for Solving Linear Page 11 of 15 130

0 0.5 1
0

0.5

1

1.5

2

2.5

3
x 10−7

z

A
bs

ol
ut

e 
er

ro
r

(a)

 p=2
p=3
 p=4

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−8

z

A
bs

ol
ut

e 
er

ro
r

(b)

0 0.5 1
0

0.5

1

1.5

2

2.5

3
x 10−7

z
A

bs
ol

ut
e 

er
ro

r

(c)

Figure 3. Absolute error of problem 6.3, a α = 1, b α = 0.8
and c α = 0.5, n = 4, with some values of power of the exact
solution p

Table 2. Error indices for problem 6.3, n = p = 3 and α = 0.8

ξ η Eu R̄

0.0 1.0 1.78e-07 1.79e-13
0.5 5.67e-08 1.81e-14
1.0 1.88e-07 2.04e-13

0.5 0.5 1.89e-07 1.67e-13
0.0 8.45e-08 4.96e-14
1.0 1.07e-07 7.76e-14

1.0 0.5 1.32e-07 9.34e-14
0.0 8.22e-08 5.07e-14

Problem 6.4 Consider the problem

D2.5
z u − zu2 =

Γ(p + 1)
Γ(p + 1 − α)

zp−α − z2p+3 = 12
√

z

π
− z7, z ∈ [0, 1], (6.15)

with u(0) = 0, u′(0) = 0 and u(1) = 1. The exact solution of this problem is
u(z) = z3.

In Table 3, we introduce the effects of Mittag-Leffler parameters ξ and
η in the approximation error. We notice that the error Eu is (10−9). These
results are compared to (10−7) obtain by Jia et al. [20]. This shows that our
results are more accurate.
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Table 3. Error indices for problem 6.4, n = 3 and α = 0.8

ξ η Eu R̄

0.0 1.0 5.24854e-09 3.5069e-15
0.5 1.67066e-09 3.8790e-15

1.0 1.0 3.70904e-09 1.1594e-15
1.0 4.49112e-09 3.2482e-15

0.5 0.5 4.88756e-09 2.1382e-15
0.0 5.17359e-10 2.4774e-16
1.0 3.70904e-09 1.1594e-15

1.0 0.5 1.68007e-09 7.9414e-16
0.0 5.74088e-10 2.8714e-16

Table 4. The optimization error index R̄ for problem 6.5,
n = 3

ξ η α = 1.3 α = 1.1 α = 1.0 α = 0.8 α = 0.5

0.0 1.0 5.36e-14 9.45e-14 1.21e-13 1.30e-13 1.19e-13
0.5 5.43e-15 9.56e-15 1.23e-14 1.32e-14 1.21e-14
1.0 4.54e-14 1.15e-13 1.82e-13 2.33e-13 2.26e-13

0.5 0.5 4.48e-14 7.42e-14 8.77e-14 8.36e-14 7.55e-14
0.0 8.59e-15 1.75e-14 2.45e-14 2.06e-14 2.91e-14
1.0 4.25e-14 1.31e-13 2.22e-13 3.10e-13 2.65e-13

1.0 0.5 2.59e-14 8.79e-14 1.51e-13 2.01e-13 1.86e-13
0.0 4.16e-14 1.32e-13 7.46e-14 5.39e-13 2.05e-14

Problem 6.5 Consider the Riccati equation of fractional order

Dα
z u = −u3z + 1, z ∈ [0, 1], α ∈ (0, 2], (6.16)

with u(0) = 0, u(1) = e2−1
e2+1 and the exact solution when α = 1 is u(z) =

e2z−1
e2z+1 .

A special case of this problem was considered in [21] and [22] restricting
the fraction order to α ∈ (0, 1] with only first boundary condition. Jafari [21]
applied the Legendre wavelet, whereas [22] applied Bernoulli wavelet approx-
imations. Since the general exact solution of this problem is not available for
any fraction order differentiation α, we introduce in Table 4, the optimization
error index of Eq. (4.11) to ensure the efficiency of the proposed method. In
Fig. 4, we plot the approximate solution at some selected values of α. From
this figure, we notice that these solutions converge to the exact solution as α
tends to 1 from right as well as from left. Also, we see that the two boundary
conditions are satisfied at each value of α. This means that the proposed
method is efficient.
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Figure 4. The approximate solution of problem 6.5 for dif-
ferent values of the differentiation order α

7. Conclusion

In this paper, a new approximation for functions based on Mittag-Leffler
function is derived and applied together with the collocation method and
optimization techniques to numerically solving the variable coefficients non-
linear and linear ordinary fractional differential equations.

The analysis and numerical examples introduced in this work yield that
our proposed method gives promising results. In the linear case, the proposed
method attains the exact solution when it is applied manually as in Prob-
lem 6.1. If the proposed method applied numerical by computer MATLAB
program, the error converges to the machine error using small number of
unknowns as in Problem 6.2, (see Fig. 2 and Table 1). In the nonlinear case,
the proposed method obtained comparable results with previous treatments
at small number of unknowns and it is more accurate in most situations (see
results of Problem 6.3–6.5).

The proposed method can be used easily to solve other types of frac-
tional differential equations and related problems.
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