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Geometric Constructibility of Polygons
Lying on a Circular Arc
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Abstract. For a positive integer n, an n-sided polygon lying on a circular
arc or, shortly, an n-fan is a sequence of n + 1 points on a circle going
counterclockwise such that the “total rotation” δ from the first point to
the last one is at most 2π. We prove that for n ≥ 3, the n-fan cannot be
constructed with straightedge and compass in general from its central
angle δ and its central distances, which are the distances of the edges
from the center of the circle. Also, we prove that for each fixed δ in the
interval (0, 2π] and for every n ≥ 5, there exists a concrete n-fan with
central angle δ that is not constructible from its central distances and
δ. The present paper generalizes some earlier results published by the

second author and Á. Kunos on the particular cases δ = 2π and δ = π.
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1. Introduction and Our Results

A Short Historical Survey

With the exception of squaring the circle, not much research interest was paid
to geometric constructibility problems for one and a half centuries after the
Gauss–Wantzel Theorem in [7], which completely described the constructible
regular n-gons. This can be well explained by the fact that most of the ancient
constructibility problems as well as constructing triangles from various given
data are too elementary and, furthermore, nowadays it does not require too
much skill to solve them with the help of computer algebra in few minutes.
This is exemplified by the textbooks Czédli [2] and Czédli and Szendrei [4],
where more than a hundred constructibility problems are solved.

It was Schreiber [6] who revitalized the research of geometric con-
structibility by an interesting non-trivial problem, the constructibility of
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Figure 1. A 3-fan, that is, a three-sided polygon lying on a
circular arc, and a “zigzag polygon”, which is not investi-
gated in the paper

cyclic (also known as inscribed) polygons from their side lengths. Further-
more, he pointed out that this problem requires a variety of interesting tools
from algebra and geometry. The first complete proof of his theorem on the
non-constructibility of cyclic n-gons from their side lengths for every n ≥ 5
used some involved tools even from analysis; see Czédli and Kunos [5].

Polygons on a Circular Arc

Let n ∈ N = {1, 2, 3, . . . }. By an n-sided polygon lying on a circular arc
or, shortly, by an n-fan we mean a planar polygon A = 〈A0, A1, . . . , An〉 ∈
(R2)n+1 such that the vertices A0, . . . , An, in this order, lie on the same cir-
cular arc, see on the right of Fig. 1. The short name “n-fan” is explained
by the similarity with a not fully open hand fan. Some important real num-
bers that determine an n-fan are also given in Fig. 1; the central distances
d1, . . . , dn of the sides from the center C of the circular arc, the central angle
δ ∈ (0, 2π] = {r ∈ R : 0 < r ≤ 2π}, and the radius r are worth separate men-
tioning here. Like in the earlier papers Schreiber [6], Czédli and Kunos [5],
and Czédli [3], an easy argument based on properties of continuous real func-
tions shows that the ordered tuple 〈δ; d1, . . . , dn〉 determines the n-fan up
to isometry and a permutation of the sides, provided that 0 < δ < 2π or
n ≥ 3. We denote by Fn

cd(δ; d1, . . . , dn) the n-fan determined by this tuple;
the subscript comes from “central distances”. For the central angle δ, we
always assume that 0 < δ ≤ 2π. Furthermore, we always assume that our
n-fans are convex in the sense that the angle ∠(Ai−1AiAi+1) at Ai con-
tains C for i ∈ {1, . . . , n − 1}. If δ = 2π, then we assume also that the
angle ∠(An−1A0A1) at A0 = An contains C. Convexity means that “zigzag
polygons” like the small one on the left of Fig. 1 are not allowed. With
the notation R

+ = {x ∈ R : x > 0}, note that there are (n + 1)-tuples
〈δ, d1, . . . , dn〉 ∈ (0, 2π] × (R+)n for which Fn

cd(δ, d1, . . . , dn) does not exist.



MJOM Geometric Constructibility of Polygons Page 3 of 14 133

However, similarly to Czédli and Kunos [5] and Czédli [3], it follows from
continuity that, for n ∈ N,

if n ≥ 3 or δ < 2π, and all the ratios di/dj are sufficiently
close to 1, then Fn

cd(δ, d1, . . . , dn) exists and it is unique. (1.1)

Constructibility

In this paper, constructibility is always understood as the classical geo-
metric constructibility with straightedge and compass. (We prefer the word
“straightedge” to “ruler”, because it describes the permitted usage better.)
Due to the usual coordinate system of the plane, we can assume that a con-
structibility problem is always a task of constructing a real number t from
a sequence 〈t1, . . . , tm〉 of real numbers. Geometrically, this means that we
are given the points 〈0, 0〉, 〈t1, 0〉, . . . , 〈tm, 0〉 in the plane and we want to
construct the point 〈t, 0〉. Angles are also given by real numbers. Whenever
we say that the central angle δ is given, this means that the real number
p := cos(δ/2) is given. From the perspective of constructibility, any other
usual way of giving δ is equivalent to giving p, that is the point 〈p, 0〉. The
advantage of using p = cos(δ/2) ∈ [−1, 1) over, say, cos δ is that p uniquely
determines δ ∈ (0, 2π]. As opposed to the constructibility of a concrete point
from other concrete points, the concept of constructibility in general is more
involved; the reader may want to but need not see Czédli [3] and Czédli and
Kunos [5] for a rigorous definition. The reader of this paper may safely assume
that “constructible in general” means “constructible for all meaningful data”.

Our Results

Our first target is to decide whether the n-fan Fn
cd(δ, d1, . . . , dn) can be con-

structed from 〈δ, d1, . . . , dn〉 in general. We are going to prove the following.

Theorem 1.1. The n-fan Fn
cd(δ, d1, . . . , dn) is geometrically constructible in

general from 〈cos(δ/2), d1, . . . , dn〉 if and only if n ∈ {1, 2}. Furthermore, if
n ≥ 3, then there exist rational numbers p = cos(δ/2), d1, . . . , dn such that
|{d1, . . . , dn}| ≤ 2 holds and the n-fan Fn

cd(δ, d1, . . . , dn) exists, but this n-fan
cannot be constructed from 〈p, d1, . . . , dn〉.

For many values of n, the inequality |{d1, . . . , dn}| ≤ 2 above can easily
be strengthened to the equality |{d1, . . . , dn}| = 1. For example, for n = 3 and
δ = 2π/3, where p = cos(δ/2) = 1/2, even the 3-fan F 3

cd(2π/3, 1, 1, 1) cannot
be constructed; this follows trivially from the Gauss–Wantzel Theorem, [7],
from which we know that the regular nonagon (also known as 9-gon) cannot
be constructed. Note that this easy argument is not applicable if, say, n is a
power of 2 or n = 170 = 2 · 5 · 17. Note also that the constructibility from
rational parameters is equivalent to the constructibility from 〈1〉, that is,
from the points 〈0, 0〉 and 〈1, 0〉.

In view of earlier results where δ was fixed as 2π or π, it is reasonable
to consider the problem also for the case where δ is fixed and only the side
lengths d1, . . . , dn are “general”. In particular, if δ is a constructible angle
like π, π/3 or π/2, then we can consider it only as a piece of information
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rather than a part of the data. As a preparation for our second theorem, we
introduce the following notation for δ ∈ (0, 2π] and m ∈ N:

Nnum(δ) := {n ∈ N : there exist d1, . . . , dn ∈ R
+ such that Fn

cd(δ, d1, . . . , dn)
also exists and it is uniquely determined, but it is

not constructible from 〈cos(δ/2), d1, . . . , dn〉}, and

Nan(m) := {δ ∈ (0, 2π] : m ∈ Nnum(δ)}.

The superscripts above come for “numbers” and “angles”, respectively, while
“N” comes from the prefix “non” in “non-constructible”. As usual, (0, 2π)
stands for the open interval {r ∈ R : 0 < r < 2π} of real numbers. Now, we
are in the position to formulate our second statement.

Theorem 1.2. The following five assertions hold.
(i) Nnum(2π) = {3, 5, 6, 7, 8, . . . }. In particular, 2π ∈ Nan(3).
(ii) Nnum(π) = {4, 5, 6, 7, . . . }. In particular, π /∈ Nan(3).
(iii) For every δ ∈ (0, 2π] such that cos(δ/2) is transcendental, we have that

Nnum(δ) = {3, 4, 5, 6, . . . } and, in particular, δ ∈ Nan(3).
(iv) For every δ ∈ (0, 2π), {4, 5, 6, . . . } ⊆ Nnum(δ) ⊆ {3, 4, 5, 6, . . . }.
(v) For 5 ≤ n ∈ N, Nan(n) = (0, 2π] but Nan(4) = (0, 2π).

Next, we formulate a statement on Nan(3); it is not included in Theo-
rem 1.2.

Proposition 1.3. For k,m ∈ N, let

A
(m)
k =

{
i1/m

j
: 1 ≤ j ≤ k and 1 ≤ i < jm

}
.

With this notation, whenever |cos(δ/2)| belongs to A
(1)
1000 ∪ A

(2)
100, then δ ∈

Nan(3).

Remark 1.4. Note that if either δ ∈ (0, 2π) and n ∈ N \ Nnum(δ), or δ = 2π
and 3 ≤ n ∈ N \ Nnum(δ), then for every n-tuple 〈d1, . . . , dn〉 ∈ (R+)n, the
n-fan Fn

cd(δ, d1, . . . , dn) is constructible from 〈cos(δ/2), d1, . . . , dn〉, provided
it exists.

It is a surprising gap in 1.2(i) that 4 does not belong to Nnum(2π). In
spite of Theorem 1.2, we do not have a satisfactory description of Nan(3).
Note that it follows from Proposition 1.3 that{

jπ

4
: 4 	= j ∈ {1, 2, . . . , 7}

}
∪

{
kπ

6
: 6 	= k ∈ {1, 2, . . . , 11}

}
⊆ Nan(3).

We could let j and k run up to 8 and 12, respectively, but the inclusion above
for j = 8 and k = 12 follows from Theorem 1.2(i), not from Proposition 1.3.

The n-fan determined by its central angle δ and its side lengths
a1, . . . , an, see Fig. 1, will be denoted by Fn

sl (δ, a1, . . . , an); the subscript
comes from “side lengths”. Due to the Limit Theorem from Czédli and
Kunos [5], the constructibility problem for Fn

sl (δ, a1, . . . , an) is easier than
that for Fn

cd(δ, d1, . . . , dn). This fact and space considerations explain that
the present paper contains only the following result on side lengths.
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Proposition 1.5. For n ∈ N, the n-fan Fn
sl (δ, a1, . . . , an) is constructible in

general from 〈δ, a1, . . . , an〉 ∈ (0, 2π) × (R+)n if and only if n ≤ 2.

Remark 1.6. For a fixed δ, the situation can be different. We know from
school and Czédli and Kunos [5] or Schreiber [6] that F 3

sl(2π, a1, a2, a3)
and F 4

sl(2π, a1, . . . , a4) can be constructed from 〈a1, a2, a3〉 and 〈a1, . . . , a4〉,
respectively, in general. On the other hand, we know from Czédli [3, The-
orem 1.1(v)] that F 3

sl(π, 1, 2, 3) exists but it cannot be constructed from its
side lengths.

Outline

The rest of the paper is devoted to the proofs of our theorems and also to
some additional statements that make these theorems a bit stronger by tailor-
ing special conditions on possible data determining non-constructible n-fans.
Section 2 lists some well-known concepts, notations, and facts from algebra
for later reference; readers familiar with irreducible polynomials and field
extensions may skip most parts of this section. Section 3 contains the above-
mentioned additional statements as propositions, and it contains almost all
the proofs of the paper.

2. A Short Overview of the Algebraic Background

A polynomial is primitive if the greatest common divisor of its coefficients is
1. The following well-known statement is due to C. F. Gauss; we cite parts
(i) and (iii) from Cameron [1, Theorem 2.16 (page 90) and Proposition 7.24
(page 260)], while (ii) follows from (iii).

Lemma 2.1. If R is a unique factorization domain with field of fractions F ,
then

(i) the polynomial ring R[x] is also a unique factorization domain,
(ii) if a polynomial is irreducible in R[x], then it is also irreducible in F [x],

and
(iii) a primitive polynomial is irreducible in R[x] if and only if it is irreducible

in F [x].

For the ring Z of integers and k ∈ N, the field of fractions of Z[x1, . . . , xk]
is Q(x1, . . . , xk), the field of rational k-variable functions over Q. Note that for
c1, . . . , ck ∈ R, we say that these numbers are algebraically independent over
Q if the map f(x1, . . . , xk) 
→ f(c1, . . . , ck) from Z[x1, . . . , xk] to R extends
to a field embedding Q(x1, . . . , xk) to R. For k = 1, this means that c1 is
a transcendental number (over Q). The field generated by Q ∪ {c1, . . . , ck}
is denoted by Q(c1, . . . , ck); it is isomorphic to Q(x1, . . . , xk) provided that
c1, . . . , ck ∈ R are algebraically independent over Q . We often write Q(p)

instead of Q(p), even if p is not transcendental.
Given a unique factorization domain R with field of fractions F , the

polynomial rings R[x, y], R[x][y], and R[y][x] are well known to be isomorphic.
This fact allows us to write fx(y) and fy(x) instead of f(x, y) ∈ R[x, y]. That
is, fx(y), fy(x), and f(x, y) are essentially the same polynomials but we put
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an emphasis on fx(y) ∈ R[x][y] ⊆ F (x)[y] and fy(x) ∈ R[y][x] ⊆ F (y)[x].
Therefore, the following convention applies in the paper:

no matter which of f(x, y) ∈ R[x, y], fx(y) ∈ R[x][y], and
fy(x) ∈ R[y][x] is given first, we can also use the other two. (2.1)

Note that in many cases but not always, R and F will be Z and Q. The degree
of a polynomial g(x) will be denoted by degx(g(x)) or degx(g).

The following statement is well known and usually taught for MSc stu-
dents; see, for example, Czédli and Szendrei [4, Theorem V.3.6]; see also the
list of references right before Czédli and Kunos [5, Proposition 3.1].

Proposition 2.2. Let u, c1, . . . , ct ∈ R. If there exists an irreducible polyno-
mial

h(x) ∈ Q(c1, . . . , ct)[x]

such that h(u) = 0 and degx(h(x)) is not a power of 2, then u is not con-
structible from Q∪ {c1, . . . , ct} (or, equivalently and according to the present
terminology, u is not constructible from 〈1, c1, . . . , ct〉).

The following statement is also well known, and it is even trivial for
fields rather than unique factorization domains; having no reference at hand,
we are going to give a proof.

Lemma 2.3. Let R be a unique factorization domain with field of fractions
F . Let f(x) = ax2 + bx + c ∈ R[x] be a primitive quadratic polynomial. If its
discriminant, D = b2 − 4ac, is not a square in R, then f(x) is irreducible in
R[x] and, consequently, also in F [x].

Proof. Suppose to the contrary that f(x) is reducible. Since it is primitive, it
cannot have a nontrivial divisor of degree 0. Hence, there are a1, b1, a2, b2 ∈ R
such that ax2 + bx+ c = f(x) = (a1x+ b1)(a2x+ b2). Comparing the leading
coefficients, a = a1a2. Since −b1/a1 is a root of f(x), the well-known formula
gives that

− b1
a1

=
−b ± √

D

2a
,

After multiplying by 2a = 2a1a2, we obtain that −2b1a2 = −b ± √
D. There-

fore, D = (b − 2b1a2)2 is a square of b − 2b1a2 ∈ R. This contradicts our
hypothesis and proves the lemma. �

3. Proofs and Propositions

Proposition 3.1. If n ≥ 4 is an even integer, then for every real number
δ belonging to the open interval (0, 2π), there exists a rational number c
such that the n-fan Fn

cd(δ, 1, . . . , 1, c) exists but it cannot be constructed from
〈cos(δ/2), 1, c〉.
Proof. The case δ = π has been settled in Czédli [3]; see Cases 3 and 4
in page 68 there and note that our n corresponds to n + 1 in [3] and

√
c

and c are equivalent data from the perspective of geometric constructibility.



MJOM Geometric Constructibility of Polygons Page 7 of 14 133

Hence, we can assume that δ 	= π. We denote cos(δ/2) by p; it belongs to
the open interval (−1, 1) and it is distinct from 0. The smallest subfield of
R that includes Q ∪ {p} is denoted by Q(p). We know from (1.1) that if
c is sufficiently close to 1, then Fn

cd(δ, 1, . . . , 1, c) exists. This fact and the
Rational Parameter Theorem of Czédli and Kunos [5, Theorem 11.1] yield
that it suffices to show that Fn

cd(δ, 1, . . . , 1, c) is not constructible for those c
in a small neighborhood of 1 that are transcendental over Q(p). Since Q(p)(c)
is isomorphic to the field Q(p)(y) of rational functions over Q(p) for these
transcendental c, we can treat c later as an indeterminate y. Note that this
paragraph, that is the first paragraph of the present proof, would also be
appropriate for Fn

cd(δ, 1, . . . , 1, c, c); this fact will be needed only in another
proof of the paper.

Let k := n − 1; it is an odd number and k ≥ 3. As always in this
paper, r denotes the radius of the circular arc. We let u := 1/r. As Fig. 1
approximately shows, for the “half angles” α := α1 = · · · = αk and β := αn,
we have that

cos α = u, sin α =
√

1 − u2, cos β = cu, sin β =
√

1 − c2u2. (3.1)

Since we work with half angles, kα + β = δ/2, whereby kα = δ/2 − β. Using
the well-known formula for the cosine of a difference, we obtain that

cos(δ/2 − β) = cos(δ/2) cos β + sin(δ/2) sin β

= pcu +
√

1 − p2 ·
√

1 − c2u2. (3.2)

We also need the following well-known equality, which we combine with (3.1):

cos(kα) =
k∑

2|j=0

(−1)j/2
(

k

j

)
(cos α)k−j · (sin α)j

=
k∑

2|j=0

(−1)j/2
(

k

j

)
uk−j · (1 − u2)j/2 =: g(k)cos(u). (3.3)

Note that g
(k)
cos is a polynomial over Z since j above runs through even num-

bers. Since the coefficient of uk is
k∑

2|j=0

(−1)j/2
(

k

j

)
(−1)j/2 =

k∑
2|j=0

(
k

j

)
= 2k−1 	= 0, (3.4)

we conclude that

the leading coefficient of g
(k)
cos(u) is a positive

integer and the degree of u in g
(k)
cos(u) is k.

(3.5)

Since kα = δ/2 − β, (3.2) and (3.3) give the same real number. After rear-
ranging the equality of (3.2) and (3.3) and squaring,(

g(k)cos(u) − pcu
)2 = (1 − p2)(1 − c2u2). (3.6)

This encourages us to consider the polynomial

f [e,k](x, y) =
(
g(k)cos(x) − pyx

)2 − (1 − p2)(1 − y2x2) ∈ Q(p)[x, y], (3.7)
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which is obtained from (3.6) by substituting 〈u, c〉 ← 〈x, y〉 and rearranging.
The superscript of f [e,k] reminds us to “even” and k. Since k ≥ 3 and it is
odd, the degree degx(f [e,k]) of f [e,k] in x is 2·degx(g(k)cos) = 2k by (3.5), whence
degx(f [e,k]) is not a power of 2. Note that degx(f [e,k]) remains the same if we
replace y by c, since c is transcendental over Q(p). Therefore, Proposition 2.2
will imply the non-constructibility of u and that of our polygon as soon as
we show that f [e,k](x, c) = f

[e,k]
c (x) ∈ Q(p)(c)[x] is an irreducible polynomial.

Let ϕ : Q(p)(c) → Q(p)(y) be the canonical isomorphism that acts identically
on Q(p) and maps c to y. This ϕ extends to an isomorphism ϕ̂ : Q(p)(c)[x] →
Q(p)(y)[x] with the property ϕ̂(x) = x in the usual way. It suffices to show that
ϕ̂
(
f [e,k](x, c)

)
is irreducible in Q(p)(y)[x]. But ϕ̂

(
f [e,k](x, c)

)
= f

[e,k]
y (x) ∈

Q(p)[y][x] and Q(p)(y) is the field of fractions of Q(p)[y]. Thus, by Lemma 2.1,
it suffices to show that f

[e,k]
y (x) = f [e,k](x, y) is irreducible in Q(p)[y][x] ∼=

Q(p)[x, y] ∼= Q(p)[x][y]. So, in the rest of the proof, we deal only with the
irreducibility of the polynomial f

[e,k]
x (y) = f [e,k](x, y).

Rearranging (3.7) according to the powers of y, we obtain that

f [e,k]
x (y) = (p2x2 + (1 − p2)x2) · y2 − 2xpg(k)cos(x) · y + (g(k)cos(x)2 − (1 − p2))

= x2 · y2 − 2pxg(k)cos(x) · y + (g(k)cos(x)2 + p2 − 1) ∈ Q(p)[x][y]. (3.8)

Since p ∈ (−1, 1) \ {0}, we have that −1 < p2 − 1 < 0, whence p2 − 1 is
not an integer. Thus, since g

(k)
cos(x) ∈ Z[x], the constant term in g

(k)
cos(x)2 +

p2 − 1 is nonzero. In Q(p)[x], which is a unique factorization domain, x is
an irreducible element. The above-mentioned nonzero term guarantees that
x does not divide g

(k)
cos(x)2 + p2 − 1. Thus, f

[e,k]
x (y) is a primitive polynomial

over Q(p)[x], and we are going to apply Lemma 2.3. To do so, we compute
the discriminant D

[e,k]
x of f

[e,k]
x (y) as follows:

D[e,k]
x := 4p2x2g(k)cos(x)2 − 4x2(g(k)cos(x)2 + p2 − 1)

= 4(p2 − 1)x2 · (
g(k)cos(x)2 − 1

)
.

(3.9)

Since p2 − 1 < 0, it follows from (3.5) that

D
[e,k]
t tends to −∞ as t ∈ Q(p) tends to ∞. (3.10)

Now if D
[e,k]
x was of the form h(x)2 for some h(x) ∈ Q(p)[x], then we would

have that D
[e,k]
t = h(t)2 ≥ 0 for all t ∈ Q(p) and (3.10) would be impossible.

Hence, D
[e,k]
x is not a square in Q(p)[x] and Lemma 2.3 yields the irreducibility

of f
[e,k]
x (y), as required. This completes the proof of Proposition 3.1. �

Remark 1.4 explains why we consider (0, 2π) rather than (0, 2π] in the
following statement.

Proposition 3.2. If n ∈ {1, 2}, then for every real number δ ∈ (0, 2π), the
n-fan Fn

cd(δ, d1, . . . , dn) can be constructed from 〈cos(δ/2), d1, . . . , dn〉 in gen-
eral.



MJOM Geometric Constructibility of Polygons Page 9 of 14 133

Proof. We assume that n = 2 since the case n = 1 is trivial by elementary
geometrical considerations. We can also assume that the scale is chosen so
that d1 = 1. Let c = d2. It is clear by (3.1) and (3.3) that g

(1)
cos(u) = cos(α) =

u. Substituting this into (3.6), an easy calculation leads to

(c2 − 2pc + 1)u2 + p2 − 1 = 0. (3.11)

Since p ∈ (−1, 1), p2 − 1 is distinct from 0. Hence, (3.11) gives that the
coefficient c2 − 2pc + 1 of u2 is nonzero. Thus, u is the root of a quadratic
polynomial over the field Q(p, c), whereby it is constructible. So are r = 1/u
and our 2-fan. �

Proposition 3.3. If n ≥ 5 is an odd integer, then for every real number δ
belonging to the open interval (0, 2π), there exists a rational number c such
that

(i) if δ 	= π, then the n-fan Fn
cd(δ, 1, . . . , 1, c, c) exists but it cannot be con-

structed from 〈cos(δ/2), 1, c, 〉, and
(ii) if δ = π, then the n-fan Fn

cd(δ, 1, . . . , 1, 1, c) exists but it cannot be con-
structed from 〈cos(δ/2), 1, c〉 = 〈0, 1, c〉.

Proof. First, we deal with (i). Let k = n − 2; note that k is odd and k ≥ 3.
The first paragraph of the proof of Proposition 3.1 for Fn

cd(δ, 1, . . . , 1, c, c) and
(3.1) will be used. In particular, c is assumed to be transcendental, whence
so is c2. Since

cos(δ/2 − 2β) = cos(δ/2) cos(2β) + sin(δ/2) sin(2β)

= p
(
2 cos2(β) − 1

)
+

√
1 − p2 · 2 sin β · cos β

= p(2c2u2 − 1) + 2cu ·
√

1 − p2 ·
√

1 − c2u2 (3.12)

and kα + 2β = δ/2 gives that kα = δ/2 − 2β, (3.3) and (3.12) give the same
value. Rearranging the equality of these two values and squaring, we have
that (

g(k)cos(u) − p(2c2u2 − 1)
)2 = 4c2u2(1 − p2)(1 − c2u2). (3.13)

Since c and c2 are mutually constructible from each other, we can assume
that c2 rather than c is given. Rearranging (3.13) and substituting 〈x, y〉 for
〈u, c2〉, we obtain that u is a root (in x) of the following polynomial

f [o,k]
y (x) = f [o,k](x, y) = f [o,k]

x (y)

=
(
g(k)cos(x) − p(2yx2 − 1)

)2 − 4yx2(1 − p2)(1 − yx2)

= 4x4 · y2 − (
4px2g(k)cos(x) + 4x2

) · y +
(
p + g(k)cos(x)

)2
. (3.14)

Observe that degx(f [o,k]) = 2 ·degx(g(k)cos) = 2k since k ≥ 3. Thus, degx(f [o,k])
is not a power of 2 since k ≥ 3 is odd. Hence, by the same reason as in the
paragraph right after (3.7), it suffices to show that the quadratic polynomial
f
[o,k]
x (y) is irreducible in Q(p)[x][y]. The assumption δ ∈ (0, 2π) \ {π} gives

that 0 < p2 < 1. Since j is even in (3.3) but now k is odd, the constant term
in g

(k)
cos(x) is 0. So the constant term of

(
p + g

(k)
cos(x)

)2 is p2 	= 0. Hence, x,
which is an irreducible element in the unique factorization domain Q(p)[x]
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and the only prime divisor of 4x4, does not divide
(
p + g

(k)
cos(x)

)2. Thus, the
quadratic polynomial f

[o,k]
x (y), see the last line of (3.14), is primitive. Its

discriminant is

D[o,k]
x =

(
4px2g(k)cos(x) + 4x2

)2 − 16x4 · (
p + g(k)cos(x)

)2
= 16x4(p2 − 1) · (g(k)cos(x)2 − 1

) ∈ Q(p)[x], (3.15)

which tends to −∞ as x ∈ Q(p) tends to ∞. This leads to non-constructibility
in the same way as (3.10) did.

Case (ii) needs an entirely different approach, which has already be
given in Case 4 in pages 68–69 of Czédli [3]; take into account that our n
corresponds to n + 1 in [3] and our c and the

√
c in [3] are equivalent for

constructibility. �

Proposition 3.4. There exist rational numbers p, d1, and d2 such that with
the angle δ := 2 · arccos(p) ∈ (0, 2π), the 3-fan F 3

cd(δ, d1, d2, 1) exists
but it cannot be constructed from 〈p = cos(δ/2), d1, d2, 1〉. Also, for every
δ ∈ (0, 2π) such that cos(δ/2) is transcendental, there are rational numbers
d1 and d2 such that F 3

cd(δ, d1, d2, 1) exists but it cannot be constructed from
〈cos(δ/2), d1, d2, 1〉.
Proof. Like for the special values of δ considered in Czédli [3] and Czédli
and Kunos [5], the 3-fan F 3

cd(δ, d1, d2, 1) depends continuously on its param-
eters. We will soon see from (3.16) that the corresponding dependence on
〈p, d1, d2, 1〉 := 〈cos(δ/2), d1, d2, 1〉 is polynomial, whereby it remains poly-
nomial even after fixing some parameters and letting only the rest remain
indeterminates. Hence, a repeated use of the Rational Parameter Theo-
rem of Czédli and Kunos [5, Theorem 11.1] shows that it suffices to prove
that F 3

cd(δ, d1, d2, 1) cannot be constructed in general from its parameters
p, d1, d2, 1. Hence, we can treat p, d1 and d2 as algebraically independent
numbers over Q, whereby we can consider them indeterminates w, y, and z,
respectively. Note that although the rest of this proof is conceptually easy
and it is hopefully readable without computers, the real verification has been
done by computer algebra; reference will be given later.

We denote the half-angles corresponding to the sides at distances y :=
d1, z := d2 and 1 of our 3-fan by α := α1, β := α2 and γ := α3, respectively.
For convenience, we let δ′ = δ/2. Then we have that α +β = δ′ − γ, whereby

0 = h1 := cos2(α + β) − cos2(δ′ − γ)

= (cos α cos β − sin α sinβ)2 − (cos δ′ cos γ + sin δ′ sin γ)2

= cos2 α cos2 β + sin2 α sin2 β − cos2 δ′ cos2 γ − sin2 δ′ sin2 γ − s1,

where s1 = 2 cos α cos β sin α sin β+2 cos δ′ cos γ sin δ′ sin γ. Our purpose is to
get rid of the sines in s1 that are raised to odd exponents. Note that neither
h1 + s1, nor its square has sines with odd exponents. Since h1 = 0, so is

h2 := (h1 + s1)2 − s21

= (h1+s1)2 − 4 cos2 α cos2 β sin2 α sin2 β−4 cos2 δ′ cos2 γ sin2 δ′ sin2 γ−s2,
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where s2 = 8 cos α cos β sinα sin β cos δ′ cos γ sin δ′ sin γ. Clearly, neither h2 +
s2, nor its square has sines with odd exponents. Finally, since h2 = 0, so is

h3 := (h2 + s2)2 − s22.

Now we are in the position that after expanding h3, all the sines are raised
to even exponents. Hence, after substituting 1 − cos2 α, . . . , 1 − cos2 δ′ for
sin2 α, . . . , sin2 δ′ in h3, we obtain a quaternary polynomial h4 over Z such
that

0 = h3 = h4(cos α, cos δ, cos γ, cos δ′).

As we did this before, see Fig. 1 with different notation, cosα = d1u = yu,
cos β = d2u = zu, and cos γ = d3u = u, while cos δ′ = p = w. Substituting
these equalities into h4, we obtain a nonzero quaternary polynomial h5 over
Z such that

0 = h4(cos α, cos δ, cos γ, cos δ′) = h5(y, z, w, u).

Substituting x for u2 in h5, we obtain a polynomial

hy,z,w(x) = h(y, z, w, x) = 16y4z4 · x6

+
(−16y2z6p2 − 16y4z4 − 16y6z2p2 − 16y4z2 − 16y2z4

+ − 16y2z2p2 + 8y2z2 + 8y2z6 + 8y6z2
) · x5 + · · · + w8

(3.16)

over Z such that u2 is a root of this polynomial and, as the leading coefficient
indicates, degx(h(y, z, w, x)) = 6. For the rest of the coefficients, the reader
can but need not see the Maple worksheet to be mentioned in the proof
of Theorem 1.2(v). Since the polynomial in (3.16) is too long to be fully
presented here, we display

h(2, 3, 2, x) = 20736x6 − 225, 792x5

+ 453, 376x4 − 180, 224x3 + 37632x2 − 3584x + 256.

Note that degx(h(2, 3, 2, x)) = degx(h(y, z, w, x)). Thus, if h(y, z, w, x) was
reducible, then so would h(2, 3, 2, x). With the help of computer algebra, we
obtain that h(2, 3, 2, x) is irreducible, whence so is h(y, z, w, x). Furthermore,
the degree degx(h(y, z, w, x)) = 6 is not a power of 2. Thus, a reference to
Proposition 2.2 completes the proof of Proposition 3.4. �

Next, we outline another approach, which does not need computer alge-
bra but it is conceptually harder and less detailed.

Second proof of Proposition 3.4. By the Rational Parameter Theorem of
Czédli and Kunos [5], it suffices to deal with the second part of Propo-
sition 3.4. Let T denote the set of transcendental real numbers. By [5,
Proposition 1.3], which was taken from Czédli and Szendrei [4], there exist
d′
1, d

′
2, d

′
3 ∈ N such that F 3

cd(2π, d′
1, d

′
2, d

′
3) exists but it is not constructible.

Clearly, with d1 = d′
1/d′

3, d2 = d′
2/d′

3, and d3 = 1 = d′
3/d′

3, the same holds for
F 3
cd(2π, d1, d2, d3). By continuity, −1 = cos(2π/2) has a small right neighbor-

hood U = (−1,−1 + ε) such that F 3
cd(2 · arccos p, d1, d2, d3) exists for every

p ∈ U ∩T. We can assume that the rational numbers d1, d2, and d3 serve only
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as information; the task is to construct the 3-fan F 3
cd(2 · arccos p, d1, d2, d3)

from p. Up to isomorphism (over Q), the field Q(p) and the constructibility
problem does not depend on the choice of p ∈ U ∩ T. Hence, either the 3-
fan is non-constructible for every p ∈ U ∩ T, or it is constructible for every
p ∈ U ∩T. For the sake of contradiction, suppose that the second alternative
holds. Then it follows by the Limit Theorem, which is Czédli and Kunos [5,
Theorem 9.1], that F 3

cd(2π, d1, d2, d3) is also constructible, which contradicts
the choice of 〈d1, d2, d3〉. Thus, the first alternative holds, and it implies
Proposition 3.4. �

Proof of Theorem 1.1. Apply Propositions 3.1, 3.2, 3.3, and 3.4. �

Proof of Theorem 1.2. Keeping Remark 1.4 in mind, observe that 1.2(i) has
already been proved; see Czédli and Kunos [5, Theorem 1.2 and Proposition
1.3] together with Czédli [3, Corollary 1.3]. Similarly, 1.2(ii) follows from
[3, Theorem 1.1]. Propositions 3.1, 3.2, 3.3, and 3.4 imply 1.2(iii). The first
inclusion in 1.2(iv) follows from Propositions 3.1 and 3.3, while the second
one comes from Proposition 3.2. Finally, 1.2(v) is a consequence of 1.2(i) and
1.2(iv). �

Proof of Proposition 1.3. Our proof needs the brute force of a computer; an
appropriate program (called Maple worksheet) for Maple V, version 5, is avail-
able from the authors’ homepages. For every w0 in the set A

(1)
1000 ∪ A

(2)
100, the

program has to verify that the polynomials h(y, z, w0, x) and h(y, z,−w0, x),
see (3.16), are irreducible in Z[y, z, x]. The program had to verify 1,675,500
polynomials; this took 42 minutes with the help of a personal computer
with IntelCore i5-4440 CPU, 3.10 GHz, and 8.00 GB RAM. (Note that the
1,675,500 polynomials are not pairwise distinct; for example, each of the
fractions 1/2, 2/4, 3/6, . . . , and 500/1000 gives the same w0 and the same
h(y, z, w0, x).) As the leading coefficient in (3.16) shows, all these polyno-
mials are of degree 6 with respect to x, independently from w0. Thus, their
irreducibility proves Proposition 1.3. �

Proof of Proposition 1.5. The last sentence of Remark 1.6 shows that the 3-
fan F 3

sl(δ, a1, a2, a3) cannot be constructed from its central angle and side
lengths in general. The same conclusion can be derived from the non-
constructibility of the regular nonagon if we choose δ = 2π/3. Hence, the
Limit Theorem from Czédli and Kunos [5] implies that Fn

sl (δ, a1, . . . , an) is
non-constructible for every n ≥ 3. Note that the Limit Theorem applies also
to a fixed central angle, whereby for every n ≥ 3, say, Fn

sl (π, a1, . . . , an) and
Fn
sl (2π/3, a1, . . . , an) are non-constructible from their side lengths. The 1-fan

is obviously constructible.
We are left with the case n = 2, that is, with the constructibility of

F 2
sl(δ, a1, a2). By changing the unit if necessary, we can assume that a1 = 1.

With u := 1/(2r), Fig. 1 gives that sin(α1) = u and sin(α2) = a2u.
Using that δ′ := δ/2 = α1 + α2 and denoting cos(δ′) by p, the binary
trigonometric addition formula for cosine gives that p = cos(α1 + α2) =
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√
1 − u2 ·

√
1 − a2

2u
2 − u · a2 · u. Substituting x for u2, rearranging, squaring,

and rearranging again we conclude that u2 is a root of the polynomial

(a2
2 + 2pa2 + 1)x + p2 − 1. (3.17)

Since p > −1 and a2 is positive, a2
2+2pa2+1 > a2

2+2·(−1)·a2+1 = (a2−1)2 ≥
0. Hence, the coefficient of x above is nonzero and (3.17) is a polynomial
of degree 1. Since u2 is a root of this polynomial, u2 and F 2

sl(δ, a1, a2) are
constructible. �

Finally, we note that although we could use the Limit Theorem from
[5] to give a short approach to the constructibility of Fn

sl (δ, a1, . . . , an) from
its central angle and side lengths and we could apply this theorem even for
the central angle in the Second proof of Proposition 3.4, the Limit Theorem
is not applicable for the central distances of our n-fans. This is one of the
reasons that, as we know from Theorem 1.2(i), there is a gap in Nnum(2π).
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