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Abstract. In this paper, we study transitivity on the semigroup actions.
Indeed, we introduce two criteria, “entropy minimality” and “nonuni-
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1. Introduction

Semigroup actions are dynamical systems with several generators. Some of
mathematicians worked on these systems and obtained varietal results. For
instance, Rodrigues and Varandaz [16] introduced several cases of specifi-
cation property on finitely generated semigroup actions and obtained some
thermodynamical results on these systems. Koropeski and Nassiri [10] at-
tained transitivity of generic semigroup action of area preserving surface dif-
feomorphisms. Sarizadeh studied ergodicity on semigroup actions with mini-
mal hyperspaces [17]. In [5], the authors studied semigroup actions of Ruelle-
expanding maps. They explored the relation between intrinsic properties of
the semigroup action and the thermodynamic formalism of the associated
skew-product. Zamani Bahabadi [19] obtained some results on semigroup
actions by means of shadowing and average shadowing properties. Bis and
Urbanski in [3] presented some results on topological entropy of semigroup
actions.

Our main studies on finitely generated semigroup actions are about
transitivity, namely having a dense orbit. We tried to find some tools to obtain
transitivity. One of criteria is the entropy minimality. Entropy minimality was
first introduced by Coven and Smital [6] as a property between minimality
and transitivity on ordinary dynamical systems, the dynamical systems with
one generator.

In Sect. 2, we study entropy of a finitely generated semigroup action
on its nonwandering set. Then, we use it to establish a connection between
transitivity and entropy by entropy minimality property. We present some
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definitions and notations on entropy minimality in Sect. 2.1. Also the results
and their proofs are stated in the Sect. 2.2. In Sect. 3, we proceed the nonuni-
formly expanding semigroup actions introduced by Rashid and Zamani [14].
We show that if these systems have asymptotic average shadowing property,
then they are transitive. This topic was studied on ordinary dynamical sys-
tems in [18]. Section 3.1 contains essential definitions and Sect. 3.2 comprises
main results about nonuniformly expanding property.

2. Entropy Minimality

2.1. Preliminary

Let (X, d) be a compact metric space and let G be a semigroup action gener-
ated by G1 = {f1, . . . , fk} of homeomorphisms from X to itself. The members
of G1 are called generators of G. While G1 is a singleton, we call G an ordi-
nary dynamical system.
Notice that

G =
∞⋃

i=1

Gi, Gi = {g1 ◦ · · · ◦ gi|gj ∈ G1, 1 ≤ j ≤ i}.

If idX ∈ G1, idX is the identity map from X to itself, then Gn ⊂ Gn+1

for all positive integer n.
For ω = (. . . ,ω−1, ω0, ω1, . . . ) ∈ {1, . . . , k}Z, we set f0

ω := idX and fn
ω :=

fωn−1ofωn−2o . . . ofω0 for all n > 0. Therefore, if h ∈ Gi for some i, then there
exist w0, w1, . . . , wi−1 ∈ {1, . . . , k} such that h = f i

ω = fωi−1ofωi−2o . . . ofω0 .
A semigroup action G is called abelian if hog = goh for all h, g ∈ G.
We say that a semigroup action G is transitive provided that for every

two nonempty open subsets U and V of X, there exists h ∈ G such that
h(U) ∩ V �= ∅, equivalently, if for every nonempty open subset U of X,⋃

h∈G h(U) = X. This equivalency is shown by [11] for ordinary dynamical
systems.

A point p ∈ X is said to be a nonwandering point of G if for every
nonempty neighborhood U of p in X, there exists h ∈ G such that h(U)∩U �=
∅. Otherwise, it is called a wandering point of G. The set of all nonwandering
points of G is called nonwandering set of G and denoted by Ω(G). It is easy
to see that Ω(G) is a closed subset of X.

We say that a subset A of X is G-invariant if A is f -invariant, namely
f(A) ⊆ A for all f ∈ G1. For more details, see [7].

The group action generated by G1 is denoted by < G1 >. We say that
< G1 > is transitive provided that for every two nonempty open subsets U
and V of X, h(U) ∩ V �= ∅ for some h ∈< G1 >. In other word, < G1 > is
transitive if

⋃
h∈<G1> h(U) = X, for every nonempty open subset U of X.

Remark 2.1. Koropecki and Nassiri [10] proved that if G1 is a countable
family of homeomorphisms from X to itself preserving a finite Borel measure
with compact support, then transitivity of semigroup action G is equivalent
to transitivity of group action < G1 >.
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Let n ∈ N and consider the following metric on X

dn : X × X −→ [0,∞),

dn(x, y) = Sup1≤i≤nSupg∈Gi
d(g(x), g(y)).

Given ε > 0, the subset A ⊆ X is called a (n, ε,G,X)-separated set,
provided that for every two disjoint points x, y ∈ A, dn(x, y) ≥ ε. Namely,
there exist i ∈ {1, . . . , n} and g ∈ Gi such that d(g(x), g(y)) ≥ ε.
We denote a (n, ε,G,X)-separated set with maximal cardinality by Esep

(n, ε,G,X) and its cardinality by rsep(n, ε,G,X).
Separated topological entropy of G is defined by

hsep(G,G1,X) := lim
ε→0+

lim
n→∞

1
n

log rsep(n, ε,G,X).

A subset B of X is called a (n, ε,G,X)-spanning set if for every x ∈ X, there
is y ∈ B such that dn(x, y) < ε. Espan(n, ε,G,X) and rspan(n, ε,G,X) are
the symbols for a (n, ε,G,X)-spanning set with minimal cardinality and its
cardinality, respectively.

Remark 2.2. (n, ε,G,X)-separated and (n, ε,G,X)-spanning sets are finite.
It is easily showed by compactness of X.

We define spanning topological entropy of G by

hspan(G,G1,X) := lim
ε→0+

lim
n→∞

1
n

log rspan(n, ε,G,X).

In [3], it is proved that

hspan(G,G1,X) = hsep(G,G1,X).

We denote this quantity by h(G,G1,X) and call it topological entropy
of G. Whenever G1 = {f}, for some map f , we denote the topological entropy
of G by h(f,X).

Let A ⊆ X. We set G1

∣∣
A

:= {f1|A, . . . , fk|A} and denote the semigroup
action generated by G1

∣∣
A

by GA.

Remark 2.3. In [4], the authors considered G1 contains the identity map on
X and proved that

1. if A is a closed G-invariant subset of X, then

h(GA, G1

∣∣
A
, A) ≤ h(G,G1,X);

2. If X = A ∪ B, where A and B are two closed and G-invariant subsets
of X, then

h(G,G1,X) = max{h(GA, G1

∣∣
A
, A), h(GB , G1

∣∣
B

, B)}.

Similarly, one can see that these two statements are true for every semi-
group action G of continuous functions without identity map.
A semigroup action G is called entropy-minimal provided that for every
nonempty closed G-invariant proper subset A ⊂ X,

h(GA, G1

∣∣
A
, A) < h(G,G1,X).

We say that a semigroup action G is minimal while only closed and G-
invariant subsets of X are X and the empty set.
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2.2. Results

First in the following we introduce a known set of semigroup actions that
they are entropy minimal.

Proposition 2.4. Every minimal finitely generated semigroup action is entropy
minimal.

Proof. It is obvious by definition of minimality. �
Example 2.5. By [9], any boundaryless compact manifold admits a pair of
diffeomorphisms that it generates a minimal semigroup action. Then Propo-
sition 2.4 implies that it is an entropy-minimal semigroup action.

Example 2.6. Assume that f0 and f1 are two continuous maps from {0, 1}N

to itself such that f0(s0, s1, s2, . . .) = (0, s0, s1, s2, . . .) and f1(s0, s1, s2, . . .) =
(1, s0, s1, s2, · · · ).
By [19], the semigroup action generated by {f0, f1} is minimal. Proposi-
tion 2.4 says that it is entropy-minimal.

Eberlein in [7] showed that the entropy of an “abelian” finitely generated
semigroup action is equal to the entropy of its restriction to its nonwandering
set. Here we prove it for every semigroup action (not necessarily abelian) with
invariant nonwandering set, and by another technique. It is important to note
that if a semigroup action is abelian, then its nonwandering set is invariant
but its reverse is not true. The following example confirms this point.

Example 2.7. Consider the maps f0 and f1 as in Example 2.6. It is obvious
that the semigroup action G generated by f0 and f1 is not abelian. We show
that the nonwandering set of G, Ω(G), is equal to the set {0, 1}N and so it
is G-invariant.
Take s = (s0, s1, . . .) ∈ {0, 1}N . Let U be an arbitrary neighborhood of s.
There exists a basis open set Cs0,...,sn

= {s0} × · · · × {sn} × {0, 1} × {0, 1} ×
· · · × {0, 1} × · · · ⊆ U such that s ∈ Cs0,...,sn

.
We have fs0◦fs1◦. . .◦fsn

(s) ∈ Cs0,...,sn
⊆ U and fs0◦fs1◦. . .◦fsn

(Cs0,...,sn
) ⊆

Cs0,...,sn
. Hence fs0 ◦ fs1 ◦ . . . ◦ fsn

(U) ∩ U �= ∅ and so s ∈ Ω(G).

For the proof of the following theorem (Theorem 2.8), we need some
notations stating here.

Take w ∈ {1, . . . , k}Z. We say that a subset A ⊆ X is a (n, ε, w,X)-
separated set if for every two disjoint points x, y ∈ A, d(f i

w(x), f i
w(y)) ≥ ε,

for some i ∈ {1, . . . , n}. A (n, ε, w,X)-separated set with maximal cardinality
denoted by Esep(n, ε, w,X) and its cardinality by rsep(n, ε, w,X).

A subset B of X is called a (n, ε, w,X)-spanning set whenever for ev-
ery x ∈ X there is y ∈ B such that d(f i

w(x), f i
w(y)) < ε, for every i ∈

{1, . . . , n}. We denote a (n, ε, w,X)-spanning set with minimal cardinality
by Espan(n, ε, w,X) and its cardinality by rspan(n, ε, w,X).

Theorem 2.8. Let G be a semigroup action generated by G1 of continuous
functions and let its nonwandering set, Ω(G), be G-invariant. Then

h(G,G1,X) = h(GΩ(G), G1

∣∣
Ω(G)

,Ω(G)).
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Proof. Ω(G) is a closed G-invariant subset of X. By Remark 2.3 h(GΩ(G),
G1|Ω(G),Ω(G)) ≤ h(G,G1,X). It is enough to prove the reverse inequality.
Take m ∈ N and ε > 0. The set

U = {x ∈ X | dm(x, y) < ε for some y ∈ Espan(m, ε,G,Ω(G))}
is an open neighborhood of Ω(G) in X. Since U c = X\U is a compact wan-
dering set, there is α, 0 < α ≤ ε, such that h(B(y, α)) ∩ B(y, α) = ∅ for
every h ∈ G and y ∈ U c, where B(y, α) is a ball of radius α about y. Given
w ∈ {1, . . . , k}Z and l ∈ N, define the map

ϕl,w : X → (Espan(m, ε,G,Ω(G)) ∪ Espan(m,α,G,U c))l,

by

ϕl,w(x) = (y0, . . . , yl−1),

1. if f im
w (x) ∈ U , then yi ∈ Espan(m, ε,G,Ω(G)) and dm(f im

w (x), yi) < ε; and
2. if f im

w (x) ∈ U c, then yi ∈ Espan(m,α,G,U c) and dm(f im
w (x), yi) < α.

Now, take n > mrspan(m,α,G,U c) and l so that (l − 1)m < n ≤ lm.
We show that ϕl,w is one-to-one on Esep(n, 2ε, w,X).

Let x, y ∈ Esep(n, 2ε, w,X), ϕl,w(x) = ϕl,w(y) = (y0, . . . , yl−1), 0 ≤ t <
m and 0 ≤ i < l.

d(f im+t
w (x), f im+t

w (y)) ≤ dm(f im
w (x), f im

w (y))

≤ dm(f im
w (x), yi) + dm(f im

w (y), yi)
< 2ε.

Since x, y ∈ Esep(n, 2ε, w,X), x = y and so �ϕl,w(Esep(n, 2ε, w,X)) =
rsep(n, 2ε, w,X).

We claim that if x, y ∈ Esep(n, 2ε,G,X), then there is w ∈ {1, . . . , k}Z
such that x and y are in a (n, 2ε, w,X)-separated set. To prove this, let
x, y ∈ Esep(n, 2ε,G,X). Then, there is s ∈ {1, . . . , n} and h ∈ Gs such that
d(h(x), h(y)) ≥ 2ε. Obviously, there exists w ∈ {1, . . . , k}Z such that h = fs

w

and so d(fs
w(x), fs

w(y)) ≥ 2ε. Hence x and y are in a (n, 2ε, w,X)-separated
set. Since Esep(n, 2ε,G,X) is a finite set, there are (n, 2ε, wi,X)-separated
set Ai, i = 1, · · · , r, such that

Esep(n, 2ε,G,X) ⊆ ∪r
i=1Ai.

Therefore

�Esep(n, 2ε,G,X) ≤ r max
1≤i≤r

�Ai.

Now it is enough that for an arbitrary w ∈ {1, . . . , k}Z, we compute
rsep(n, 2ε, w,X) which is equal to �ϕl,w(Esep(n, 2ε, w,X)). First we note
that if (y0, . . . , yl−1) = ϕl,w(x) and ys ∈ Espan(m,α,G,U c) for some s,
0 ≤ s ≤ l − 1, then ys does not repeat in this l-tuple. Because for ys =
ys′ ∈ Espan(m,α,G,U c), 0 ≤ s < s′ ≤ l − 1, dm(fsm

w (x), ys) < α and
dm(fs′m

w (x), ys) < α. So d(fsm
w (x), ys) < α and d(fs′m

w (x), ys) < α, namely,
fsm

w (x), fs′m
w (x) ∈ B(ys, α). Hence fws′m−1

◦· · ·◦fwsm
(B(y, α))∩B(y, α) �= ∅,

which is a contradiction with that B(y, α) is a wandering set. Assume that
As has maximal cardinality among A,

is, i = 1, . . . , r. There exists ws ∈
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{1, . . . , k}Z such that As = Esep(n, 2ε, ws,X). Let q = rspan(m,α,ws, U c)
and p = rspan(m, ε,ws,Ω(G)). By an argument similar to proof of Theorem
1.4 in section 9.1.1 of [15], we imply that

�ϕl,w(Esep(n, 2ε, ws,X) ≤ (q + 1)!lqpl.

So rsep(n, 2ε,G,X) ≤ r(q + 1)!lqpl. Moreover, we have �As ≤ rspan(m, ε,ws,
Ω(G)) ≤ rsep(m, ε,ws,Ω(G)) ≤ rsep(m, ε,G,Ω(G)).

Therefore,

lim
n→∞

1
n

log rsep(n, 2ε,G,X))

≤ lim
n→∞

1
n

log(r(q + 1)!lqpl)

≤ lim
l→∞

1
(l − 1)m

log(r(q + 1)!lqpl)

≤ log(p)
m

=
log rspan(m, ε,ws,Ω(G))

m

≤ log rsep(m, ε,G,Ω(G))
m

.

m and ε are arbitrary. As m → ∞ and ε → 0+, we have

h(G,G1,X) ≤ h(GΩ(G), G1|Ω(G),Ω(G)).

�

Corollary 2.9. If G is an abelian entropy-minimal semigroup action on X,
then Ω(G) = X.

Proof. It is easy to see that if the semigroup action G is abelian, then Ω(G)
is a G-invariant subset of X. On the other hand, Ω(G) is a closed subset of
X. Theorem 2.8 and the definition of entropy minimality imply that Ω(G) =
X. �

Example 2.10. Let f0(x) = x
2 and f1(x) = x

3 , x ∈ [0, 1] and let G be
the semigroup action generated by {f0, f1}. It is clear that G is abelian and
Ω(G) �= [0, 1]. By Corollary 2.9, this semigroup action is not entropy-minimal.

In [6], the authors showed that entropy-minimal ordinary dynamical
systems are transitive. In sequel, we prove that the entropy minimality prop-
erty is a criterion to obtain transitivity for semigroup actions of measure
preserving homeomorphisms.

Theorem 2.11. Let G be an entropy-minimal semigroup action of homeo-
morphisms from X to itself preserving a finite Borel measure with compact
support, and let Ω(G) be invariant. Then G is transitive.

Proof. On the contrary assume that the semigroup action G is not transi-
tive. By Remark 2.2, there is a nonempty open subset U ⊆ X such that⋃

h∈<G1> h(U) is not equal to X. Put V := X\⋃
h∈<G1> h(U). Then V is

open and X =
⋃

h∈<G1> h(U) ∪ ⋃
h∈<G1> h(V ). Set U1 :=

⋃
h∈<G1> h(U)
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and V1 :=
⋃

h∈<G1> h(V ). Since U1 and V1 are G-invariant compact subsets
of X, by Remark 2.3,

h(G,G1,X) = max{h(GU1 , G1|U1 , U1), h(GV1 , G1|V1 , V1)}.

But U1 is a proper subset of X and entropy minimality of G implies

h(G,G1,X) > h(GU1 , G1|U1 , U1).

So h(G,G1,X) = h(GV1 , G1|V1 , V1). On the other hand, G is entropy-
minimal, hence V1 = X. Since V1 =

⋃
h∈<G1> h(V ) = X, so there exists

h ∈< G1 > such that h(V ) ∩ U �= ∅.
Let W be a nonempty open subset of V such that h(W ) ⊆ U . Then

W ⊆ h−1(U) and for all k ∈ G, kW ⊆ kh−1(U) ⊆ U1. Hence kW ∩ W ⊆
U1∩V = ∅. This implies that W is a wandering subset of V1. By Theorem 2.8
and entropy minimality of G, we have h(G,G1,X) = h(GΩ(G), G1|Ω(G),Ω(G))
and so Ω(G) = X. Hence V1 = Ω(G) = X which contradicts the wandering
subset W of V1. �

Corollary 2.12. Let G be an abelian entropy-minimal finitely generated semi-
group action of homeomorphisms from X to itself preserving a finite Borel
measure with compact support.Then it is transitive.

Proof. G is abelian so its nonwandering set is G-invariant. By Theorem 2.11
we obtain transitivity of G. �

Proposition 2.13. Let f be an entropy-minimal map from a compact metric
space X to itself and let g be a constant self-map of X. Then the semigroup
action generated by {f, g} is entropy minimal.

Proof. Let G be the semigroup action generated by {f, g} and let {b} be
the image of g. It is easy to see that a subset B of X is G-invariant if
and only if it is f -invariant and contains b. Assume that B is a closed G-
invariant proper subset of X. f is entropy-minimal so h(f

∣∣
B

, B) < h(f,X).
We can see that every (n, ε, f,X)-separated set of maximal cardinality is a
(n, ε,G,X)-separated set of maximal cardinality and conversely. Also every
(n, ε, f

∣∣
B

, B)-separated set of maximal cardinality is a (n, ε,GB , B)-separated
set of maximal cardinality and conversely. Hence h(f,X) = h(G,X) and
h(f

∣∣
B

, B) = h(GB , B). We have h(GB , B) = h(f
∣∣
B

, B) < h(f,X) = h(G,X)
that it concludes entropy minimality of G. �

Corollary 2.14. Let f be a topollogically transitive, piecewise monotonic self-
map of the interval [c, d] and let g be a constant map of [c, d] to itself. Then
the semigroup action generated by {f, g} is entropy minimal.

Proof. Let G be the semigroup action generated by {f, g}. By Theorem 2 in
[6] and Proposition 2.13, f and so G are entropy minimal. �

In the following example, we show that the inverse of Theorem 2.11 is
not true.
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Example 2.15. Let {xi}i∈Z
be an increasing sequence of [0, 1] such that xi → 1

as n → +∞ and xi → 0 as n → −∞. Consider the map f from [0, 1] to itself
such that f(0) = 0, f(1) = 1 and f(xi) = xi for all integer i, moreover f maps
[xi, xi+1] onto [xi−1, xi+2] linearly piecewise with three linear pieces. Cer-
tainly f is not piecewise monotonic map. Barge and Martin [2] showed that
f is topologically transitive. In [6], the authors found a closed f−invariant
proper subset X of [0, 1] such that h(f, [0, 1]) = h(f

∣∣
X

,X). So f is not en-
tropy minimal. Choose b ∈ X and define the constant map g(x) = b on [0, 1].
The semigroup action G generated by {f, g} is transitive because f is topo-
logically transitive. But G is not entropy-minimal since by Proposition 2.13,
h(G, [0, 1]) = h(f, [0, 1]) and h(GX ,X) = h(f

∣∣
X

,X).

3. Nonuniformly Expanding

3.1. Preliminary

Among this section, G is a semigroup action generated by C1 local diffeomor-
phisms f1, f2, . . . , fk of a compact manifold X to itself and σ is the shift map
from {1, . . . , k}N to {1, . . . , k}N such that σ(ω0, ω1, ω2, . . .) = (ω1, ω2, . . .), for
every (ω0, ω1, . . .) ∈ {1, . . . , k}N.

We say that a semigroup action G is nonuniformly expanding provided
that there exist λ > 0 and a full Lebesgue measure subset A of X such that
for every x ∈ A there is ω = (ω0, ω1, . . .) ∈ {1, . . . , k}N such that

lim sup
n→∞

1
n

n−1∑

i=0

log ‖ Dfωi
(f i

ω(x))−1 ‖< −λ.

Given 0 < η < 1 and ω ∈ {1, . . . , k}N, we say that n ≥ 1 is a (η , ω)-
hyperbolic time for a point x ∈ X if

n−1∏

j=n−k

‖ Dfωj
(f j

ω(x))−1 ‖≤ ηk for all 1 ≤ k ≤ n.

If for large n ∈ N there are k ≥ θn for some θ and integers 1 ≤ n1 <
n2 < · · · < nk ≤ n which are (η , ω)-hyperbolic times for x we say that the
frequency of (η , ω)-hyperbolic times for x ∈ X is bigger than θ.

Let δ > 0 and 0 < η < 1. Given n ≥ 1 , ω ∈ {1, . . . , k}N and x ∈ X. A
neighborhood Vn , ω(x) of x is called a (η, δ)-hyperbolic preball if

1. fn
ω sends Vn , ω(x) diffeomorphically onto B(fn

ω (x), δ);
2. for every y ∈ Vn , ω(x) and 1 ≤ k ≤ n

‖ Dfk
σn−k(ω)(f

n−k
ω (y))−1 ‖≤ ηk.

Remark 3.1. One can see these definitions for ordinary dynamical systems in
[1].

Now we introduce a property that we need to obtain transitivity of nonuni-
formly expanding semigroup actions.
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A sequence {xi}i∈N
⊆ X is called an asymptotic average pseudo orbit

for the semigroup action G provided that there exists ω = (ω0, ω1, . . .) ∈
{1, . . . , k}N such that

lim
n→∞ sup

1
n

n−1∑

i=0

d(fωi
(xi), xi+1) = 0.

We say that a sequence {xi}i∈N
⊆ X is asymptotic average shadowed

by some point of X if there exist ϕ = (ϕ0, ϕ1, . . .) ∈ {1, . . . , k}N and z ∈ X
such that

lim
n→∞ sup

1
n

n−1∑

i=0

d(f i
ϕ(z), xi) = 0.

A semigroup action G has asymptotic average shadowing property pro-
vided that every asymptotic average pseudo orbit in X is asymptotic average
shadowed by some point of X.

Gu [8] defines these properties for dynamical systems with one genera-
tor.

3.2. Results

We present some propositions and lemma of [14] listed in the following as
Propositions 3.2, 3.3 and 3.4. We need them to prove the main result of this
part, that is Theorem 3.5.

Proposition 3.2. Let semigroup action G be nonuniformly expanding. Then
there are 0 < η < 1 and θ > 0 such that the frequency of (η , ω)-hyperbolic
times for Lebesgue almost every point x ∈ X is bigger than θ.

Proposition 3.3. Let n be a (η , ω)-hyperbolic time for x ∈ X.Then there exist
a (

√
η, δ)-hyperbolic preball Vn , ω(x).

Proposition 3.4. Let Vn , ω(x) be a (η, δ)-hyperbolic preball. Then for every
y, z ∈ Vn , ω(x) and 1 ≤ k ≤ n we have

d(fn−k
ω (y), fn−k

ω (z)) ≤ ηkd(fn
ω (y), fn

ω (z)).

Here we obtain transitivity by means of asymptotic average shadowing
property.

Theorem 3.5. If G is a nonuniformly expanding semigroup action with as-
ymptotic average shadowing property, then 〈G〉 is transitive.

Proof. Let U and V be arbitrary nonempty open subsets of X. Choose x ∈ U ,
y ∈ V and ε > 0 such that Proposition 3.2 is true for x and y, also B(x, ε) ⊆ U
and B(x, ε) ⊆ V .
Let D be the diameter of X. Continuity of f−1

i , i = 1, 2, . . . , k, implies that
there exists 0 < ξ < D such that if d(p, q) < ξ then d(f−1

i (p), f−1
i (q)) < ε,

i = 1, 2, . . . , k.
By Proposition 3.2, there are 0 < η < ξ

D and θ > 0 such that the
frequencies of η-hyperbolic times of x and y are greater than θ. Also by
definition of nonuniformly expanding semigroup action and propositions 3.2



110 Page 10 of 13 M. Mohtashamipour and A. Z. Bahabadi MJOM

and 3.3, there exist δ > 0, ω ∈ {1, . . . , k}N and φ ∈ {1, . . . , k}N such that
corresponding to nx as a (η, ω)-hyperbolic time for x and corresponding to
ny as a (η, φ)-hyperbolic time for y, there exist (

√
η, δ)-hyperbolic preballs

V(nx,ω)(x) of x and V(ny,φ)(y) of y, respectively, such that fnx
ω maps V(nx,ω)(x)

diffeomorphically on to the ball of radius δ around fnx
ω (x) and f

ny

φ maps
V(ny,φ)(y) diffeomorphically on to the ball of radius δ around f

ny

φ (y).
Consider the sequence {αi} = {x, y, x, y, x, fω0(x), y, fφ0(y), . . . , x, fω0(x), . . . ,

f2l−1−1
ω (x), y, fφ0(y), . . . , f2l−1−2

φ (y), f2l−1−1
φ (y), . . .}.

It is easy to see that for some l and 2l ≤ n < 2l+1,

1
n

i=n∑

i=0

d(fγi
(αi), αi+1) <

2(l + 1)D
n

,

whenever γ = (∗, ∗, ∗, ∗, ω0, ∗, φ0, ∗, ω0, ω1, ω2, ∗, φ0, φ1, φ2, ∗, . . .) and “∗” is
any arbitrary element of {1, 2, . . . , k}. So

lim
n−→∞

1
n

i=n∑

i=0

d(fγi
(αi), αi+1) = 0.

The sequence {αi} is an asymptotic average pseudo orbit for G. Hence
it can be asymptotically shadowed in average by some point of X, that is,
there exist z ∈ X and τ ∈ {1, . . . , k}N such that

lim
n�→∞

1
n

n−1∑

i=0

d(f i
τ (z), αi) = 0.

�
Claim. There exist infinitely many η-hyperbolic times nx such that corre-
sponding to every nx there is a positive integer mx such that d(fmx

τ (z), fnx
ω (x))

< δ. Also there exist infinitely many η-hyperbolic times ny such that corre-
sponding to every ny there is a positive integer my such that d(fmy

τ (z), fny

φ (y))
< δ.

Proof of Claim. On the contrary suppose that there is a positive integer N
such that for all η-hyperbolic time t > N ,

d(f i
τ (z), f t

ω(x)) > δ

and

d(f i
τ (z), f t

φ(y)) > δ

for any i > 0. Then for large n, it would be obtained that

1
n

n−1∑

i=0

d(f i
τ (z), αi) ≥ δ

n
#{N < t < n : t is hyperbolic time for x or y}.

So

lim inf
n�→∞

1
n

n−1∑

i=0

d(f i
τ (z), αi) ≥ δθ,

which contradicts with asymptotic average shadowing property.
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Using the claim there are η-hyperbolic times nx and ny for x and y,
respectively, such that

d(fmx
τ (z), fnx

ω (x)) < δ

and

d(fmy
τ (z), fny

φ (y)) < δ,

for some positive integers mx,my. By Propositions 3.3 and 3.4, for all p, q ∈
V(nx,ω)(x),

d(fω0(p), fω0(q)) ≤ η
n−1
2 d(fn

ω (p), fn
ω (q)) < η

n−1
2 D < ηD < ξ,

and for all p, q ∈ V(ny,φ)(y),

d(fφ0(p), fφ0(q)) ≤ η
n−1
2 d(fn

φ (p), fn
φ (q)) < η

n−1
2 D < ηD < ξ.

So d(p, q) < ε. This show that V(nx,ω)(x) ⊂ U and V(ny,φ)(y) ⊂ V . Since
fnx

ω maps V(nx,ω)(x) diffeomorphically on to the ball of radius δ around fn
ω (x)

and f
ny

φ maps V(ny,φ)(y) diffeomorphically on to the ball of radius δ around
fn

φ (y), we have

fmx
τ (z) ∈ fnx

ω (V(nx,ω)(x))

and

fmy
τ (z) ∈ f

ny

φ (V(ny,φ)(y)).

Therefore there exists h ∈ 〈G〉 such that h(U)∩V �= φ and so the group
action 〈G〉 is transitive. �

Corollary 3.6. Let G be a nonuniformly expanding semigroup action of C1

local diffeomorphisms f1, f2, . . . , fk from X to itself preserving a finite Borel
measure with compact support. If G has the asymptotic average shadowing
property, then it is transitive.

Proof. By Remark 2.1 and Theorem 3.5 it is obvious. �

Remark 3.7. One can see other criteria for transitivity of semigroup actions
in [12] and [13] that we have introduced and studied.

Remark 3.8. In [14], the authors studied on ergodicity of semigroup actions
as a stronger property than transitivity. They proved that every transitive
nonuniformly expanding semigroup action of conformal C1 local diffeomor-
phisms is ergodic. For definition of ergodicity on semigroup actions, see
[14].

Theorem 3.5, Corollary 3.6 and Remark 3.8 eventuate the following
corollary.

Corollary 3.9. Let G be a nonuniformly expanding semigroup action generated
by conformal C1 local diffeomorphisms from a compact manifold to itself pre-
serving a finite Borel measure with compact support. If G has the asymptotic
average shadowing property then it is ergodic.
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