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1. Introduction

Fractional calculus has been widely applied to various areas of engineering,
mechanics, physics, chemistry, and biology. There are a large number of pa-
pers and monographs that deal with many problems in fractional calculus
(see [1-6]). Especially, fractional differential equations have been proved to
be powerful tools in the modeling of various phenomena in many fields of
science and engineering such as physics, fluid mechanics, and heat conduc-
tion. For more details of some results on fractional differential equations and
their applications, see the monographs of Podlubny [7], Kilbas et al. [8], and
Lakshmikantham et al. [9].

For studying the turbulent flow problem in a porous medium, Leibenson
[10] introduced the p-Laplacian differential equation as follows:

(ep(u' (1)) = f(t, ult), W'(t), te(0, 1), (1.1)
where ¢, (s) = |s|" %5, p > 1. Motivated by the Leibenson’s work, Guo et al.
[11] discussed the existence of solution for m-point boundary value problems

of p-Laplacian differential equation:
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(o (1)) +a(t) f(t, ult)) =0, te(0, 1),

1 (0)) = ; aip (W (€)), u(l) = ; bautey, 2

(@p(u’(t))_)' +a(t)f(t, u(t) =0, t_€2 (0, 1),
w(0) = X2 aiu(&), @p(u'(1)) = ; bigp(u'(§:))-

i=1

no

(1.3)

All of the differential equations of the problems (1.1)—(1.3) include integer or-
der derivatives. Recently many important results relative to boundary value
problems of arbitrary noninteger order differential equations with p-Laplacian
operator have been obtained (see [12-26]). Especially, Chai [13] used the
fixed-point theorem on cones to investigate the existence and multiplicity
of positive solutions for fractional differential equations with p-Laplacian
operator:

{D€+(<Pp(D6“+U))(t) +f(t u(t) =0, 0<t<l, 1.4
u(0) =0, u(l)+oDJ,u(l)=0, Dg, u(0)=0,

where 1 <a <2, 0<f0<1,0< v<1.

Using the theory of the fixed-point index in a cone Lii [22] studied
the existence and multiplicity of positive solutions to m-point boundary
value problems of nonlinear fractional differential equations with p-Laplacian
operator:

DG (op(Dgu(t) + op(N) f(t,u(t) =0, 0<t<1,
_ (1.5)

w(0) =0, DY, u(l)= 3 &DY, u(n), D§u(0)=0,

1=1
where l <a <2, 0<pf, v<1
However, there are few articles dealing with the existence of solutions
to multi-point boundary value problems for fractional differential equations
with p-Laplacian operator, where 5 > 1.
Li et al. [23] obtained the existence of multiple positive solutions for

m-point boundary value problems of the higher order nonlinear Caputo frac-
tional differential equations with p-Laplacian operator:

D, (pp(Dgu() + f(tu(t) =0, 0<t<1,
sop(Do+_u(0))<>_o7 i=1,2 ..., -1,
u(0)=0, j=1, 2, ..., n—1, (1.6)

op(Dg u(1) = mgf bl (DS u(E))),  u(0) = m;f ar) (&),

where | —1 < (<[, n—1<a<mn, Il >1, n> 2. Their new results are
based on the five functionals fixed-point theorem.
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No contribution exists, as far as we know, concerning the existence of
solutions for multi-point boundary value problems of fractional differential
equations with p-Laplacian operator:

De(ep(Df)(®) = St u(t), 0<t<1,
w(0) =0, Dj,u(l) = 3 &DF,u(m),
i=1 (17)

D u(0) = 0. o(DF (1) =5 Gig(DF; (),

where Dg, , Dg , and Dj, are the standard Riemann-Liouville derivatives
with 1 < a,0<2, 3<a+pf<4 0<y<1l, a—-v7—-1>0, 0<

m—2 m—2
EominG <1, Y en® <1, 3 P! <1, the p-Laplacian operator
i=1 i=1

is defined as ¢, (s) = [s|" %5, p>1,and f e C(]0,1] x [0,400), [0,+00)).

In this paper, we focus on the solvability of the BVP (1.7). By means
of the Banach contraction mapping principle, we obtain some new results on
the existence and uniqueness of solutions for our problem.

The organization of this article is as follows. In Sect. 2, we give some
necessary definitions and preliminary results which will be used to prove our
main results. In Sect. 3, we prove the existence and uniqueness of positive
solutions for our problem, and in Sect. 4, we give two examples to demonstrate
our results.

2. Preliminaries

Definition 2.1. [14] Let o > 0. The fractional integral operator of a function
f:(0, +00) — R is given by
I .
—— | (t—1s5)*""f(s)ds.
I'(a) /0

Definition 2.2. [16] The Riemann-Liouville fractional derivative of order a >
0 of a function f: (0, 4+o00) — R is given by

1 da\" [t
Df, f(t) = ——— | — t—s)nat ds.
50 = e () [ € s
Lemma 2.1. [22] Assume that u € C(0,1) N L*(0,1) with a fractional deriva-
tive of order a > 0 that belongs to C'(0,1) N L(0,1). Then
I8, Dg u(t) = u(t) + Crt* ' + Cot* 2 4 - 4 Cnt* N,
C;eR, i=1,2,...,N

when N is the smallest integer greater than or equal to «.

I&f(t) =

Lemma 2.2. [22] Let y € C[0, 1]. Then, the fractional differential equation
D§, u(t) +y(t) =0, 0<t<1l, 1<a<2,

m—2
i=1
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has a unique solution which is given by

u(t) :/0 G(t,s)y(s)ds

G(t, 8) = Gl(t, S) + Gg(t, 8),

where

in which

el gyemr—l (g _g)a—l 0<s<t<]
G(ts)—{ o) R

o1 (1—g)@=7—1

T, 0<t<s<1,
a—1 a— ey o
ZF((’) O<Z< 6’[ T 1( 75) K 17(771'78) K 1]7 te[ovl]a
Galt,8) = 4 jar OSZW
/IiF(a) Z fl T 1( - S)a—w—l) te [07 1]7

7i<s<1

_1_2510471

Lemma 2.3. [22] If Z &t 771 < 1, then the function G(t,s) in Lemma 2.2
satisfies the followmg condztzons

(i) G(t,s) >0, for s,t € (0,1),
(ii) G(t,s) < G(s,s), for s,t €[0,1],

where

Gi(s,8) = ——(1 =) 771 &

m—
5 S e

We can see that the function G.(s,s) in Lemma 2.3 satisfies that

Lemma 2.4. Let f € C([0,1] x [0, +0), [0, +00)). Then, the BVP (1.7) has a
unique solution which is given by

u(t) = /01 G(t,s)p," (/01 H(S,T)f(f,u(T))dT> ds,

where H(t,s) = Hi(t,s) + Ha(t, s),
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in which
tﬁil(l—s)sil—(t_s)ﬂfl
Hi(t,s) ING) , 0<s<t<l1,
INE)) ) St ,
B—-1 N
g, 2 Gl W L= =), telo),
H2(t,8): 51 S8 ~ )
ér(ﬁ)ngqgnf M-t telo1],
where
m—2
B=1-3 ¢n/™".
i=1

Proof. Let h € C[0,1]. Consider the boundary value problem:
Dy v(t) + h(t) = o
o0 =0, o) =5 Golon). >y
Using Lemma 2.1, we have
o(t) + et 4 eot? 2 = — 1) h().
It follows from the condition v(0) = 0 that cg = 0. Thus
o(t) = —I) h(t) — ertf 7L (2.2)

m—2
Together with the condition v(1) = Y (v(n;), this yields
i=1

ﬁ /01 (1—5)""h(s)ds +c1 = Z i {7/ — )77 h(s)ds + 017]53_1}

Then, we can get that

_ 1 m—24 i U eds 1 VTN
BT () [;Cz/o (mi )" h(s)d /0(1 )P R( )d] (2.3)

Substituting (2.3) into (2.2) and using the relation BF(ﬁ) =5t W(g)’ we
have

t B—1 m— 2
o(t) = _ﬁ/o (t — )" 'h(s)ds — t Z Q/ (i — 5)° " h(s)ds

B—1 1
+f§r<ﬁ) / (1—9)"""h(s)ds
:_ﬁ/o (t — )" 'h(s) ds—— Zcz/ (n: — 5)° "' h(s)ds
81 tB—1 2

+ /01 (1 —5)° 'h(s)ds + 5703 ZQ it / — )77 h(s)ds.

L(3)
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Therefore, the solution of the BVP (2.1) is expressed by

o(t) = /O H{t, 5)h(s)ds. (2.4)

Conversely, let v(t) be the function which is given by (2.4). From the conti-
nuity of H(t,s) and h(s), we see that v € C[0, 1]. In addition, we can easily
get v(0) = 0, since H(0,s) = 0.

We can rewrite (2.4) as

m—2
1 _

o(t) = ~I.h(0) = 5 | 3 G I k)| ~ 15+"<t>\t_1] 7l (25)

i=1 o -

Applying Dg . on both sides of (2.5), we can obtain
1 m—2
D o(t) = —h(t) = 3 | X2 G IR - I&h(t)\t_l] D177
i=1 = -

= —h(t).

On the other hand, from the continuity of h(t), we see that Déﬁrv e C[o,1].
We can also have that

m—2
Z Civ("h)
=1
m—2 1 m—2
=Y G| = [ DG R| - gaw| el
i=1 j=1 -
m—2 B—1 m—2 B—1
R Sy S NY G|+ T 1P h)
- ; Gi Iy, h(t) - B ; G Lot — B o+ 1
m—2 m—2 77571 m—2
== D GG =D G D G IR
i=1 I j=1 =
m—2 77{371
3Gl )|
=1
m=2 1-B\ 1-B
—_ ilﬁht’ (1 Iﬁht’
S annel_, (e 157+ g )
12 1
i LI h(t —Iﬁht’ — 1% h(t
BMC 04 ()t:vaB 0+ ()t:1 0+ ()t:1
=o(1).

Therefore, we can conclude that v(t) is a solution of the BVP (2.1) and our
problem has a unique solution which is given by (2.4).
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Now, we prove the main result of this lemma. Let u(¢) be the solution
of the BVP (1.7) and put w(t) := Dg§, u(t). By Lemma 2.2, we know that

u(t) = — /O G(t, s)w(s)ds. (2.6)

Putting v(t) = ¢p,(w(t)), we have

v(t) = —/0 H(t,s)f(s,u(s))ds. (2.7)

Combining (2.6) and (2.7) yields

u(t) = /O Glts)pnt ( /O H(sr) f(T,u(T))dT) ds. (2.8)

The proof is completed. O

m—

2
Lemma 2.5. If (mffl < 1, then the function H(t,s) in Lemma 2.4 sat-
i=1
isfies the following conditions:

(i) H(t,s) >0, for s,t € (0,1),

(i) H(t,s) < H.(s,s), for s,t €[0,1],

where
1 1 m—2
H.(s,s) = —(1—5)""1 + Cmiﬁ_ll—sﬁ_l.
(59 = (1= 9™+ gy 2 G =9)
Proof. The proof is easy, so we omit it. O

We can see that the function H, (s, s) in Lemma 2.5 satisfies that

H(s9) = 351 = 9" (1 v > cm?1>

_ AR
=Y

The basic properties of the p-Laplacian operator which will be used in the
following studies are listed below [14].

(i) fl<p<?2, zy>0,and |z|, |y| > m >0, then
lop(z) = 2p(y) < (p = D)mP 2 |z —y. (2.9)
(i) If p> 2, |z|,|y| < M, then

lop(z) — p(y)| < (p— 1)MP2 |z —y]. (2.10)
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3. Main Results

We consider the Banach space C(]0, 1]) endowed with the norm defined by
||u|l = Jnax [u(t)|. Denote @, ! by @4, where 1/p+1/q =1 and X := {z|z €

C[Ov 1]7 D3+$ € C[O, 1}7 SDP(DO+$) € 0[07 1], D0+(90p(DO+x)) € 0[07 1]}
Define the operator T': X — X as

u(t) = /0 Gt ), ( /O Hisr) f(T,u(T))dT> ds.

Then, the BVP (1.7) has a solution if and only if the operator T" has a fixed
point.
Put M := (o — )P~ LAP=I BT (a)P~1T(B).
In this article, the following hypotheses will be used.
(Hl) There exist nonnegative functions g, h € L[0,1] and M, :=
fo tydt > 0, 0 < My, == fo t)dt < M, such that f(t,x) < g(t) +

1
h(t)zP~ for any (t,z) € [0, 1] x [0, 7], where r = (7Mg )q .

M—Mp,
(H2) |f(t,z) — f(t,y)| < L|z—y| for any ¢ € [0, 1] and any z, y €
[0, r].
(H3) There exist m,d > 0, such that f(¢,z) > mto~! for any (t,z) €
[0, 1] x [0, 7].

Lemma 3.1. If (H1) holds, then
T(E) C E,
where
E:={ue X| [[ul| <r}.

Proof. It is easy to see that T(E) C X. Now, we prove that ||[Tu| < r for
any u € FE. By Lemma 2.5 and (H1), we can see that for any ¢ € [0, 1]

Tut)] = /1 G(t, 5)pq (/1 H(m)f(T,u(T))dT) ds
/Gts (S?%XH ss/fTu dT)
/ Gt 5) (Bm)/o (g(r) + h(r)u(r)P~ 1)dr>ds
(
(

IN

IN

IN

/0 G(t, 5)pq BFI( 5 ( /O g(r)dr ! /0 1 h(T)dT))ds

/O1 G(t, 5)pq (M, + rp—th)) ds|.

IN
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By considering the properties of the function G(t,s) in Lemma 2.3, we can
get

|Tu(t)] < (1(Mg +7‘p_1Mh))ql /01 G (s,8)ds

BL(5)
1 - q‘ll 1
:(Bmm”@+r M“) Ala—7)T(a)

_ (M, + P M)

= BT (@)1 Afa — )T (a)
Since 1/p +1/g = 1, p — 1 is the inverse number of ¢ — 1. So by simple
calculation, we know that

My + 7'M\ T
Tty < (M)
. M a-1 T —1
It follows from the notation r = (M—;/I; ) that (M — Mp)rP~" = M,.

Therefore, we can get

— _ _ —1
Tu(t)] < <(M st 1Mh>q
a M
— (e
=r.
This yields ||Tu|| < 7. The proof is completed. O

Lemma 3.2. The followings hold:

_ m—2
(i) If (H3) holds, then there exists Ky := % S G =g,
i=1

such that )
/ H(t,s)f(s,u(s))ds > Kot? 1 (3.1)
0

for any t € [0,1].

=

m—2
(ii) There exrists K1 := F(ﬁ;-q—l) [1 + LGP =P, such that
=1

1
/ H(t,s)ds < K t7~! (3.2)
0

for any t € [0,1].
Proof. (i) Since (H3) holds, we obtain
1 1
/ H(t,s)f(s,u(s))ds > / Hi(t,s)ms’"1ds
0 0

1 1
:/ Hl(ts)ms‘s_lds—i—/ Hy(t, s)ms’~1ds.
0 0
(3.3)
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Evaluating two parts of the right-hand side in (3.3), respectively, we have

1 — 1 t
/ Hi(t, s)yms® 'ds = — {tﬁfl/ (1—s)"""s’"ds 7/ (t—s)" s’ lds
0 INE)) 0 0

- %[tﬁ”B(é, B) =t B(s, )]
_ FT;F_E_(S?S) [tﬁﬂ _ tﬁfwa}
>0,
! sy mt?! ~ g1 ! B-1_6-1
/0 Hy(t,s)ms’ "ds = BI(5) ; Gi {771- /0 (1—s)"""s"" "ds
B /m (m _ 8)5718671&9}
0
mtP ! i B—1 B—1+6
= B 2 G [ BE.8) 7B )
i=1
_ m—2
= % U U

Therefore, we know that (3.1) is satisfied.
(ii) From the definition of H(t,s), we see that

1 1 1
/ H(t,s)ds :/ Hl(t7s)ds+/ Hs(t, s)ds.
0 0 0

In addition, we can get

/01 H,(t,s)ds = % {tﬁl /01 (1—s)"tds — /Ot (t — s)’alds}

r
1
— = (Pl 4P
rern
1
< — 71
SNCESY
1 tﬁ_l m—2 ,B 1 1 ﬂ 1 M4 ﬁ 1
Hs(t,s)ds = G 772_/ 1—s _ds—/ (ni —s _ds]
| it 91s = g 2 , 179 , W)
1 m—2
_ -1 By+8—1
i — )t .
BrG 1) Gil(m; ;)
=1
Therefore, we conclude that (3.2) holds. O

Theorem 3.1. Suppose that the assumptions (H1)-(H3) and

(- 1)KI KL
Ala = 7)I(a)
hold and p > 2. Then, the BVP (1.7) has a unique positive solution.

<1 (3.4)
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Proof. Define the operators Ty, 17 as follows.

Since G(0,s) = 0, we have that for any x € X,

T2(0) = /O G(0, 5)Toz(s)ds = 0.

129

In the case p > 2, due to 1/p+ 1/g = 1, we can get 1 < ¢ < 2. So from
(3.1) and the basic properties of p-Laplacian operator, we can see that for

any z,y € X and any ¢ € (0, 1]:

‘Tox( Toy

< (q—1)(Kot" ™)

/ H(t,s)f(s,z(s))ds
,/0 H(t, s)f(s,y(s))ds

< (q—l)(Kotﬁfl)H/0 H(t,s)[f(s,2(s)) — f(s,y(s))] ds

< (q— 1)(Kot? 1) / H(t, 5)L|a(s) — y(s)| ds

(/ H(t, 5)f(s,( )ds)—cpq (/1H(t,s)f(s7y(s))ds)

< (a= D)L=yl [ H(Es)as, (35)

Applying (3.2) to (3.5), we have

[ Tox(t) — Toy(t)| < (¢ — 1)(Kot’ 1)L || — y|| K1t~
< (q-1)K{ KL ||z —y| tP~ DD,

Therefore, we can obtain
Tx(t) — Ty(t)| = |T1 o Tox(t) — T o Toy(t))|

/Gts(Tox) ds—/Gts(TOy)( )ds

/ G(t,s) | Tox(s) — Toy(s)|ds

1
<(q— 1)K KLz -y / G(t,s)s P~ Dla=qg,
0
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On the other hand, since (8 — 1)(¢ — 1) > 0, by Lemma 2.3, we get

1 1
/G(t,s)s(ﬁ_l)(q_l)dsg/ G(t,s)ds
0 0
1
§/ G.(s,s)ds
0
1

Al —y)l(a)

This yields

(¢ - DEK§ K\ L
Ala =) (@)

Combining Lemma 3.1, (3.4) and (3.6) implies that T': E — F is a contrac-

tion mapping. By means of the Banach contraction mapping principle, we

can see that T has a unique fixed point in E, that is to say, the BVP (1.7)
has a unique positive solution. O

T2 — Tyl <

=yl (3.6)

Lemma 3.3. If (H1) holds, there exists My := %{B;M”, such that for any

u€ E and any t € [0,1],
1
/ H(t,s)f(s,u(s))ds < M. (3.7)
0
Proof. In a similar way to the proof of Lemma 3.1, we can see that
1
/ H(t,s)f(s,u(s))ds </ H.(s,5)f(s,u(s))ds
0

< max H,( ss/fsu
s€[0,1]

1 p—1
< g 66+ st as
1 ! vt [
< 731—‘(@ </o g(s)dr +r /0 h(s)dT)
. Mg + Tpith
- Br
The proof is completed. O

Theorem 3.2. Suppose that the assumptions (H1), (H2,) and

(q—DLr*™?

<! (3.8)

hold and 1 < p < 2. Then, the BVP (1.7) has a unique positive solution.
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Proof. 1t is easy to see that ¢ > 2. Using Lemmas 2.5 and 3.3 and the basic
properties of p-Laplacian operator, we can get that for any x,y € X and any

t e0,1]:
(/ H(t, s) (s, )ds) s (/01 Hit, s)f(s,y(s))ds)

< (g—1)Mg? / H(t, 5) f (5, 2(s))ds — / H(t, 5) £ (5. 9(s))ds

| Tox(t) — Toy(t)

< (g—1)Mg? / H(t,5) | (s,2(s)) — (s, (s))] ds
< (q— )M~ / H(t, 5)L|a(s) — y(s)| ds
< (- DMIL e — g / H(t, 5)ds

1
< (g- DMI2L |z —y / H. (s, 5)ds
0

(g—-1)MI’L
= Wfl) llz —yll

Hence, we obtain

Tx(t) = Ty(t)] = |Ty o Tox(t) — Ty o Toy(t)]

/Gts(Tox) ds—/ G(t, 5)(Toy)(s)ds

/ G(t,s) |Tox(s) — Toy(s)|ds
~ DML~y / G
- BI'(6+1)
In a similar way to the proof of Theorem 3.1, we can evaluate
@ DMLy
(@ =7)ABL()l(6 +1) '

From the definition of M, we have

[Tz =Tyl <

(- ML (¢— 1L . (Mg + rleh>q_2
(@ = VABL(a)T(B+1)  Ba—v)ABL(a)T'(B) BI(B)
= % (M, + rP M)
M
_(g=DL [ M, N\
- M (M - Mh)
= M (3.9)
M

Therefore, combining Lemma 3.1, (3.8), and (3.9) implies that T : F — Eis a
contraction mapping. By means of the Banach contraction mapping principle,
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we can see that T has a unique fixed point in E, that is to say, the BVP (1.7)
has a unique positive solution. O

4. Examples

To demonstrate our main results, we present the following examples.

Ezample 4.1. Consider the boundary value problem:
Dy:E (p3(Dg:Pu))(t) = 10v/E +0.01[u(t))?, 0<t< 1,
u(0) =0, Dgiu(0) =0,
DY2u(1) = 0.1D§:25u(0.25) + 0.1D5:25u(0.5) + 0.1 D351 (0.75),

3 (DEFu)(1) = 015 (DEF1)(0.25) + 0,155 (D) (0.5) + 0,105 (DA (0.75).
(4.1)
Then, the BVP (4.1) has a unique positive solution.

Proof. The BVP (4.1) can be regarded as the boundary value problem (1.7),
where f(t, x) = 10v/t +0.012%, p=3, a=15, =15 v=025 n =
0.25, 15 = 0.5, 13 = 0.75, & = 0.1, & = 0.1,65 = 0.1, ¢, = 0.1, (o =
0.1, 3 =0.1.

Then, we can get

g=15<2,

m—2
A=1=> &m 7 =07521...,
=1

m—2
B=1-> ¢n/ ' =07927..

i=1
M = (a — )P L AP BT ()P 'T(B) = 0.4877 .. .,
f € C(0,1] x [0,400), [0,+400)).

Taking 6 = 1.5, m =10, g(t) =10, h(t) =0.01, we have

1 1
My = / g(t)dt =10, M = / h(t)dt = 0.01,
0 0

and for any t € [0, 1], f(¢, ©) > mt°~L, f(t, ) < g(t) + h(t)aP~ 1.
Therefore, we obtain that

M a1
- (9 > =4.5753...,
M — M,

and for any z, y € [0, 7], |f(t, z)—f(t, y)| = 0.01]2%—y?| < 0.01-2r-|z—y| <
Lix —y|, where L = 0.1.
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By computation we deduce that

_ m—2
Ko = 9y — .
0 BMH;@ ) =0.6698....,
1 1
K, — : —0.8419.
TTern | B Z G
~1)K{ KL
g= DK KL o67
Alar =) (a)
Therefore, by Theorem 3.1, the BVP (4.1) has a unique positive
solution. 0

Example 4.2. Consider the boundary value problem:
D{:2(p1.5(D§:pw))(t) = 0.5t 4 0.1u(t), 0 <t <1,
u(0) =0, DESu(0) =0,
D:2Pu(1) = 0.1D§:#5u(0.25) + 0.1DJ:25u(0.5) + 0.1.DJ-25u(0.75),

@1.5(Dg:Pu)(1) = 0.101.5(D§:Pu)(0.25) + 0.101 5(D§:Pu)(0.5) + 0.101.5(D§:Pu)(0.75).
(4.2)
Then, the BVP (4.2) has a unique positive solution.

Proof. The BVP (4.2) can be regarded as the boundary value problem (1.7),
where f(t, ) = 0.5t + 0.1z, p=15 a=15 g=15 =025 mn =
0.25, 15 = 0.5, 13 = 0.75, & = 0.1, & = 0.1,

& =01, (1 =01, (=01, (3=0.1.
Then, we can get

q=3>2,

m—2

_1—2@770‘ = 0.7521 ..

B=1- Z ¢’ =0.7927. ..,

M = (a — )PP AP BT ()P 'T(B) = 0.6412.. .,
f€C([0,1] x [0,400), [0,+400)).
Taking g(t) = 0.5, h(t) =0.1, we have

1
Mg:/ g(t)dt =
0
1
My, = / h(t)dt = 0.1,
0

M, N\
r = <g> :0.8534.
M — M,
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So we obtain that for any ¢ € [0, 1] and any =, y € [0, 7],

f(t, x) < g(t) + h(t)zP~ 1,
where L = 0.1.
By computation we deduce that
—1)Lr2-r
K= W= DI goy
GM
By Theorem 3.2, we can prove that the BVP (4.2) has a unique positive
solution. 0
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