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Smoothness and Shape Preserving
Properties of Bernstein Semigroup
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Abstract. This paper is concerned with the strongly continuous semi-
group (T (t))t≥0 of operators on C[0, 1] which can be represented as
a limit of suitable iterates of the Bernstein operators Bn. We present
some new smoothness and shape preserving properties of the operators
T (t) and Bn. The asymptotic behavior and simultaneous approximation
results are also presented.

Mathematics Subject Classification. 47D07, 41A36, 26A51.

Keywords. Markov semigroup, Bernstein operators, Shape preserving
properties, Simultaneous approximation.

1. Introduction

Let (C[0,1],|| · ||) be the Banach space of all real-valued, continuous functions
on [0,1], endowed with the supremum norm. For 0 ≤ j ≤ n, we consider the
functions

bn,j(x) := (n
j )xj(1 − x)n−j , x ∈ [0, 1].

The classical Bernstein operators Bn : C[0, 1] → C[0, 1] are defined by

Bnf(x) :=
n∑

j=0

bnj(x)f
( j

n

)
, n ≥ 1, f ∈ C[0, 1], x ∈ [0, 1].

Let t ≥ 0 and (k(n))n≥1 be an arbitrary sequence of positive integers such
that lim

n→∞
k(n)

n = t. A remarkable feature of the Bernstein operators is the
existence of the limit:

T (t)f := lim
n→∞ Bk(n)

n f, f ∈ C[0, 1].

Bk
n denotes the iterate of order k of Bn.

Moreover, T (t) : C[0, 1] → C[0, 1] is a Markov operator (i.e., a positive
linear operator transforming the constant function 1 into itself) and (T (t))t≥0

is a Markov semigroup of operators on C[0, 1].
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This semigroup and the sequence of Bernstein operators are deeply in-
vestigated in the literature: see [1,2,5–7,11,12] and the references therein.

In this paper, we present some new smoothness and shape preserving
properties of the operators Bn and T (t).

In Sect. 2, we start using some known properties of Bernestein operators
to prove that T (t) preserves the smoothness of f . This result enables us to
obtain a Lipschitz-type property of the family (T (t))t≥0 : see Theorem 2.3
and Remark 2.4 (i).

Let T : C[0, 1] → C[0, 1] be the operator B1, that is

Tf(x) = (1 − x)f(0) + xf(1), f ∈ C[0, 1], x ∈ [0, 1].

It is well known (see, e.g., [3, Rem. 3.11.1], [18, Th. 3.1]) that

lim
t→∞ T (t)f = Tf, f ∈ C[0, 1].

Theorems 2.5 and 2.6 are simultaneous approximation type results for T (t);
they show that if f ∈ Cm[0, 1], then T (t)f ∈ Cm[0, 1] for every t ≥ 0 and
(T (t)f)(i) → f (i) as t → 0, respectively (T (t)f)(i) → (Tf)(i) as t → ∞ for all
i = 0, 1, . . . ,m.

Section 2 ends with a result concerning the rate of convergence of T (t)f
towards Tf .

Section 3 is devoted to shape preserving properties. We consider the
family of strongly m-convex functions with modulus c (see [9]) and the family
of approximately m-concave functions with modulus c (see [14]).

The behavior of Bn and T (t) with respect to these families is investi-
gated.

Throughout this paper, we use the notation ej(t) = tj , t ∈ [0, 1], j =
0, 1, . . .. We need also a well-known result (see, e.g., [1, Cor. 6.3.8]):

If f ∈ C[0, 1] is convex, then Bnf and T (t)f are convex; moreover,
Bnf ≥ f and T (t)f ≥ f, n ≥ 1, t ≥ 0.

2. Smoothness Preservation Properties

Let (T (t))t≥0 be the semigroup on C[0, 1] represented in terms of iterates of
the Bernstein operators.

Theorem 2.1. If f ∈ Cm[0, 1], then T (t)f ∈ Cm[0, 1], t ≥ 0, and

||(T (t)f)(i)|| ≤ ||f (i)|| exp
(

− (i − 1)i
2

t

)
, t ≥ 0, i = 0, 1, . . . ,m. (2.1)

Proof. (a) The assertion is true if f is a polynomial. In this case, T (t)f is a
polynomial of the same degree, and (2.1) is satisfied; see [10].

(b) Let f ∈ Cm[0, 1] be given, and set pn := Bnf, n ≥ 1.
Then (see [5, Sect. 4.6]),

lim
n→∞ p(i)n = f (i), i = 0, 1, . . . , m. (2.2)
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Let k, j ≥ 1. According to (a), we have

||(T (t)pk)(i) − (T (t)pj)(i)|| = ||(T (t)(pk − pj))(i)|| ≤ ||(pk − pj)(i)||
exp

(
− (i − 1)i

2

)
, t ≥ 0.

Combined with (2.2), this shows that for fixed t ≥ 0 and i ∈ {0, 1, . . . ,m},
((T (t)pn)(i))n≥1 is a Cauchy sequence in C[0, 1] ; consequently, there exists
ϕt,i ∈ C[0, 1], such that

lim
n→∞(T (t)pn)(i) = ϕt,i. (2.3)

In particular, we have lim
n→∞ T (t)pn = T (t)f and lim

n→∞(T (t)pn)(1) = ϕt,1; it

follows that T (t)f ∈ C1[0, 1] and (T (t)f)(1) = ϕt,1.
Now, lim

n→∞(T (t)pn)(1) = ϕt,1 = (T (t)f)(1) and lim
n→∞(T (t)pn)(2) = ϕt,2

imply (T (t)f)(1) ∈ C1[0, 1] and (T (t)f)(2) = ϕt,2; moreover, lim
n→∞(T (t)pn)(2)

= (T (t)f)(2).
Repeating these arguments, we find that (T (t)f)(m) = ϕt,m ∈ C[0, 1],

i.e., T (t)f ∈ Cm[0, 1] and

lim
n→∞(T (t)pn)(i) = (T (t)f)(i), t ≥ 0, i = 0, 1, . . . ,m. (2.4)

According to (a), (2.1) is true for the polynomials pn. Consequently, (2.4)
and (2.2) yield

||(T (t)f)(i)|| = lim
n→∞ ||(T (t)pn)(i)|| ≤ lim

n→∞ ||p(i)n || exp
(

− (i − 1)i
2

t

)

= ||f (i)|| exp
(

− (i − 1)i
2

t

)
,

and this concludes the proof. �

Remark 2.2. Results of this type, in a more general context, can be found in
[8].

Theorem 2.3. Let x ∈ [0, 1], t, s ≥ 0, f ∈ C2[0, 1]. Then

|T (s)f(x) − T (t)f(x)| ≤ x(1 − x)
2

|e−s − e−t|||f ′′||. (2.5)

Proof. Let u ≥ 0 and g ∈ C2[0, 1]. Then 1
2 ||g′′||e2 ± g are convex functions,

and so

T (u)
(1

2
||g′′||e2 ± g

)
≥ 1

2
||g′′||e2 ± g.

We know (see, e.g., [4,6,9]) that T (u)e2 = e−ue2 + (1 − e−u)e1.
Therefore, 1

2 ||g′′||(e−ue2 + (1 − e−u)e1) ± T (u)g ≥ 1
2 ||g′′||e2 ± g, which

implies

1
2
||g′′||(1 − e−u)x(1 − x) ≥ |T (u)g(x) − g(x)|, x ∈ [0, 1]. (2.6)
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Now, let f ∈ C2[0, 1] and g := T (t)f . According to Theorem 2.1, g ∈ C2[0, 1];
consequently, from (2.6), we derive

|T (u)(T (t)f)(x) − T (t)f(x)| ≤ 1
2
x(1 − x)(1 − e−u)||(T (t)f)′′||.

However, (2.1) shows that ||(T (t)f)′′|| ≤ e−t||f ′′||, so that

|T (u + t)f(x) − T (t)f(x)| ≤ 1
2
x(1 − x)(1 − e−u)e−t||f ′′||.

�
Setting s := u + t, we get (2.5).

Remark 2.4. (i) (2.5) can be extended to functions from C[0, 1] by passing
to K-functionals and moduli of smoothness, in the spirit of [10].
(ii) With s = 0, respectively s → ∞, we get from (2.5)

|T (t)f(x) − f(x)| ≤ 1
2
x(1 − x)(1 − e−t)||f ′′||, (2.7)

|T (t)f(x) − Tf(x)| ≤ 1
2
x(1 − x)e−t||f ′′||, (2.8)

for all t ≥ 0, x ∈ [0, 1], f ∈ C2[0, 1].

(2.7) and (2.8) were proved in [16]; see also [17].
The next two theorems contain simultaneous approximation results.

Theorem 2.5. Let f ∈ Cm[0, 1]. Then

lim
t→0

(T (t)f)(i) = f (i), i = 0, 1, . . . ,m. (2.9)

Proof. It is known (see, e.g., [12, (3.12)], [13, Th. 2.1]) that

T (t)ej = ej exp
(

− (j − 1)j
2

t

)
+ ej−1aj−1(t) + · · · + e0a0(t), (2.10)

for j ≥ 0, t ≥ 0 and certain continuous functions a0, . . . , aj−1.
Since lim

t→0
T (t)ej = ej , it follows that

lim
t→0

ak(t) = 0, k = 0, . . . , j − 1. (2.11)

Now, (2.10) and (2.11) imply

lim
t→0

(T (t)ej)(i) = (ej)(i), i, j ≥ 0,

and therefore

lim
t→0

(T (t)p)(i) = p(i), i ≥ 0, (2.12)

for each polynomial function p.
Let f ∈ Cm[0, 1] and pn := Bnf, n ≥ 1. Then

||(T (t)f)(i) − f (i)|| ≤ ||(T (t)f)(i) − (T (t)pn)(i)|| + ||(pn)(i)

− f (i)|| + ||(T (t)pn)(i) − (pn)(i)||.
Using (2.1), we get

||(T (t)f)(i) − f (i)|| ≤ 2||f (i) − (pn)(i)|| + ||(T (t)pn)(i) − p(i)n ||.



MJOM Smoothness and Shape Preserving Properties Page 5 of 10 96

Let i be fixed and ε > 0. According to (2.2), there exists n ≥ 1, such that
||f (i) − (pn)(i)|| ≤ ε

4 . (2.12) shows that there exists δ > 0, such that

||(T (t)pn)(i) − (pn)(i)|| ≤ ε

2
, t ∈ [0, δ].

We conclude that

||(T (t)f)(i) − f (i)|| ≤ ε, t ∈ [0, δ],

and so (2.9) is proved. �

Theorem 2.6. Let f ∈ Cm[0, 1]. Then

lim
t→∞(T (t)f)(i) = (Tf)(i), i = 0, 1, . . . ,m. (2.13)

Proof. For i = 0, (2.13) is trivially true; for i = 2, . . . , m, it is a consequence
of (2.1), because Tf is a polynomial function of degree ≤ 1.

Therefore, let f ∈ C1[0, 1]; we have to prove that

lim
t→∞(T (t)f)

′
= (Tf)

′
. (2.14)

Let j ≥ 2. Then, lim
t→∞ T (t)ej = Tej = e1, so that from (2.10), we get

lim
t→∞ a1(t) = 1, lim

t→∞ ak(t) = 0, k ∈ {0, 2, 3, . . . , j − 1}.

Combined with (2.10), this yields

lim
t→∞(T (t)ej)

′
= e

′
1 = e0 = (Tej)

′
, i.e.,

lim
t→∞(T (t)ej)

′
= (Tej)

′
, j ≥ 2.

This is true also for j ∈ {0, 1}, and so

lim
t→∞(T (t)p)

′
= (Tp)

′
(2.15)

for each polynomial function p.
Now, let pn := Bnf, n ≥ 1. Then

||(T (t)f)
′ − (Tf)

′ || ≤ ||(T (t)f)
′ − (T (t)pn)

′ || + ||(T (t)pn)
′ − (Tpn)

′ ||
+ ||(Tpn)

′ − (Tf)
′ ||

= ||(T (t)(f − pn))
′ || + ||(T (t)pn)

′ − (Tpn)
′ ||

≤ ||(f − pn)
′ || + ||(T (t)pn)

′ − (Tpn)
′ ||.

Let ε > 0. According to (2.2) and (2.15), there exists n, such that ||(f −
pn)

′ || ≤ ε

2
, and there exists A, such that ||(T (t)pn)

′ − (Tpn)
′ || ≤ ε

2
for all

t ≥ A.
Therefore

||(T (t)f)
′ − (Tf)

′ || ≤ ε, t ≥ A,

and this proves (2.14). �

Concerning the rate of convergence T (t)f → Tf (t → ∞), we have the
following result.
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Theorem 2.7. Let f ∈ C[0, 1] be differentiable at 0 and 1. Then

lim
t→∞ et(T (t)f(x) − Tf(x)) = 6x(1 − x)

(∫ 1

0

f(s)ds − f(0) + f(1)
2

)
,

(2.16)

uniformly for x ∈ [0, 1].

Proof. Define the function g ∈ C[0, 1] by

g(0) := f
′
(0) + f(0) − f(1),

g(1) := −f
′
(1) − f(0) + f(1),

g(x) :=
f(x) − (1 − x)f(0) − xf(1)

x(1 − x)
, 0 < x < 1.

Let ε > 0; take a polynomial function q, such that ||g − q|| ≤ ε

2
.

Setting p(x) := (1 − x)f(0) + xf(1) + x(1 − x)q(x), we get

|f(x) − p(x)| ≤ ε

2
x(1 − x), x ∈ [0, 1]. (2.17)

For h ∈ C[0, 1], t ≥ 0 and x ∈ [0, 1] denote

V (t)h(x) := et(T (t)h(x) − Th(x)), Lh(x)

:= 6x(1 − x)
( ∫ 1

0

h(s)ds − h(0) + h(1)
2

)
.

Using (2.17) and [16, Th. 3.1] (see also [4, (11)]), we get

|V (t)(f − p)(x)| ≤ εx(1 − x), x ∈ [0, 1]. (2.18)

Let
(
J (1,1)

m (s)
)

m≥0
be the Jacobi monic polynomials on [0, 1], orthogonal

with respect to the weight s(1 − s). Let u0(s) = 1, u1(s) = s, uj(s) =
s(1 − s)J (1,1)

j−2 (s), j ≥ 2.

Then (see, e.g., [13])

T (t)uj = ujexp
(

− (j − 1)j
2

t
)
, t ≥ 0, j ≥ 0. (2.19)

From (2.19), it follows easily that

lim
t→∞ V (t)uj = Luj =

{
0 , j �= 2,
u2 , j = 2,

and so lim
t→∞ V (t)p = Lp. Consequently, there exists A, such that ||V (t)p −

Lp|| ≤ 5ε
8 for all t ≥ A.

Now, for t ≥ A, we have (see (2.17) and (2.18)):

|V (t)f(x) − Lf(x)| ≤ |V (t)(f − p)(x)| + |V (t)p(x) − Lp(x)|
+|Lp(x) − Lf(x)|

≤ εx(1 − x) +
5ε

8
+ |L(p − f)(x)|

≤ ε

4
+

5ε

8
+

ε

8
= ε, x ∈ [0, 1].
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Thus, lim
t→∞ V (t)f(x) = Lf(x), uniformly on [0, 1], which proves (2.16). �

Remark 2.8. Concerning Theorem 2.7, see also [15, Th. 3].

3. Shape Preserving Properties

Let f ∈ C[0, 1] and 0 ≤ i ≤ n. We shall use the notation:

λni :=
n!

ni(n − i)!
.

The divided difference of f on the distinct nodes a0, a1, . . . , ai ∈ [0, 1]
will be denoted by [a0, a1, . . . , ai; f ].
Then (see e.g., [1, p. 460]), for each x ∈ [0, 1],

(Bnf)(i)(x) = i!λni

n−i∑

h=0

[h

n
,
h + 1

n
, . . . ,

h + i

n
; f

]
bn−i,h(x). (3.1)

Now, let us denote
l(f ; i) := inf{[a0, a1, . . . , ai; f ] : 0 ≤ a0 < a1 < · · · < ai ≤ 1},
u(f ; i) := sup{[a0, a1, . . . , ai; f ] : 0 ≤ a0 < a1 < · · · < ai ≤ 1}.

Theorem 3.1. Let f ∈ C[0, 1], 0 ≤ i ≤ n, and t ≥ 0. Then

λnil(f ; i) ≤ l(Bnf ; i) ≤ u(Bnf ; i) ≤ λniu(f ; i), (3.2)

l(f ; i) exp
(

− (i − 1)i
2

t

)
≤ l(T (t)f ; i) ≤ u(T (t)f ; i) ≤ u(f ; i)

exp
(

− (i − 1)i
2

t

)
. (3.3)

Proof. Using (3.1), we see that

i!λnil(f ; i) ≤ (Bnf)(i)(x) ≤ i!λniu(f ; i), x ∈ [0, 1]. (3.4)

Let 0 ≤ a0 < a1 < · · · < ai ≤ 1. Then, according to the mean value theorem
for divided differences, there exists t ∈ [0, 1], such that

[a0, a1, . . . , ai;Bnf ] =
1
i!

(Bnf)(i)(t).

Now, (3.4) shows that

λnil(f ; i) ≤ [a0, a1, . . . , ai;Bnf ] ≤ λniu(f ; i),

which implies (3.2).
From (3.2), we deduce

λ2
nil(f ; i) ≤ λnil(Bnf ; i) ≤ l(B2

nf ; i) ≤ [a0, a1, . . . , ai;B2
nf ]

≤ u(B2
nf ; i) ≤ λniu(Bnf ; i) ≤ λ2

niu(f ; i).

Briefly

λ2
nil(f ; i) ≤ [a0, a1, . . . , ai;B2

nf ] ≤ λ2
niu(f ; i).
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By induction

λk
nil(f ; i) ≤ [a0, a1, . . . , ai;Bk

nf ] ≤ λk
niu(f ; i), k ≥ 1. (3.5)

Let t ≥ 0. Choose a sequence (k(n))n≥1, such that lim
n→∞

k(n)
n = t. In (3.5),

replace k by k(n) and let n → ∞; it follows that

l(f ; i) exp
(

− (i − 1)i
2

t

)
≤ [a0, a1, . . . , ai;T (t)f ] ≤ u(f ; i) exp

(
− (i − 1)i

2
t

)
,

for all 0 ≤ a0 < a1 < · · · < ai ≤ 1. This proves (3.3). �

Definition 3.2. ([9]) Let c > 0. The function f ∈ C([0, 1]) is called strongly
m-convex with modulus c if

[a0, a1, . . . , am+1; f ] ≥ c, (3.6)

for all 0 ≤ ao < a1 < · · · < am+1 ≤ 1. Equivalently, l(f ;m + 1) ≥ c.

Now, we are in a position to prove

Corollary 3.3. Let f ∈ C[0, 1] be strongly m-convex with modulus c. Then
(a) Bnf is strongly m-convex with modulus cλn,m+1;
(b) T (t)f is strongly m-convex with modulus c exp(−m(m+1)

2 t).

Proof. If f is strongly m-convex with modulus c, then (3.6) shows that
l(f ;m + 1) ≥ c. From (3.2) and (3.3), we get
l(Bnf ;m + 1) ≥ λn,m+1l(f ;m + 1) ≥ cλn,m+1;

l(T (t)f ;m + 1) ≥ l(f ;m + 1) exp
(

−m(m + 1)
2

t

)
≥ c exp

(
−m(m + 1)

2
t

)
,

and the proof is finished. �

The following is an extension of a definition from [14].

Definition 3.4. Let c > 0. The function f ∈ C[0, 1] is called approximately
m-concave with modulus c if

[a0, a1, . . . , am+1; f ] ≤ c, (3.7)

for all 0 ≤ a0 < a1 < · · · < am+1 ≤ 1.
Equivalently, u(f ;m + 1) ≤ c.

Corollary 3.5. Let f ∈ C[0, 1] be approximately m-concave with modulus c.
Then
(a) Bnf is approximately m-concave with modulus cλn,m+1;
(b) T (t)f is approximately m-concave with modulus c exp(−m(m+1)

2 t).

Proof. According to (3.7), u(f ;m + 1) ≤ c. To conclude the proof, it suffices
to combine this inequality with (3.2) and (3.3). �

Remark 3.6. The limiting case c = 0 in Corollaries 3.3 and 3.5 is also inves-
tigated in [2, Prop. A.2.5].
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Sălaj
Romania
e-mail: hodissever@gmail.com

Laura Mesaroş
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