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Abstract. In this paper, we propose a new modified proximal point al-
gorithm for a countably infinite family of nonexpansive mappings in
complete CAT(0) spaces and prove strong convergence theorems for the
proposed process under suitable conditions. We also apply our results
to solving linear inverse problems and minimization problems. Several
numerical examples are given to show the efficiency of the presented
method.
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1. Introduction

Let (X, d) be a geodesic metric space and let f : X → (−∞,∞] be a proper
and convex function. One of the major problems in optimization theory is to
find a point x ∈ X such that

f(x) = min
y∈X

f(y).

We denote the set of all minimizers of f on X by argminy∈Xf(y).
The proximal point algorithm is an important tool in solving optimiza-

tion problem which was initiated by Martinet [28] in 1970. Later, Rockafellar
[34] studied the convergence of the proximal point algorithm for finding a so-
lution of the unconstrained convex minimization problem in a Hilbert space
H as follows. Let f be a proper, convex and lower semi-continuous function
on H. The proximal point algorithm is defined by x1 ∈ H and

xn+1 = argmin
y∈H

[
f(y) +

1
2λn

‖y − xn‖2
]

, ∀n ∈ N,
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where λn > 0 for all n ∈ N. It was shown that if f has a minimizer and
infn λn > 0 then the sequence {xn} converges weakly to a minimizer of f ; see
also [9]. However, the proximal point algorithm does not necessarily converge
strongly in general; see [6,17]. Recently several authors proposed modifica-
tions of Rochafellar’s proximal point algorithm to have strong convergence,
for example, in 2000, Kamimura and Takahashi [21] combined the proximal
point algorithm with Halpern’s iteration process [19] so that the strong con-
vergence is guaranteed.

In recent times, many convergence results by the proximal point al-
gorithm for solving unconstrained convex minimization problems have been
extended from the classical linear spaces such as Hilbert spaces and Ba-
nach spaces to the setting of manifolds; see [3–5,7,17,21,27,28,30–32,34].
For example, in 2013, Bačák [4] introduced the proximal point algorithm in
a complete CAT(0) space (X, d) as follows: x1 ∈ X and

xn+1 = argmin
y∈X

[
f(y) +

1
2λn

d(y, xn)2
]

, ∀n ∈ N,

where λn > 0 for all n ∈ N. It was shown that if f has a minimizer and∑∞
n=1 λn = ∞, then the sequence {xn} Δ-converges to its minimizer. Later

in 2015, Cholamjiak et al. [12] established the strong convergence of the
sequence to minimizers of a convex and lower semi-continuous function and
to a common fixed point of two nonexpansive mappings in complete CAT(0)
spaces. Recently, Suparatulatorn et al. [37] introduced the modified proximal
point algorithm combined with Halpern’s iteration process for a nonexpansive
mapping T in a complete CAT(0) space (X, d) as follows. Let f be a proper,
convex and lower semi-continuous function on X. The modified proximal
point algorithm is defined by u, x1 ∈ X and⎧⎪⎨

⎪⎩
yn = argmin

y∈X

[
f(y) +

1
2λn

d(y, xn)2
]

,

xn+1 = αnu ⊕ (1 − αn)Tyn, ∀n ∈ N,

(1.1)

where λn > 0 for all n ∈ N. It was proved that if f has a minimizer and
{λn}, {αn} satisfy some mild conditions, then the sequence {xn} generated
by (1.1) converges strongly to its minimizer.

Motivated by research in this direction, the following question arises:
Question I: Can we construct an iterative process for finding minimizers of
a convex and lower semi-continuous function and common fixed points of
a countably infinite family of nonexpansive mappings in complete CAT(0)
spaces?

The aim of this paper is to propose a new modified proximal point algo-
rithm for a countably infinite family of nonexpansive mappings in complete
CAT(0) spaces and to prove strong convergence theorems for the proposed
algorithm under suitable conditions. In the last section, we apply our results
to solve the linear inverse problem and the minimization problem includ-
ing numerical examples. Our results not only give an affirmative answer to
the above question but also generalize the corresponding results of Bačák [4],
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Cholamjiak et al. [12], Suparatulatorn et al. [37], Dhompongsa and Panyanak
[15], and many others.

2. Preliminaries and Useful Lemmas

Let (X, d) be a metric space and x, y ∈ X. A geodesic joining x to y is a
map γ from a closed interval [0, k] ⊂ R to X such that γ(0) = x, γ(k) = y
and d(γ(s1), γ(s2)) = |s1 − s2| for all s1, s2 ∈ [0, k]. So γ is an isometry and
d(x, y) = k. The image of γ is called a geodesic segment joining x and y. When
it is unique, this geodesic is denoted by [x, y] and we write αx ⊕ (1 − α)y
for the unique point z in the geodesic segment joining from x to y such that
d(x, z) = (1 − α)d(x, y) and d(y, z) = αd(x, y) for α ∈ [0, 1]. The space X is
said to be a geodesic metric space if every two points of X are joined by a
geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic
joining x and y for each x, y ∈ X. A nonempty subset C of X is said to be
convex if C includes every geodesic segment joining any two of its points.

A geodesic triangle 	(x1, x2, x3) in a geodesic metric space (X, d) con-
sists of three points x1, x2, x3 in X and a geodesic segment between each pair
of vertices. A comparison triangle for the geodesic triangle 	(x1, x2, x3) in
(X, d) is a triangle 	(x1, x2, x3) := 	(x̄1, x̄2, x̄3) in the Euclidean plane E

2

such that dE2 (x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}.
A geodesic metric space is said to be a CAT(0) space if all geodesic

triangles satisfy the following comparison axiom: Let 	 be a geodesic triangle
in X and let 	 be a comparison triangle for 	. Then 	 is said to satisfy the
CAT(0) inequality if for all x, y ∈ 	 and all comparison points x̄, ȳ ∈ 	,

d(x, y) ≤ dE2(x̄, ȳ).

Following [8], a metric space X is said to be a CAT(0) space if it is geodesi-
cally connected and if every geodesic triangle in X is at least as thin as its
comparison triangle in the Euclidean plane E

2.
The following examples are CAT(0) spaces:

(1) Hadamard manifolds;
(2) Euclidean spaces R

n;
(3) hyperbolic spaces H

n;
(4) Hilbert spaces;
(5) products of CAT(0) spaces;
(6) when endowed with the induced metric, a convex subset of Euclidean

space R
n is CAT(0);

(7) Hilbert ball with the hyperbolic metric;
(8) trees.

There are several equivalent conditions for a geodesic metric space (X, d)
to be a CAT(0) space, one of them is the following inequality (see [15]), which
is to be satisfied for any x, y, z ∈ X and α ∈ [0, 1]:

d(z, αx ⊕ (1 − α)y)2 ≤ αd(z, x)2 + (1 − α)d(z, y)2 − α(1 − α)d(x, y)2.
(2.1)
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In particular, if x, y, z are points in X and α ∈ [0, 1], then we have

d(z, αx ⊕ (1 − α)y) ≤ αd(z, x) + (1 − α)d(z, y).

We next collect some elementary facts about CAT(0) spaces.

Lemma 2.1. Let (X, d) be a CAT(0) space. Then, the following statements
hold:

(i) (X, d) is uniquely geodesic; (see [8]).
(ii) Let x, y ∈ X. For each α ∈ [0, 1], there exists a unique point z =

αx ⊕ (1 − α)y such that d(x, z) = (1 − α)d(x, y) and d(y, z) = αd(x, y);
(see [23]).

(iii) Let p, x, y ∈ X and α ∈ [0, 1]. Then, we have

d(αp ⊕ (1 − α)x, αp ⊕ (1 − α)y) ≤ (1 − α)d(x, y);

(see [15]).
(iv) Let g : [0, 1] → [x, y] be a function defined by g(α) = αx ⊕ (1 − α)y.

Then, g is bijective and continuous; (see [15]).

Let C be a nonempty subset of a metric space (X, d) and let T : C → C
be a mapping. A point x ∈ X is said to be a fixed point of T if x = Tx. The
set of all fixed points of T is denoted by F (T ). Recall that a mapping T is
said to be nonexpansive if

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C. Fixed point theory for a CAT(0) space was first studied
by Kirk [24] in 2003. Since then, fixed point theory for nonexpansive map-
pings in CAT(0) spaces has been investigated rapidly. Some interesting re-
sults concerning the solution of fixed point problems for nonexpansive map-
pings in the framework of CAT(0) spaces can also be found, for examples, in
[12,14,25,26,35].

A function f : C → (−∞,∞] defined on a nonempty convex subset C
of a CAT(0) space is convex if, for any geodesic γ : [0, 1] → C, the composite
function f ◦ γ is convex. We say that a function f defined on C is lower
semi-continuous at a point x ∈ C if

f(x) ≤ lim inf
n→∞ f(xn)

for each sequence {xn} such that limn→∞ xn = x. A function f is said to be
lower semi-continuous on C if it is lower semi-continuous at any point in C.
For any λ > 0, define the Moreau–Yosida resolvent of f in complete CAT(0)
spaces as follows:

Jλ(x) = argmin
y∈C

[
f(y) +

1
2λ

d(y, x)2
]

for all x ∈ C. If f is a proper, convex, and lower semi-continuous function,
then the set of fixed points of the resolvent associated with f coincides with
the set of minimizers of f ; see [3]. Also, the resolvent Jλ of f is nonexpansive
for all λ > 0; see [20].



MJOM Modified Proximal Point Algorithms Page 5 of 20 97

Lemma 2.2. Let (X, d) be a complete CAT(0) space and let f : X → (−∞,∞]
be a proper, convex and lower semi-continuous function. Then, the following
statements hold.

(i) (see [1]) for each x ∈ X and λ > μ > 0,

Jλx = Jμ

(
λ − μ

λ
Jλx ⊕ μ

λ
x

)
;

(ii) (see [20,29]) for each x, y ∈ X and λ > 0,

1
2λ

d(Jλx, y)2 − 1
2λ

d(x, y)2 +
1
2λ

d(Jλx, x)2 ≤ f(y) − f(Jλx).

Proposition 2.3. ([37]) Let (X, d) be a complete CAT(0) space and let f :
X → (−∞,∞] be a proper, convex and lower semi-continuous function. Let
T be a nonexpansive mapping on X such that F (T ) ∩ F (Jλ) 
= ∅ for all λ.
Then, for any λ > 0, F (T ◦ Jλ) = F (T ) ∩ F (Jλ).

The following two lemmas are useful for our main results; see [33,35].

Lemma 2.4. Let (X, d) be a complete CAT(0) space, let C be a nonempty
closed convex subset of X, and T : C → C be a nonexpansive mapping. Let
u ∈ C be fixed. For each t ∈ (0, 1), the mapping Vt : C → C defined by
Vtx = tu ⊕ (1 − t)Tx for x ∈ C has a unique fixed point yt ∈ C, that is,
yt = Vtyt = tu ⊕ (1 − t)Tyt.

Lemma 2.5. Let C and T be as the preceding lemma. Then {yt} remains
bounded as t → 0 if and only if F (T ) 
= ∅. In this case, the following state-
ments hold:

(i) {yt} converges to the unique fixed point z of T which is nearest to u;
(ii) d(u, z)2 ≤ μnd(u, xn)2 for all Banach limit μ and all bounded sequences

{xn} with limn→∞ d(xn, Txn) = 0.

The following condition was first introduced by Aoyama et al. [2] in
2007. Let C be a nonempty subset of a complete CAT(0) space (X, d) and
{Tn} be a countably infinite family of mappings from C into itself. We say
that {Tn} satisfies the AKTT condition (The letters A, K, T, and T stand
for Aoyama, Kimura, Takahashi, and Toyoda) if

∞∑
n=1

sup
z∈D

{d(Tn+1z, Tnz)} < ∞

for each bounded subset D of C. If C is a closed subset of X and {Tn}
satisfies the AKTT condition, then we can define a mapping T : C → C by
Tx = limn→∞ Tnx for all x ∈ C. In this case, we also say that ({Tn}, T )
satisfies the AKTT condition. By using the same argument as Lemma 3.2 in
[2], we get the following result.

Lemma 2.6. If ({Tn}, T ) satisfies the AKTT condition, then limn→∞
supz∈D{d(Tz, Tnz)} = 0 for all bounded subsets D of C.
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Let μ be a continuous linear functional on l∞, the Banach space of
bounded real sequences, and (c1, c2, ...) ∈ l∞. We write μn(cn) instead of
μ((c1, c2, ...)). We call μ a Banach limit if μ satisfies ‖μ‖ = μ(1, 1, ...) = 1 and
μn(cn) = μn(cn+1) for each (c1, c2, ...) ∈ l∞. For a Banach limit μ, we know
that lim infn→∞ cn ≤ μn(cn) ≤ lim supn→∞ cn for all (c1, c2, ...) ∈ l∞. Thus,
if (c1, c2, ...) ∈ l∞ with limn→∞ cn = c∗, then μn(cn) = c∗; see [10,16,38] for
more details.

Lemma 2.7. ([36]) Let (c1, c2, ...) ∈ l∞ be such that μn(cn) ≤ 0 for all Banach
limit μ. If lim supn→∞(cn+1 − cn) ≤ 0, then lim supn→∞ cn ≤ 0.

Lemma 2.8. ([2]) Let {wn} be a sequence of nonnegative real numbers, {αn}
be a sequence of real numbers in [0, 1] with

∑∞
n=1 αn = ∞, {γn} be a sequence

of nonnegative real numbers with
∑∞

n=1 γn < ∞, and {βn} be a sequence of
real numbers with lim supn→∞ βn ≤ 0. Suppose that

wn+1 ≤ (1 − αn)wn + αnβn + γn, ∀n ∈ N.

Then limn→∞ wn = 0.

3. Main Results

In this section, we study the strong convergence theorem of a modified proxi-
mal point algorithm for a countably infinite family of nonexpansive mappings.

Theorem 3.1. Let C be a nonempty closed convex subset of a complete CAT(0)
space (X, d) and f : C → (−∞,∞] be a proper, convex and lower semi-
continuous function. Let {Tn} be a countably infinite family of nonexpansive
mappings of C into itself with Ω =

⋂∞
n=1 F (Tn)∩argminy∈Cf(y) 
= ∅. Suppose

that u, x1 ∈ C are arbitrarily chosen and {xn} is a sequence of C generated
by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn = argmin
y∈C

[
f(y) +

1
2λn

d(y, xn)2
]

,

zn = αnu ⊕ (1 − αn)Tnyn,

xn+1 = βnzn ⊕ (1 − βn)Tnzn, ∀n ∈ N,

(3.1)

where {αn}, {βn}, and {λn} are sequences which satisfy the conditions:

(C1) 0 < αn < 1, limn→∞ αn = 0,
∑∞

n=1 αn = ∞, and
∑∞

n=1 |αn+1 − αn| <
∞;

(C2) βn ∈ (b, 1] for some b ∈ (0, 1) and
∑∞

n=1 |βn+1 − βn| < ∞;
(C3) λn ≥ λ > 0 for some λ ∈ (0,∞) and

∑∞
n=1 |λn+1 − λn| < ∞.

Suppose that ({Tn}, T ) satisfies the AKTT condition and F (T )=
⋂∞

n=1 F (Tn).
Then the sequence {xn} converges strongly to a point in Ω which is nearest
to u.
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Proof. Let q ∈ Ω and yn = Jλn
xn for all n ∈ N. Then, by Lemma 2.2(i), we

obtain

d(xn+1, q) ≤ βnd(zn, q) + (1 − βn)d(Tnzn, q)

≤ βnd(zn, q) + (1 − βn)d(zn, q)

= d(zn, q)

≤ αnd(u, q) + (1 − αn)d(Tnyn, q)

≤ αnd(u, q) + (1 − αn)d(yn, q)

= αnd(u, q) + (1 − αn)d(Jλn
xn, q)

≤ αnd(u, q) + (1 − αn)d(xn, q)

≤ max{d(u, q), d(xn, q)}.

By mathematical induction, we have

d(xn+1, q) ≤ max{d(u, q), d(x1, q)}, ∀n ∈ N.

This implies that {xn} is bounded and so are {yn}, {zn}, {Jλxn}, {Tnxn},
{Tnyn}, {Tnzn}, and {Txn}. Without loss of generality, we assume that λn >
λn−1. By Proposition 2.3 and condition (C3), we have

d(yn, yn−1) ≤ d(yn, Jλn
xn−1) + d(Jλn

xn−1, yn−1)

= d(Jλn
xn, Jλn

xn−1) + d(Jλn
xn−1, Jλn−1xn−1)

≤ d(xn, xn−1)

+ d
(
Jλn−1

(
λn − λn−1

λn
Jλn

xn−1 ⊕ λn−1

λn
xn−1

)
, Jλn−1xn−1

)

≤ d(xn, xn−1) + d
(λn − λn−1

λn
Jλn

xn−1 ⊕ λn−1

λn
xn−1, xn−1

)

= d(xn, xn−1) +
|λn − λn−1|

λn
d(Jλn

xn−1, xn−1)

≤ d(xn, xn−1) +
|λn − λn−1|

λ
d(Jλn

xn−1, xn−1).

By the definition of {xn}, {zn}, and Lemma 2.1(ii)-(iii), we have

d(zn, zn−1) = d(αnu ⊕ (1 − αn)Tnyn, αn−1u ⊕ (1 − αn−1)Tn−1yn−1)

≤ d(αnu ⊕ (1 − αn)Tnyn, αnu ⊕ (1 − αn)Tnyn−1)

+ d(αnu ⊕ (1 − αn)Tnyn−1, αnu ⊕ (1 − αn)Tn−1yn−1)

+ d(αnu ⊕ (1 − αn)Tn−1yn−1, αn−1u ⊕ (1 − αn−1)Tn−1yn−1)

≤ (1 − αn)d(Tnyn, Tnyn−1) + (1 − αn)d(Tnyn−1, Tn−1yn−1)

+ |αn − αn−1|d(u, Tn−1yn−1)

≤ (1 − αn)d(yn, yn−1) + d(Tnyn−1, Tn−1yn−1)

+ |αn − αn−1|d(u, Tn−1yn−1)

≤ (1 − αn)
[
d(xn, xn−1) +

|λn − λn−1|
λ

d(Jλn
xn−1, xn−1)

]
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+ d(Tnyn−1, Tn−1yn−1) + |αn − αn−1|d(u, Tn−1yn−1)

≤ (1 − αn)d(xn, xn−1) + (1 − αn)
|λn − λn−1|

λ
d(Jλn

xn−1, xn−1)

+ d(Tnyn−1, Tn−1yn−1) + |αn − αn−1|d(u, Tn−1yn−1),

and thus

d(xn+1, xn) = d(βnzn ⊕ (1 − βn)Tnzn, βn−1zn−1 ⊕ (1 − βn−1)Tn−1zn−1)

≤ d(βnzn ⊕ (1 − βn)Tnzn, βnzn ⊕ (1 − βn)Tn−1zn−1)

+ d(βnzn ⊕ (1 − βn)Tn−1zn−1, βnzn−1 ⊕ (1 − βn)Tn−1zn−1)

+ d(βnzn−1 ⊕ (1 − βn)Tn−1zn−1, βn−1zn−1 ⊕ (1 − βn−1)Tn−1zn−1)

≤ βnd(zn, zn−1) + (1 − βn)d(Tnzn, Tn−1zn−1)

+ |βn − βn−1|d(zn−1, Tn−1zn−1)

≤ βnd(zn, zn−1) + (1 − βn)
(
d(Tnzn, Tnzn−1) + d(Tnzn−1, Tn−1zn−1)

)
+ |βn − βn−1|d(zn−1, Tn−1zn−1)

≤ βnd(zn, zn−1) + (1 − βn)
(
d(zn, zn−1) + d(Tnzn−1, Tn−1zn−1)

)
+ |βn − βn−1|d(zn−1, Tn−1zn−1)

≤ d(zn, zn−1) + d(Tnzn−1, Tn−1zn−1) + |βn − βn−1|d(zn−1, Tn−1zn−1)

≤ (1 − αn)d(xn, xn−1) + (1 − αn)
|λn − λn−1|

λ
d(Jλn

xn−1, xn−1)

+ d(Tnyn−1, Tn−1yn−1) + |αn − αn−1|d(u, Tn−1yn−1)

+ d(Tnzn−1, Tn−1zn−1) + |βn − βn−1|d(zn−1, Tn−1zn−1)

≤ (1 − αn)d(xn, xn−1) + d(Tnyn−1, Tn−1yn−1) + d(Tnzn−1, Tn−1zn−1)

+
(

(1 − αn)
|λn − λn−1|

λ
+ |αn − αn−1| + |βn − βn−1|

)
M,

where M = max{supn d(Jλn
xn−1, xn−1), supn d(u, Tn−1yn−1), supn d(zn−1,

Tn−1zn−1)}.

Putting δn = ((1 − αn) |λn−λn−1|
λ + |αn − αn−1| + |βn − βn−1|)M +

d(Tnyn−1, Tn−1yn−1) + d(Tnzn−1, Tn−1zn−1). We have that
∑∞

n=2 δn ≤ M∑∞
n=2((1−αn) |λn−λn−1|

λ +|αn−αn−1|+|βn−βn−1|)+
∑∞

n=2 sup{d(Tnz, Tn−1z)
: z ∈ {xk}} +

∑∞
n=2 sup{d(Tnz, Tn−1z) : z ∈ {yk}}. Hence, it follows from

conditions (C1)-(C3), AKTT condition, and Lemma 2.6 that

lim
n→∞ d(xn+1, xn) = 0. (3.2)

By Lemma 2.2(ii), we see that

1
2λn

d(yn, q)2 − 1
2λn

d(xn, q)2 +
1

2λn
d(xn, yn)2 ≤ f(q) − f(yn).

Then, by f(q) ≤ f(yn) for all n ∈ N, it follows that

d(yn, q)2 ≤ d(xn, q)2 − d(xn, yn)2. (3.3)
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From the definition of {xn} and (3.3), we have

d(xn+1, q)2 = d(βnzn ⊕ (1 − βn)Tnzn, q)2

≤ βnd(zn, q)2 + (1 − βn)d(Tnzn, q)2 − βn(1 − βn)d(zn, Tnzn)2

≤ d(zn, q)2

= d(αnu ⊕ (1 − αn)Tnyn, q)2

≤ αnd(u, q)2 + (1 − αn)d(Tnyn, q)2 − αn(1 − αn)d(u, Tnyn)2

≤ (1 − αn)d(yn, q)2 + αn(d(u, q)2 − (1 − αn)d(u, Tnyn)2)

≤ (1 − αn)(d(xn, q)2 − d(xn, yn)2) + αn(d(u, q)2

− (1 − αn)d(u, Tnyn)2);

thus

(1 − αn)d(xn, yn)2 ≤ d(xn, q)2 − d(xn+1, q)2

+ αn

[
d(u, q)2 − d(xn, q)2 − (1 − αn)d(u, Tnyn)2

]
≤ |d(xn, q) − d(xn+1, q)| (d(xn, q) + d(xn+1, q))

+ αn

[
d(u, q)2 − d(xn, q)2 − (1 − αn)d(u, Tnyn)2

]
≤ d(xn+1, xn) (d(xn, q) + d(xn+1, q)) + αnd(u, q)2.

This implies that

d(xn, yn)2 ≤ 1
1 − αn

{
d(xn+1, xn)(d(xn, q) + d(xn+1, q)) + αnd(u, q)2

}
.

By condition (C1) and (3.2), we conclude that

lim
n→∞ d(xn, yn) = 0. (3.4)

Since λn ≥ λ > 0, by Lemma 2.2(i), we have

d(Jλxn, yn) = d

(
Jλxn, Jλ

(
λn − λ

λn
Jλn

xn ⊕ λ

λn
xn

))

≤ d

(
xn,

(
λn − λ

λn

)
Jλn

xn ⊕ λ

λn
xn

)

=
(

1 − λ

λn

)
d(xn, yn).

Thus, by (3.4), we get

lim
n→∞ d(Jλxn, yn) = 0. (3.5)

It follows by condition (C1) that

d(zn, Tnyn) = d(αnu ⊕ (1 − αn)Tnyn, Tnyn) = αnd(u, Tnyn) → 0. (3.6)
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Now, we have that

d(xn+1, zn) = d(βnzn ⊕ (1 − βn)Tnzn, zn)

= (1 − βn)d(zn, Tnzn)

≤ (1 − b)(d(zn, Tnyn) + d(Tnyn, Tnxn)

+ d(Tnxn, Tnxn+1) + d(Tnxn+1, Tnzn))

≤ (1 − b)(d(zn, Tnyn) + d(yn, xn) + d(xn, xn+1) + d(xn+1, zn)).

So, we have

d(xn+1, zn) ≤ 1 − b

b
(d(zn, Tnyn) + d(yn, xn) + d(xn, xn+1)).

This implies by (3.2), (3.4) and (3.6) that

lim
n→∞ d(xn+1, zn) = 0. (3.7)

Consequently, by (3.2), (3.4), (3.6) and (3.7), we have

d(Tnxn, xn) ≤ d(Tnxn, Tnyn) + d(Tnyn, zn) + d(zn, xn+1) + d(xn+1, xn)
≤ d(xn, yn) + d(Tnyn, zn) + d(zn, xn+1) + d(xn+1, xn) → 0.

(3.8)

We see that

d(Tn ◦ Jλxn, xn) ≤ d(Tn ◦ Jλxn, Tnyn) + d(Tnyn, Tnxn) + d(Tnxn, xn)

≤ d(Jλxn, yn) + d(yn, xn) + d(Tnxn, xn).

Thus, by (3.4), (3.5), and (3.8), we have

lim
n→∞ d(Tn ◦ Jλxn, xn) = 0. (3.9)

By Lemma 2.6 and (3.9), we get that

d(T ◦ Jλxn, xn) ≤ d(T ◦ Jλxn, Tn ◦ Jλxn) + d(Tn ◦ Jλxn, xn)
≤ sup{d(Tq, Tnq) : q ∈ {Jλxk}} + d(Tn ◦ Jλxn, xn) → 0.

(3.10)

For each t ∈ (0, 1), let zt be a unique point of C such that zt = tu⊕(1−t)V zt

with V = T ◦ Jλ. It follows from Lemma 2.5, Proposition 2.3 and (3.10)
that {zt} converges to a point z ∈ F (V ) = F (T ◦ Jλ) = F (T ) ∩ F (Jλ) =⋂∞

n=1 F (Tn) ∩ F (Jλ) = Ω which is nearest to u, and

d(u, z)2 ≤ μnd(u, xn)2 for all Banach limits μ,

that is μn

(
d(u, z)2 − d(u, xn)2

) ≤ 0. Moreover, by limn→∞ d(xn+1, xn) = 0,
we have

lim sup
n→∞

((
d(u, z)2 − d(u, xn+1)2

)− (
d(u, z)2 − d(u, xn)2

))
= 0. (3.11)

By (3.4) and (3.8), we obtain that

d(xn, Tnyn) ≤ d(xn, Tnxn) + d(Tnxn, Tnyn)

≤ d(xn, Tnxn) + d(xn, yn) → 0.

This implies by (3.11) and Lemma 2.7 that
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lim sup
n→∞

(
d(u, z)2 − (1 − αn)d(u, Tnyn)2

)
= lim sup

n→∞

(
d(u, z)2 − d(u, xn)2

) ≤ 0.

(3.12)

Finally, we show that limn→∞ d(xn, z) = 0. By the definition of {xn}, we
have

d(xn+1, z)2 = d(βnzn ⊕ (1 − βn)Tnzn, z)2

≤ (βnd(zn, z) + (1 − βn)d(Tnzn, z))2

≤ d(zn, z)2

= d(αnu ⊕ (1 − αn)Tnyn, z)2

≤ αnd(u, z)2 + (1 − αn)d(Tnyn, z)2 − αn(1 − αn)d(u, Tnyn)2

≤ αnd(u, z)2 + (1 − αn)d(yn, z)2 − αn(1 − αn)d(u, Tnyn)2

= αnd(u, z)2 + (1 − αn)d(Jλn
xn, z)2 − αn(1 − αn)d(u, Tnyn)2

≤ (1 − αn)d(xn, z)2 + αn

(
d(u, z)2 − (1 − αn)d(u, Tnyn)2

)
.

This implies by
∑∞

n=1 αn = ∞, inequality (3.12) and Lemma 2.8 that
limn→∞ d(xn, z)2 = 0. Hence {xn} converges strongly to z ∈ Ω which is
nearest to u. �

Since every real Hilbert space is a complete CAT(0) space, the following
result can be obtained from Theorem 3.1 immediately.

Theorem 3.2. Let C be a nonempty closed convex subset of a Hilbert space
H and f : C → (−∞,∞] be a proper convex and lower semi-continuous
function. Let {Tn} be a countably infinite family of nonexpansive mappings
of C into itself with Ω =

⋂∞
n=1 F (Tn) ∩ argminy∈Cf(y) 
= ∅. Suppose that

u, x1 ∈ C are arbitrarily chosen and {xn} is a sequence of C generated by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn = argmin
y∈C

[
f(y) +

1
2λn

‖y − xn‖2
]

,

zn = αnu + (1 − αn)Tnyn,

xn+1 = βnzn + (1 − βn)Tnzn, ∀n ∈ N,

(3.13)

where {αn}, {βn}, and {λn} are sequences which satisfy the conditions:
(C1) 0 < αn < 1, limn→∞ αn = 0,

∑∞
n=1 αn = ∞, and

∑∞
n=1 |αn+1 − αn| <

∞;
(C2) βn ∈ (b, 1] for some b ∈ (0, 1) and

∑∞
n=1 |βn+1 − βn| < ∞;

(C3) λn ≥ λ > 0 for some λ ∈ (0,∞) and
∑∞

n=1 |λn+1 − λn| < ∞.
Suppose that ({Tn}, T ) satisfies the AKTT condition and F (T )=

⋂∞
n=1 F (Tn).

Then the sequence {xn} converges strongly to a point in Ω which is nearest
to u.

Remark 3.3. (i) Theorem 3.1 generalizes the results of Cholamjiak [11],
Suparatulatorn et al. [37] and Khan and Abbas [22] to a countably
infinite family of nonexpansive mappings involving the convex and lower
semi-continuous function in complete CAT(0) spaces.



97 Page 12 of 20 W. Phuengrattana et al. MJOM

(ii) Theorem 3.1 extends the main result in Bačák [4], and the correspond-
ing results in Ariza-Ruiz et al. [3] and Cholamjiak et al. [12]. In fact, we
present a new modified proximal point algorithm for solving the con-
strained convex minimization problem as well as the fixed point prob-
lem of a countably infinite family of nonexpansive mappings in complete
CAT(0) spaces.

(iii) Theorem 3.2 is an improvement and generalization of the main result
in Rockafellar [34] and Güler [17].

4. Applications and Numerical Examples

In this section, we discuss some concrete examples as well as the numerical
results for supporting Theorems 3.1 and 3.2. All codes were written in Scilab.

Example 4.1. Let X = R
4 with the Euclidean norm and C = {x =

(w1, w2, w3, w4)t ∈ R
4 : 0 ≤ w1, w2, w3, w4 ≤ 50}. For each x =

(w1, w2, w3, w4)t ∈ C, we define mappings Tn on C as follows:

Tnx =
(

w1 + 2n − 1
2n

,
w2 + 6n − 2

3n
,
w3

5n
,
w4 + 56n − 7

8n

)t

, ∀n ∈ N.

For each x ∈ C, we define f : C → (−∞,∞] by

f(x) =
1
2
‖Ax − b‖2,

where A =

⎛
⎜⎜⎝

5 −4 1 2
7 2 −4 1
1 4 9 4
4 6 5 1

⎞
⎟⎟⎠ and b =

⎛
⎜⎜⎝

11
18
37
23

⎞
⎟⎟⎠ .

We can check that Tn is nonexpansive for each n ∈ N and f is proper
convex and lower semi-continuous. From [13] we know that

J1x = argmin
y∈C

[
f(y) +

1
2
‖y − x‖2

]

= proxfx

= (I + AtA)−1(x + Atb).

Then the algorithm (3.1) becomes:
⎧⎪⎪⎨
⎪⎪⎩

yn = J1xn = (I + AtA)−1(xn + Atb),

zn = αnu + (1 − αn)Tnyn,

xn+1 = βnzn + (1 − βn)Tnzn, ∀n ∈ N.

(4.1)

We choose αn = 1
50n , βn = 5n

150n+1 ,u = (4, 4, 4, 6)t. It can be observed that
all the assumptions of Theorem 3.1 are satisfied. So, we rewrite the algorithm
(4.1) as follows:
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yn =

⎛
⎜⎜⎝

92 22 6 25
22 73 54 16
6 54 124 39
25 16 39 23

⎞
⎟⎟⎠

−1

⎛
⎜⎜⎜⎜⎜⎝

w
(n)
1 + 310

w
(n)
2 + 278

w
(n)
3 + 387

w
(n)
4 + 211

⎞
⎟⎟⎟⎟⎟⎠

,

zn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(50n − 1)y(n)
1 + 100n2 − 44n + 1

100n2

(50n − 1)y(n)
2 + 300n2 − 94n + 2

150n2

(50n − 1)y(n)
3 + 20n

250n2

(50n − 1)y(n)
4 + 2800n2 − 358n + 7

400n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

xn+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(10n2 + 145n + 1)z(n)1 + 290n2 − 143n − 1
300n2 + 2n

(15n2 + 145n + 1)z(n)2 + 870n2 − 284n − 2
450n2 + 3n

(25n2 + 145n + 1)z(n)3

750n2 + 5n

(40n2 + 145n + 1)z(n)4 + 8120n2 − 959n − 7
1200n2 + 8n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ∀n ∈ N.

(4.2)

Using the algorithm (4.2) with the initial point x1 = (7, 6, 9, 5)t, we have
numerical results in Table 1.

Remark 4.2. Table 1 shows that the sequence {xn} converges strongly to a
unique point (1, 2, 0, 7)t which is a solution of the set of common fixed point
of a countably infinite family of nonexpansive mappings. Such a solution
(1, 2, 0, 7)t is also a solution of the following linear system:

5w1 − 4w2 + w3 + 2w4 = 11
7w1 + 2w2 − 4w3 + w4 = 18
w1 + 4w2 + 9w3 + 4w4 = 37
4w1 + 6w2 + 5w3 + w4 = 23.

4.1. Linear Inverse Problems

In this subsection, we apply Theorem 3.2 to solve the constrained linear
system:

Ax = b (4.3)
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Table 1. Numerical results of Example 4.1 for the algorithm (4.2)

n xn = (w(n)
1 , w

(n)
2 , w

(n)
3 , w

(n)
4 )t ‖xn − xn−1‖2 f(xn)

1 (7.0000000, 6.0000000, 9.0000000, 5.0000000) – 8905.5000
2 (1.0893431, 2.0017121, 0.0362800, 6.9788830) 1.1627e+01 0.3976928
3 (0.9964970, 2.0062872, 0.0033685, 7.0012404) 1.0112e−01 0.0034635
4 (0.9981909, 2.0030739, 0.0016536, 7.0006915) 4.0543e−03 0.0008440
5 (0.9989199, 2.0018660, 0.0010352, 7.0004487) 1.5594e−03 0.0003192
...

...
...

...
25 (0.9999368, 2.0001279, 0.0000873, 7.0000455) 9.6257e−06 0.0000018
...

...
...

...
46 (0.9999722, 2.0000591, 0.0000423, 7.0000228) 2.1444e−06 0.0000004
47 (0.9999729, 2.0000576, 0.0000413, 7.0000223) 2.0386e−06 0.0000004
48 (0.9999737, 2.0000561, 0.0000403, 7.0000217) 1.9403e−06 0.0000004
49 (0.9999743, 2.0000548, 0.0000394, 7.0000213) 1.8488e−06 0.0000004
50 (0.9999750, 2.0000535, 0.0000385, 7.0000208) 1.7636e−06 0.0000003

where A is a bounded linear operator on a subset C of H and b ∈ C. For
each x ∈ C, we define f : C → (−∞,∞] by

f(x) =
1
2
‖Ax − b‖2,

and consider the constrained convex minimization problem:

min
x∈C

f(x) = min
x∈C

1
2
‖Ax − b‖2. (4.4)

Then x∗ is a solution of the constrained linear system (4.3) if and only if x∗

is a solution of the constrained convex minimization problem (4.4) with the
minimizer equal to 0.

Using the proximity operator [13], we obtain the following result:

Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space
H, let A : C → C be a bounded linear operator and b ∈ C. Suppose that
u, x1 ∈ C are arbitrarily chosen and {xn} is a sequence of C generated by

xn+1 = αnu + (1 − αn)(I + AtA)−1(xn + Atb), ∀n ∈ N, (4.5)

where {αn} is a sequence such that 0 < αn < 1, limn→∞ αn = 0,
∑∞

n=1 αn =
∞, and

∑∞
n=1 |αn+1 − αn| < ∞. If (4.3) is consistent, then the sequence

{xn} converges strongly to a solution of a linear system.
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Table 2. Numerical results of Example 4.4 for the algorithm (4.5)

n xn = (w
(n)
1 , w

(n)
2 , w

(n)
3 , w

(n)
4 , w

(n)
5 , w

(n)
6 )t ‖xn − xn−1‖2

1 (3.1000000, 4.2000000, 5.3000000, 6.4000000, 7.5000000, 8.6000000) –
2 (−0.3693540, 0.4659444, 0.8146918, 0.5616160, 0.2518216, 1.6647111) 1.3447e+01

3 (0.2850216, 1.1290127, 0.3439065, −0.2080428, 0.2723027, −0.2304299) 2.2965e+00
4 (0.5939141, 1.4465892, 0.1538636, −0.5138597, 0.3736722, −1.0473090) 1.0017e+00
5 (0.7299891, 1.5865225, 0.0705308, −0.6475571, 0.4203410, −1.4059554) 4.4014e−01
.
.
.

.

.

.
.
.
.

93 (0.8367745, 1.6965082, 0.0030090, −0.7545688, 0.4557981, −1.6917780) 3.9539e−06
.
.
.

.

.

.
.
.
.

181 (0.8367770, 1.6965160, 0.0029419, −0.7546366, 0.4557607, −1.6919200) 1.0209e−06
182 (0.8367770, 1.6965161, 0.0029416, −0.7546370, 0.4557605, −1.6919209) 1.0096e−06
183 (0.8367770, 1.6965161, 0.0029412, −0.7546374, 0.4557603, −1.6919217) 9.9846e−07
184 (0.8367770, 1.6965162, 0.0029408, −0.7546378, 0.4557601, −1.6919225) 9.8751e−07
185 (0.8367770, 1.6965162, 0.0029404, −0.7546381, 0.4557598, −1.6919233) 9.7674e−07

Example 4.4. Solve the following linear system:

2w1 + 7w2 + 3w3 − w4 + w5 + 4w6 = 8
3w1 − w2 − 5w3 + 4w4 + 2w5 + w6 = −3
w1 + w2 + 2w3 + 9w4 − 4w5 − 3w6 = −1
7w1 − 2w2 + 6w3 − w4 + w5 + w6 = 2

9w1 + 6w2 + w3 + w4 − 7w5 + 4w6 = 7
w1 + 4w2 + w3 + 5w4 + w5 − w6 = 6 (4.6)

subject to −100 ≤ w1, w2, w3, w4, w5, w6 ≤ 100.

Put A =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 7 3 −1 1 4
3 −1 −5 4 2 1
1 1 2 9 −4 −3
7 −2 6 −1 1 1
9 6 1 1 −7 4
1 4 1 5 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

x =

⎛
⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

w4

w5

w6

⎞
⎟⎟⎟⎟⎟⎟⎠

and b =

⎛
⎜⎜⎜⎜⎜⎜⎝

8
−3
−1
2
7
6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We choose u = (2.5, 2.9, 5.1, 3.7, 4.5, 6.6)t and αn = 1
500n . Using the

algorithm (4.5) in Theorem 4.3 with the initial point x1 = (3.1, 4.2, 5.3, 6.
4, 7.5, 8.6)t, we have numerical results in Table 2.

From Table 2, we observe that

x185 = (0.8367770, 1.6965162, 0.0029404,−0.7546381, 0.4557598, −1.6919233)t

is an approximation of the solution of a linear system (4.6) with accuracy at
6 significant digits.

4.2. Minimization Problem

In this subsection, we apply Theorem 3.2 to solve the constrained convex
minimization problem. The following result can be obtained from Theorem
3.2 immediately.
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Theorem 4.5. Let C be a nonempty closed convex subset of a Hilbert space
H and let f : C → (−∞,∞] be a proper convex and lower semi-continuous
function which f attains a minimizer. Suppose that u, x1 ∈ C are arbitrarily
chosen and {xn} is a sequence of C generated by

⎧⎪⎨
⎪⎩

yn = argmin
y∈C

[
f(y) +

1
2λn

‖y − xn‖2
]

,

xn+1 = αnu + (1 − αn)yn, ∀n ∈ N,

(4.7)

where {αn} and {λn} are sequences which satisfies the conditions:

(C1) 0 < αn < 1, limn→∞ αn = 0,
∑∞

n=1 αn = ∞, and
∑∞

n=1 |αn+1 − αn| <
∞;

(C2) λn ≥ λ > 0 for some λ ∈ (0,∞) and
∑∞

n=1 |λn+1 − λn| < ∞.

Then the sequence {xn} converges strongly to a minimizer of f .

Example 4.6. Solve the following minimization problem:

min
x∈R5

‖x‖1 +
1
2
‖x‖22 + (1,−3,−2, 3, 2)tx + 9, (4.8)

where x = (w1, w2, w3, w4, w5)t such that −100 ≤ w1, w2, w3, w4, w5 ≤ 100.
Let f(x) = ‖x‖1 + 1

2‖x‖22 +(1,−3,−2, 3, 2)tx+9. We can check that f is
proper convex and lower semi-continuous. Using the proximity operator [13]
and the soft thresholding operator [18], we get that

J1x = argmin
y∈C

[
f(y) +

1

2
‖y − x‖2

]

= proxfx

= prox ‖·‖1
2

(
x − (1, −3, −2, 3, 2)t

2

)

=

(
max

{ |w1 − 1| − 1

2
, 0

}
sgn(w1 − 1), max

{ |w2 + 3| − 1

2
, 0

}
sgn(w2 + 3),

max

{ |w3 + 2| − 1

2
, 0

}
sgn(w3 + 2), max

{ |w4 − 3| − 1

2
, 0

}
sgn(w4 − 3),

max

{ |w5 − 2| − 1

2
, 0

}
sgn(w5 − 2)

)t

,

where sgn(·) is the signum function of δ ∈ R defined by

sgn(δ) =

⎧⎨
⎩

1, δ > 0
0 δ = 0

−1 δ < 0.
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Table 3. Numerical results of Example 4.6 for the algorithm (4.9)

n xn = (w
(n)
1 , w

(n)
2 , w

(n)
3 , w

(n)
4 , w

(n)
5 )t ‖xn − xn−1‖2 f(xn)

1 (9.0000000, 4.0000000, −5.0000000, 2.0000000, 7.0000000) – 150.50000
2 (3.4975025, 2.9990010, −0.9950050, 0.0049950, 2.0019980) 8.7338e+00 32.120285

3 (0.7501249, 2.4997501, 0.0019990, −0.9970015, 0.0019990) 3.7142e+00 7.4134737
4 (0.0003332, 2.2499167, 0.5011663, −1.4978341, −0.4985005) 1.1726e+00 4.4081494
5 (0.0002499, 2.1249688, 0.7508123, −1.7483129, −0.7488128) 4.5092e−01 4.1025765
.
.
.

.

.

.
.
.
.

.

.

.
51 (0.0000200, 2.0000000, 1.0000600, −1.9998600, −0.9999000) 3.7407e−06 4.0000400
.
.
.

.

.

.
.
.
.

.

.

.
96 (0.0000105, 2.0000000, 1.0000316, −1.9999263, −0.9999474) 1.0263e−06 4.0000211
97 (0.0000104, 2.0000000, 1.0000312, −1.9999271, −0.9999479) 1.0049e−06 4.0000208
98 (0.0000103, 2.0000000, 1.0000309, −1.9999278, −0.9999485) 9.8421e−07 4.0000206
99 (0.0000102, 2.0000000, 1.0000306, −1.9999286, −0.9999490) 9.6412e−07 4.0000204
100 (0.0000101, 2.0000000, 1.0000303, −1.9999293, −0.9999495) 9.4465e−07 4.0000202

We choose αn = 1
1000n+1 and u = (1, 2, 4, 5, 4)t. So, we rewrite the algorithm

(4.7) as follows:

xn+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1000n+1 + 1000n

1000n+1 max
{

|w(n)
1 −1|−1

2 , 0
}

sgn(w(n)
1 − 1)

1
1000n+1 + 1000n

1000n+1 max
{

|w(n)
2 +3|−1

2 , 0
}

sgn(w(n)
2 + 3)

1
1000n+1 + 1000n

1000n+1 max
{ |w(n)

3 +2|−1
2 , 0

}
sgn(w(n)

3 + 2)

1
1000n+1 + 1000n

1000n+1 max
{

|w(n)
4 −3|−1

2 , 0
}

sgn(w(n)
4 − 3)

1
1000n+1 + 1000n

1000n+1 max
{

|w(n)
5 −2|−1

2 , 0
}

sgn(w(n)
5 − 2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ∀n ∈ N.

(4.9)

Using the algorithm (4.9) with the initial point x1 = (9, 4,−5, 2, 7)t, we have
numerical results in Table 3.

From Table 3, we see that the sequence {xn} converges strongly to a
unique point (0, 2, 1,−2,−1)t which is a minimizer of a function f .

Acknowledgements

The authors are thankful to the referees for careful reading and the use-
ful comments and suggestions. P. Cholamjiak wishes to thank University of
Phayao and was supported by the Thailand Research Fund and the Commis-
sion on Higher Education under grant MRG5980248.



97 Page 18 of 20 W. Phuengrattana et al. MJOM

References

[1] Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows in Metric Spaces and in
the Space of Probability Measures, 2nd edn. Lectures in Mathematics ETH
Zrich, Birkhuser, Basel (2008)

[2] Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of com-
mon fixed points of a countable family of nonexpansive mappings in a Banach
space. Nonlinear Anal. 67, 2350–2360 (2007)

[3] Ariza-Ruiz, D., Leustean, L., Lopez, G.: Firmly nonexpansive mappings in
classes of geodesic spaces. Trans. Am. Math. Soc. 366, 4299–4322 (2014)
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[6] Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point
methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–
738 (2004)

[7] Boikanyo, O.A., Morosanu, G.: A proximal point algorithm converging strongly
for general errors. Optim. Lett. 4, 635–641 (2010)

[8] Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer,
Berlin (1999)

[9] Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive
operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)

[10] Bruck, E., Reich, S.: Accretive operators, Banach limits, and dual ergodic the-
orems. Bull. Acad. Pol. Sci. 29, 585–589 (1981)

[11] Cholamjiak, P.: The modified proximal point algorithm in CAT(0) spaces. Op-
tim. Lett. 9, 1401–1410 (2015)

[12] Cholamjiak, P., Abdou, A.A., Cho, Y.J.: Proximal point algorithms involving
fixed points of nonexpansive mappings in CAT(0) spaces. Fixed Point Theory
Appl. 227, 1–13 (2015)

[13] Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal process-
ing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R.,
Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science
and Engineering, pp. 185–212. Springer, New York (2011)

[14] Dhompongsa, S., Kirk, W.A., Panyanak, B.: Nonexpansive set-valued map-
pings in metric and Banach spaces. J. Nonlinear Convex Anal. 8, 35–45 (2007)

[15] Dhompongsa, S., Panyanak, B.: On Δ-convergence theorems in CAT(0) spaces.
Comput. Math. Appl. 56, 2572–2579 (2008)

[16] Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonex-
pansive Mappings. Marcel Dekker, New York (1984)
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