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Abstract. Let p ≥ 2 and w, f ∈ L1
loc(R

N ) be nonnegative functions
such that w(x) ≤ C1|x|a and f(x) ≥ C2|x|b for large |x|. We prove the

Liouville type theorem for stable W 1,p
loc solutions of weighted quasilinear

problem

−div(w(x)|∇u|p−2∇u) = f(x)eu in R
N .

The result holds true for N <
(p − a)(p + 3) + 4b

p − 1
and is sharp in the

case that w and f are Hardy–Hénon potentials. We also prove the full
classification of solutions which are stable outside a compact set to
Gelfand equation −ΔNu = eu in R

N .
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1. Introduction and Main Results

In this paper we always assume that p ≥ 2 and w, f ∈ L1
loc(R

N ) are nonneg-
ative functions. Let us consider the following weighted quasilinear equation

− div(w(x)|∇u|p−2∇u) = f(x)eu in R
N . (1.1)

If w ≡ 1, the left hand side of (1.1) becomes the well-known p-Laplace op-
erator. The terms w(x) and f(x) are usually regarded as weights while eu

is the Gelfand or Liouville nonlinearity. Due to the degenerate nature of the
term |∇u|p−2 when p > 2, solutions to (1.1) must be understood in the weak
sense. Moreover, solutions to elliptic equations with Hardy potentials may
possess singularities. Therefore, it is natural to study weak solutions of (1.1)
in a suitable weighted Sobolev space. For this purpose, let us define

‖ϕ‖w =
(∫

RN

w(x)|∇ϕ|p dx

) 1
p
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for ϕ ∈ C∞
c (RN ) and denote by W 1,p

0 (RN , w) the closure of C∞
c (RN ) with

respect to the ‖·‖w–norm. Remark that for w ∈ L1
loc(R

N ) we have C1
c (RN ) ⊂

W 1,p
0 (RN , w) and u ∈ W 1,p

loc (RN , w) means that if for any ϕ ∈ C∞
c (RN ), there

holds uϕ ∈ W 1,p
0 (RN , w). Let us make also the meaning of weak solution and

stable solution more precisely.

Definition 1.1. A function u ∈ W 1,p
loc (RN , w) is said to be a weak solution of

(1.1) if f(x)eu ∈ L1
loc(R

N ) and∫
RN

w(x)|∇u|p−2(∇u,∇ϕ) dx =
∫
RN

f(x)euϕ dx (1.2)

for all ϕ ∈ C1
c (RN ).

Definition 1.2. A weak solution u of (1.1) is stable if∫
RN

w(x)
[|∇u|p−2|∇ϕ|2 + (p − 2)|∇u|p−4(∇u,∇ϕ)2

]
dx

≥
∫
RN

f(x)euϕ2 dx (1.3)

for all ϕ ∈ C1
c (RN ). If there exists a compact set K ⊂ R

N such that (1.3)
holds only for ϕ ∈ C1

c (RN\K) then we say that u is stable outside a compact
set.

We recall that the stability condition translates into the fact that the
second variation at u of the energy functional

E(u) =
∫
RN

(
w(x)|∇u|p

p
− f(x)eu

)
dx

is nonnegative. Therefore all the local minima of the functional are stable
weak solutions of (1.1).

Proposition 1.3. If u is a stable solution of (1.1), then

(p − 1)
∫
RN

w(x)|∇u|p−2|∇ϕ|2dx ≥
∫
RN

f(x)euϕ2dx (1.4)

for every ϕ ∈ C1
c (RN ). If u is stable outside a compact set, then the same

inequality holds for every ϕ ∈ C1
c (RN\BR) and for some R > 0. Here and in

the following BR denotes the ball of center 0 ∈ R
N and radius R.

Since f(x)eu ≥ 0, remark that (1.2), (1.3) and (1.4) hold for any ϕ ∈
W 1,p

0 (RN , w) by density arguments.
In this paper we prove a Liouville type theorem for stable solutions of

Eq. (1.1). We recall that Liouville type theorems concern about the nonex-
istence of nontrivial solution in the entire Euclidean space R

N . The most
well-known Liouville type theorem for nonlinear problems may be the re-
sult in the pioneering article [14], where Gidas and Spruck established the
optimal nonexistence result for positive solutions to the equation −Δu =
|u|q−1u in R

N . They proved that this equation has no positive solution if

and only if q is less than the critical exponent
N + 2
N − 2

, which is ∞ if N = 2.
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In recent years, not only weak and positive solutions but also other
types of solutions to Eq. (1.1) such as stable solutions have been studied in-
tensively by several authors. Readers can find physical motivation and recent
development on the topic of stable solutions in monograph [7] by Dupaigne
and references therein.

We should refer to the work [11] by Farina for Gelfand equation

−Δu = eu in R
N ,

where he proved that the equation does not admit stable C2 solutions for
N ≤ 9. Later, this nonexistence result was extended to stable C1 solutions

of quasilinear equation −Δpu = eu when N <
p(p + 3)
p − 1

in [17].

The weighted semilinear elliptic equation of Gelfand type

−div(w(x)∇u) = f(x)eu in R
N

was also studied recently by many authors. In [5] several Liouville type the-
orems for classical stable solutions of this equation were established under
different assumptions on w and f . Paper [20] deals with more specific equa-
tion −Δu = |x|beu but for stable solutions of class H1

loc, which covers solu-
tions having singularities. Later, the result in [20] was extended to equation
−div(w(x)u) = f(x)eu in [15] and equation −Δpu = f(x)eu in [4]. Simi-
lar works on singular problems can be found in [12,13,16,19] and references
therein.

Liouville type theorems were also established for elliptic equations with
other type of nonlinearity, such as Lane-Emden and MEMS. We refer to
paper [8,10] for stable C2 solutions of semilinear equation −Δu = f(u) and
papers [2,6,18] for stable C1 solutions of quasilinear equation −Δpu = f(u).
In general, Liouville type theorems for stable solutions of nonlinear elliptic
equations are usually guaranteed in low dimensional case.

The main purpose of this paper is to obtain a sharp Liouville type
theorem for stable solutions of class W 1,p

loc to Eq. (1.1). Our result therefore
directly extends a result in [4], which deals with equation

−Δpu = f(x)eu in R
N .

Not only handling the weight w(x) in divergence operator, our result
also extends [4] in more general setting by three folds.

• Let us emphasize that in [4], the authors considered only C1(RN ) solu-
tions, which are locally bounded. This C1(RN ) regularity assumption is
natural when w ≡ f ≡ 1 and N ≤ p. However, if the weights w and f
are Hardy potentials or if N > p, then solutions of Eq. (1.1) may have
singularities and do not belong to class C1(RN ) anymore (see Proposi-
tion 1.6 for an example). Therefore, the class of W 1,p

loc solutions is more
suitable setting for (1.1) and we will work with this type of solutions in
our paper.

• The work [4] requires that a = 0, N > p and b > −q. It should be
notice that the assumption N > p competes with C1(RN ) regularity
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assumption as we discuss before. All these assumptions are relaxed in
our theorem.

• We also construct an example to show the sharpness of our result.

Our main result is the following theorem.

Theorem 1.4. Assume that 0 ≤ w(x) ≤ C1|x|a and f(x) ≥ C2|x|b for a.e.

x ∈ R
N\BR0 and some C1, C2, R0 > 0. If N <

(p − a)(p + 3) + 4b
p − 1

, then

Eq. (1.1) admits no stable solution.

Remark 1.5. If a = 0, we obtain a similar result in [4]. If a = b = 0, we have
the one in [17]. If p = 2, we get the result in [5,15]. If p = 2 and a = 0, we
obtain the result in [20]. Finally, if p = 2 and a = b = 0 we have the Liouville
theorem in pioneering article [11]. Therefore, our conclusion in Theorem 1.4
unifies and extends results in [4,5,11,15,17,20] to stable solutions of class
W 1,p

loc .

The assumption on dimension N in Theorem 1.4 is optimal. Indeed, let
us consider the Hardy–Hénon problem

− div(|x|a|∇u|p−2∇u) = |x|beu in R
N . (1.5)

We have the following.

Proposition 1.6. If b > a − p and N ≥ (p − a)(p + 3) + 4b
p − 1

, then

U(x) = ln
(p − a + b)p−1(N + a − p)

|x|p−a+b

is a stable solution of Eq. (1.5).

Remark 1.7. The assumption b > a− p in Proposition 1.6 is necessary to en-
sure that |x|a, |x|b and |x|beU belong to L1

loc(R
N ). Indeed, since b > a−p and

N ≥ (p − a)(p + 3) + 4b
p − 1

, we can deduce that N ≥ (p − a)(p + 3) + 4(a − p)
p − 1

,

which means a−p > −N . Therefore, |x|a, |x|b and |x|beU belong to L1
loc(R

N )
and function U is well-defined.

Regarding solutions which are stable outside a compact set, in the work
[11] Farina has classified all such solutions of equation −Δu = eu in R

2.
In this paper, we extend Farina’s classification result to general dimension
N ≥ 2.

Theorem 1.8. Let u be a weak solution to equation

− ΔNu = eu in R
N . (1.6)

Then, u is stable outside a compact set if and only if u is of the form

u(x) = ln
λNN2N−1

(N − 1)N−1
(
1 + λ

N
N−1 |x − x0| N

N−1

)N
, x ∈ R

N (1.7)

for some λ > 0 and x0 ∈ R
N .
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2. Liouville Type Theorem

This section is devoted to the proof of Theorem 1.4. For convenience, we
always denote by C a generic constant whose concrete values may change
from line to line or even in the same line. If this constant depends on an
arbitrary small number ε, then we may denote it by Cε. We also use Young

inequality in the form ab ≤ εap + Cεb
q for p, q > 1 satisfying

1
p

+
1
q

= 1.

We begin with the following a priori estimate for stable solutions of
(1.1).

Proposition 2.1. Suppose that u is a stable solution of Eq. (1.1). Then for

any α ∈
(

0,
4

p − 1

)
, there exists a constant C = C(p, α) > 0 such that for

any function η ∈ C1
c (RN ) with 0 ≤ η ≤ 1 and ∇η = 0 in a neighborhood of

{x ∈ R
N : f(x) = 0} we have∫

RN

f(x)e(α+1)uηp(α+1) dx ≤ C

∫
RN

w(x)α+1f(x)−α|∇η|p(α+1) dx. (2.1)

Proof. Our proof is inspired by the techniques used in [4,6,17,20], but we
need to pay more attention with W 1,p

loc solution. As u is not assumed to be
bounded, eβuψ is not, a priori, a suitable test function for any β > 0, even
with ψ ∈ C∞

c (Ω). For each k ∈ N we define positive C1(R) functions

ak(t) =

{
e

αt
2 , t < k,(α

2
(t − k) + 1

)
e

αk
2 , t ≥ k,

and

bk(t) =
{

eαt, t < k,
(α(t − k) + 1) eαk, t ≥ k.

Simple calculations yield

a2
k(t)≥bk(t), a′

k(t)2=
α

4
b′
k(t) and ak(t)pa′

k(t)2−p +bk(t)pb′
k(t)1−p ≤Ceαt

(2.2)
for all t ∈ R, where C depends only on p and α. Moreover, since u ∈
W 1,p

loc (RN , w), clearly ak(u), bk(u) ∈ W 1,p
loc (RN , w) for any k ∈ N. We split

the proof into four steps.

Step 1 For any ε ∈ (0, 1), any k ∈ N and any nonnegative function ψ ∈
C1

c (RN ), there exists a constant Cε = C(p, ε) > 0 such that

(1 − ε)
∫
RN

w(x)|∇u|pb′
k(u)ψp dx ≤ Cε

∫
RN

w(x)bk(u)pb′
k(u)1−p|∇ψ|p dx

+
∫
RN

f(x)eubk(u)ψp dx. (2.3)

To prove this, using ϕ = bk(u)ψp as a test function. Since

∇ϕ = b′
k(u)ψp∇u + pbk(u)ψp−1∇ψ,



94 Page 6 of 12 P. Le et al. MJOM

using (1.2) we get∫
RN

w(x)|∇u|pb′
k(u)ψp dx + p

∫
RN

w(x)|∇u|p−2bk(u)ψp−1(∇u,∇ψ) dx

=
∫
RN

f(x)eubk(u)ψp dx.

Therefore,∫
RN

w(x)|∇u|pb′
k(u)ψp dx

≤ p

∫
RN

w(x)|∇u|p−1bk(u)ψp−1|∇ψ|dx +
∫
RN

f(x)eubk(u)ψp dx

≤
∫
RN

ε
(
w(x)

p−1
p |∇u|p−1b′

k(u)
p−1

p ψp−1
) p

p−1

+ Cε

(
w(x)

1
p bk(u)b′

k(u)
1−p

p |∇ψ|
)p

dx

+
∫
RN

f(x)eubk(u)ψp dx

= ε

∫
RN

w(x)|∇u|pb′
k(u)ψp dx

+ Cε

∫
RN

w(x)bk(u)pb′
k(u)1−p|∇ψ|p dx

+
∫
RN

f(x)eubk(u)ψp dx,

which implies (2.3).

Step 2 For any ε ∈ (0, 1), any k ∈ N and any nonnegative function ψ ∈
C1

c (RN ), there exists a constant Cε = C(p, ε) > 0 such that∫
RN

f(x)euak(u)2ψp dx ≤ (p − 1 + ε)
∫
RN

w(x)|∇u|pa′
k(u)2ψp dx

+Cε

∫
RN

w(x)ak(u)pa′
k(u)2−p|∇ψ|p dx. (2.4)

To prove this, we use the stability assumption with ϕ = ak(u)ψ
p
2 . Since

∇ϕ = a′
k(u)ψ

p
2 ∇u +

p

2
ak(u)ψ

p−2
2 ∇ψ,

using (1.4) we get
∫
RN

f(x)euak(u)2ψp dx ≤ (p − 1)

∫
RN

w(x)|∇u|pa′
k(u)2ψp dx

+(p − 1)p

∫
RN

w(x)|∇u|p−1ak(u)a′
k(u)ψp−1|∇ψ| dx

+
(p − 1)p2

4

∫
RN

w(x)|∇u|p−2ak(u)2ψp−2|∇ψ|2 dx.

(2.5)
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Now we use Young inequality to estimate the last two terms

(p − 1)p
∫
RN

w(x)|∇u|p−1ak(u)a′
k(u)ψp−1|∇ψ|dx

≤
∫
RN

ε

2

(
w(x)

p−1
p |∇u|p−1a′

k(u)
2(p−1)

p ψp−1
) p

p−1

+ Cε

(
w(x)

1
p ak(u)a′

k(u)
2−p

p |∇ψ|
)p

dx

=
ε

2

∫
RN

w(x)|∇u|pa′
k(u)2ψp dx

+ Cε

∫
RN

w(x)ak(u)pa′
k(u)2−p|∇ψ|p dx

and if p > 2 we have

(p − 1)p2

4

∫
RN

w(x)|∇u|p−2ak(u)2ψp−2|∇ψ|2 dx

≤
∫
RN

ε

2

(
w(x)

p−2
p |∇u|p−2a′

k(u)
2(p−2)

p ψp−2
) p

p−2

+ Cε

(
w(x)

2
p ak(u)2a′

k(u)
2(2−p)

p |∇ψ|2
) p

2
dx

=
ε

2

∫
RN

w(x)|∇u|pa′
k(u)2ψp dx

+ Cε

∫
RN

w(x)ak(u)pa′
k(u)2−p|∇ψ|p dx.

Plugging these two estimates into (2.5), we obtain (2.4).

Step 3 We claim that there exists a constant C = C(p, α) > 0 such that for
any nonnegative function ψ ∈ C1

c (RN ) we have∫
RN

f(x)e(α+1)uψp dx ≤ C

∫
RN

w(x)eαu|∇ψ|p dx. (2.6)

To prove this, we set βε = 1 − (p − 1 + ε)α
4(1 − ε)

. Since limε→0+ βε = 1 −
α(p − 1)

4
> 0, we can find and fix some ε ∈ (0, 1) depending on p and α such

that βε > 0.
Collecting (2.3), (2.4) and with the help of (2.2) we obtain∫

RN

f(x)euak(u)2ψp dx

≤ (p − 1 + ε)α
4

∫
RN

w(x)|∇u|pb′
k(u)ψp dx

+ Cε

∫
RN

w(x)ak(u)pa′
k(u)2−p|∇ψ|p dx

≤ (p − 1 + ε)α
4(1 − ε)

∫
RN

f(x)eubk(u)ψp dx
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+ Cε

∫
RN

w(x)
[
ak(u)pa′

k(u)2−p + bk(u)pb′
k(u)1−p

] |∇ψ|p dx

≤ (p − 1 + ε)α
4(1 − ε)

∫
RN

f(x)euak(u)2ψp dx

+ Cε

∫
RN

w(x)eαu|∇ψ|p dx.

Therefore,

βε

∫
RN

f(x)euak(u)2ψp dx ≤ Cε

∫
RN

w(x)eαu|∇ψ|p.
Letting k → ∞, by Fatou’s lemma we obtain∫

RN

f(x)e(α+1)uψp dx ≤ C

∫
RN

w(x)eαu|∇ψ|p, (2.7)

where C depends only on p and α.

Step 4 We are now in the position to prove a priori estimate (2.1). Applying
(2.6) for ψ = ηα+1 to obtain∫

RN

f(x)e(α+1)uηp(α+1) dx ≤ C

∫
RN

w(x)eαuηpα|∇η|p dx

≤
∫
RN

1
2

(
f(x)

α
α+1 eαuηpα

)α+1
α

+ C
(
w(x)f(x)− α

α+1 |∇η|p)α+1
dx

=
1
2

∫
RN

f(x)e(α+1)uηp(α+1) dx

+ C

∫
RN

w(x)α+1f(x)−α|∇η|p(α+1) dx.

Hence, (2.1) follows at once. �

Proof of Theorem 1.4. By contradiction, we suppose that (1.1) admits a sta-

ble solution u in dimension N <
(p − a)(p + 3) + 4b

p − 1
. Applying Proposition

2.1 for a test function ηR ∈ C1
c (RN ):

ηR(x) =

{
1 if |x| < R,

0 if |x| > 2R

which satisfies 0 ≤ ηR ≤ 1 in R
N and |∇ηR| ≤ C

R
in B2R\BR.

Consequently, for all R > R0 there exists a constant C independent of
R such that ∫

BR

f(x)e(α+1)u dx ≤ CRN+a(α+1)−bα−p(α+1). (2.8)

Since

lim
α→ 4

p−1

N + a(α + 1) − bα − p(α + 1) = N − (p − a)(p + 3) + 4b
p − 1

< 0,
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we may find some α ∈
(

0,
4

p − 1

)
such that N +a(α+1)−bα−p(α+1) < 0.

Letting R → ∞ in (2.8) we get
∫
RN f(x)e(α+1)u dx = 0, a contradiction. This

concludes the proof. �

3. A Counter Example and a Classification Result

In this section we will prove Proposition 1.6 and Theorem 1.8.

Proof of Proposition 1.6. Direct calculation yields that U is a weak solution
of (1.5). In order to show that U is stable, we need the following inequality
(see [3]).

Lemma 3.1 (Caffarelli–Kohn–Nirenberg inequality). Let r <
N − 2

2
, then for

all ϕ ∈ C1
c (RN ) we have∫

RN

|∇ϕ|2
|x|2r

dx ≥
(

N − 2 − 2r

2

)2 ∫
RN

ϕ2

|x|2r+2
dx. (3.1)

Applying (3.1) with r =
p − a − 2

2
we get

∫
RN

|∇ϕ|2
|x|p−a−2

dx ≥
(

N + a − p

2

)2 ∫
RN

ϕ2

|x|p−a
dx. (3.2)

Since U is radially symmetric and decreasing in |x|, by arguing as in [1,
Remark 1.7] it is necessary to check stability condition of U for all radially
symmetric test function ϕ ∈ C1

c (RN ). For such ϕ we have
∫
RN

[
|x|a|∇U |p−2|∇ϕ|2 + (p − 2)|x|a|∇U |p−4(∇U, ∇ϕ)2 − |x|beUϕ2

]
dx

=

∫
RN

[
(p − 1)|x|a|∇U |p−2|∇ϕ|2 − |x|beUϕ2

]
dx

=

∫
RN

[
(p − 1)(p − a + b)p−2 |∇ϕ|2

|x|p−a−2
− (p − a + b)p−1(N + a − p)

ϕ2

|x|p−a

]
dx

≥ (N + a − p)(p − a + b)p−2

4
[(N + a − p)(p − 1) − 4(p − a + b)]

∫
RN

ϕ2

|x|p dx,

where we have used (3.2) in the last estimate. On the other hand, the assump-

tion N ≥ (p − a)(p + 3) + 4b
p − 1

is equivalent to (N +a−p)(p−1)−4(p−a+b) ≥
0. Thus, U is stable. �

Proof of Theorem 1.8. Let u be a solution of (1.7) and suppose that u is
stable outside a compact set. Then for sufficiently large enough R0 > 0, we
may use the following test function ξR ∈ C1

c (RN\BR0) in Proposition 2.1:

ξR(x) =

⎧⎨
⎩

0 if |x| < R0 + 1,
1 if R0 + 2 < |x| < R,
0 if |x| > 2R,
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which satisfies

0 ≤ ξR ≤ 1 in R
N , |∇ξR| <

C

R
in B2R\BR, |∇ξR| < CR0 in BR0+2\BR0+1.

Therefore, for R > R0 + 3 and α ∈
(

0,
4

p − 1

)
we get

∫
BR\BR0+2

e(α+1)u dx ≤ CR0 + CR−Nα.

Let R → ∞ we obtain∫
RN \BR0+2

e(α+1)u dx ≤ CR0 .

Now let α → 0+ and applying Fatou’s lemma to get∫
RN \BR0+2

eu dx ≤ CR0 .

Together with the local integrability of eu, we have
∫
RN eu dx < +∞.

On the other hand, since p = N , we obtain u ∈ C1,α(RN ) by standard elliptic
estimates. Therefore, u must be of the form (1.7) by a recent classification
result of Esposito [9].

Conversely, let u be of the form (1.7), which we may assume x0 = 0.
We will show that, if R1 is sufficiently large, then

Lu(ϕ,ϕ) =
∫
RN

[|∇u|N−2|∇ϕ|2 + (N − 2)|∇u|N−4(∇u,∇ϕ)2 − euϕ2
]

dx ≥ 0

for all ϕ ∈ C1
c (RN\BR1). Indeed, as |x| → ∞ we note that

eu =
λNN2N−1

(N − 1)N−1
(
1 + λ

N
N−1 |x| N

N−1

)N
= O

(
1

|x| N2
N−1

)

and

|∇u| =
λ

N
N−1 N2|x| 1

N−1

(N − 1)
(
1 + λ

N
N−1 |x| N

N−1

) = O

(
1
|x|

)
.

Therefore, for sufficiently large R1 > 1 and some C0 > 0 we have

|∇u|N−2 ≥ C0

|x|N−2
and eu ≤ C0

4|x|N ln2 |x| for all |x| > R1.

Using the fact that N ≥ 2, we deduce for ϕ ∈ C1
c (RN\BR1)

Lu(ϕ,ϕ) ≥
∫
RN

[|∇u|N−2|∇ϕ|2 − euϕ2
]

dx

≥ C0

∫
RN

( |∇ϕ|2
|x|N−2

− ϕ2

4|x|N ln2 |x|

)
dx

≥ 0.
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The last inequality follows immediately from the fact that ln
1
2 |x| is a

positive solution of

−div
( ∇u

|x|N−2

)
=

u

4|x|N ln2 |x|
outside the closed unit ball of RN . Therefore, u is stable outside BR1 . �
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