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Abstract. In this paper, we establish explicit upper and lower bounds
for the ratio of the arithmetic and geometric means of the first n prime
numbers, which improve the current best estimates. Furthermore, we
prove several conjectures related to this ratio stated by Hassani. To do
this, we use explicit estimates for the prime counting function, Cheby-
shev’s ϑ-function, and the sum of the first n primes.
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1. Introduction

Let an be the arithmetic mean and gn be the geometric mean of the first
n positive integers, respectively. Stirling’s approximation for n! implies that
an/gn → e/2 as n → ∞. In his paper [11], Hassani studied the arithmetic
and geometric means of the first n prime numbers, that is

An =
1
n

n∑

k=1

pk, Gn =

(
n∏

k=1

pk

)1/n

.

Here, as usual, pk denotes the kth prime number. Chebyshev’s ϑ-function is
defined by ϑ(x) =

∑
p≤x log p, where p runs over primes not exceeding x. By

setting D(n) = log pn −ϑ(pn)/n and R(n) =
∑

k≤n pk/n−pn/2, Hassani [11,
p. 1595] derived the identity:

log
An

Gn
= D(n) + log

(
1 +

2R(n)
pn

)
− log 2 (1.1)

for the ratio of An and Gn, which plays an important role in this paper. First,
we establish asymptotic formulae for the quantities D(n) and Gn which help
us to find the following asymptotic formula for the ratio of An and Gn. Here,
let rt = (t − 1)!(1 − 1/2t) and the positive integers k1, . . . , ks, where s is a
positive integer, are defined by the recurrence formula ks +1!ks−1 + · · ·+(s−
1)!k1 = s · s!.
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Theorem 1.1. For each positive integer m, we have

An

Gn
= e

(
1
2

+
m∑

i=1

1
logi pn

(
−ri+1 + ri +

i−1∑

s=1

rski−s

))
· exp

⎛

⎝
m∑

j=1

kj

logj pn

⎞

⎠

+O

(
1

logm+1 pn

)
.

One of Hassani’s results [11, p. 1602] is that An/Gn = e/2+O(1/ log n)
which implies that the ratio of An and Gn also tends to e/2 as n → ∞.
Setting m = 2 in Theorem 1.1, we get the following more accurate asymptotic
formula:

An

Gn
=

e

2
+

e

4 log pn
+

e

log2 pn
+ O

(
1

log3 pn

)
. (1.2)

Let π(x) denote the prime counting function, which is defined by π(x) =∑
p≤x 1, where p runs over primes not exceeding x. Using explicit estimates

for the prime counting function π(x) and the nth prime number pn, Hassani
[11, Theorem 1.1] found some explicit estimates for the ratio of An and Gn.
The proof of these estimates consists of three steps. First, he gave some
explicit estimates for the quantities D(n) and log(1 + 2R(n)/pn), and then,
he used (1.1). We follow this method to refine Hassani’s estimates by showing
the following both results in the direction of (1.2).

Theorem 1.2. For every integer n ≥ 62, we have

An

Gn
>

e

2
+

e

4 log pn
+

0.61e

log2 pn
.

Theorem 1.3. For every integer n ≥ 294 635, we have

An

Gn
<

e

2
+

e

4 log pn
+

1.52e

log2 pn
.

Since the computation of pn is difficult for large n, the estimates for the
ratio of An and Gn obtained in Theorems 1.2 and 1.3 are ineffective for large
n. Hence, we are interested in explicit estimates for An/Gn in terms of n. For
this purpose, we find the following estimates.

Theorem 1.4. For every integer n ≥ 139, we have

An

Gn
>

e

2
+

e

4 log n
− e(log log n − 2.8)

4 log2 n
.

Theorem 1.5. For every integer n ≥ 2, we have

An

Gn
<

e

2
+

e

4 log n
− e(log log n − 6.44)

4 log2 n
.

In particular, we prove several conjectures concerning D(n), Gn, and
the ratio of An and Gn stated by Hassani [11]. For instance, we use Theorem
1.2 to show that the ratio of An and Gn is always greater than e/2 (see
Corollary 7.1).
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2. Several Asymptotic Formulae

Before we give a proof of Theorem 1.1, we derive asymptotic formulae for the
quantities D(n) and Gn.

2.1. Two Asymptotic Formulae for D(n)

To find the first asymptotic formula for

D(n) = log pn − ϑ(pn)
n

in terms of pn, we introduce the following definition.

Definition. Let m be a positive integer. We define the positive integers k1, . . . ,
km by the recurrence formula:

km + 1!km−1 + 2!km−2 + · · · + (m − 1)!k1 = m · m!. (2.1)

In particular, we have k1 = 1, k2 = 3, k3 = 13, and k4 = 71.

Then, we obtain the following result.

Proposition 2.1. Let r be a nonnegative integer. Then

D(n) = 1 +
k1

log pn
+

k2

log2 pn
+ · · · +

kr
logr pn

+ O

(
1

logr+1 pn

)
.

Proof. Using a result of Panaitopol [14], we get

log x =
x

π(x)
+1+

k1
log x

+
k2

log2 x
+ · · ·+ kr

logr x
+O

(
x

π(x) logr+2 x

)
. (2.2)

The Prime Number Theorem states that π(x) ∼ x/ log x as x → ∞. There-
fore, we can simplify the error term in (2.2) as follows:

log x =
x

π(x)
+ 1 +

k1
log x

+
k2

log2 x
+ · · · +

kr
logr x

+ O

(
1

logr+1 x

)
. (2.3)

A well-known asymptotic formula for Chebyshev’s ϑ-function is given by
ϑ(x) = x + O(x exp(−c log1/10 x)), where c is an absolute positive constant
(see Brüdern [6, p. 41]). Now, the Prime Number Theorem and the fact that
exp(−c log1/10 x) = O(1/ logs x) for every positive integer s indicate that

ϑ(pn)
n

=
pn
n

+ O

(
1

logr+1 pn

)
. (2.4)

Finally, we combine (2.4) with (2.3) to arrive at the end of the proof. �

Next, we establish another asymptotic formula for the quantity D(n).
To do this, we first note two useful results of Cipolla [8] concerning asymptotic
formulae for the nth prime number pn and log pn, respectively. In this paper
lc(P ) denotes the leading coefficient of a polynomial P .



93 Page 4 of 21 C. Axler MJOM

Lemma 2.2. (Cipolla [8]) Let m be a positive integer. Then, there exist uniquely
determined polynomials Q1, . . . , Qm ∈ Z[x] with deg(Qk) = k and lc(Qk) =
(k − 1)!, so that

pn = n

(
log n + log log n − 1 +

m∑

k=1

(−1)k+1Qk(log log n)
k! logk n

)

+O

(
n(log log n)m+1

logm+1 n

)
.

The polynomials Qk can be computed explicitly. In particular, Q1(x) = x−2,
Q2(x) = x2 − 6x + 11 and Q3(x) = 2x3 − 21x2 + 84x − 131.

Lemma 2.3. (Cipolla [8]) Let m be a positive integer. Then, there exist uniquely
determined polynomials R1, . . . , Rm ∈ Z[x] with deg(Rk) = k and lc(Rk) =
(k − 1)!, so that

log pn = log n + log log n +
m∑

k=1

(−1)k+1Rk(log log n)
k! logk n

+ O

(
(log log n)m+1

logm+1 n

)
.

The polynomials Rk can be computed explicitly. In particular, R1(x) = x−1,
R2(x) = x2 − 4x + 5 and R3(x) = 2x3 − 15x2 + 42x − 47.

Now, we give another asymptotic formula for the quantity D(n).

Proposition 2.4. Let r be a positive integer and let Tk(x) = Rk(x) − Qk(x)
for every k ∈ {1, . . . , r}. Then, we have deg(Tk) = k − 1, lc(Tk) = k!, and

D(n) = 1 +
r∑

k=1

(−1)k+1Tk(log log n)
k! logk n

+ O

(
(log log n)r

logr+1 n

)
.

In particular, T1(x) = 1, T2(x) = 2x − 6, and T3(x) = 6x2 − 42x + 84.

Proof. Let k be an integer with 1 ≤ k ≤ r. Since deg(Qk) = deg(Rk) = k
and lc(Qk) = lc(Rk) = (k − 1)!, we have deg(Tk) ≤ k − 1. Following Cipolla’s
notation (see [8, p. 144]), we write

Qk(x) = (k − 1)!xk − ak,1x
k−1 +

k∑

j=2

(−1)jak,jx
k−j

and

Rk(x) = (k − 1)!xk − bk,1x
k−1 +

k∑

j=2

(−1)jbk,jxk−j ,

where ai,j , bi,j ∈ Z. By Cipolla [8, p. 150], we have −(bk,1 − ak,1) = k! �= 0.
Hence, deg(Tk) = k − 1 and lc(Tk) = k!. Using (2.4), we get

D(n) = log pn − pn
n

+ O

(
1

logr+1 pn

)
.
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Now, we substitute the asymptotic formulae given in Lemmata 2.2 and 2.3
to obtain

D(n) = 1 +
r+1∑

k=1

(−1)k+1Tk(log log n)
k! logk n

+ O

(
1

logr+1 pn

)
.

To complete the proof, it suffices to note that deg(Tr+1) = r and 1/ logr+1 pn
= O(1/ logr+1 n). �

Remark. Proposition 2.4 gives a refinement of Hassani’s [11] asymptotic for-
mula D(n) = 1 + O(1/ log n).

2.2. An Asymptotic Formula for Gn

Next, we derive an asymptotic formula for Gn, the geometric mean of the
first n prime numbers. By the defining formulas for Gn and D(n), we see that

Gn =
pn

eD(n)
. (2.5)

Proposition 2.1 implies that limn→∞ D(n) = 1. Hence

Gn ∼ pn
e

(n → ∞), (2.6)

which was conjectured by Vrba [15] and proved by Sándor and Verroken [18,
Theorem 2.1]. In [17, Corollary 2.1], Sándor gave another proof of (2.6). Using
(2.5) and Proposition 2.1, we get the following refinement of (2.6). Here, the
positive integers k1, . . . , kr are defined by the recurrence formula (2.1).

Proposition 2.5. Let r be a positive integer. Then

Gn =
pn

exp
(
1 + k1

log pn
+ k2

log2 pn
+ · · · + kr

logr pn

) + O

(
pn

logr+1 pn

)
. (2.7)

Proof. The claim follows from (2.5), Proposition 2.1, and the formula exp(c/x)
= 1 + O(1/x) that holds for every c ∈ R. �

Remark. The asymptotic formula (2.7) was independently found by Kourba-
tov [12, Remark (ii)].

3. A Proof of Theorem 1.1

We use (2.5), Proposition 2.1, and an asymptotic formula for An given in [1,
Theorem 2] to give a proof of Theorem 1.1. Below, we use the notation:

ri = (i − 1)!
(

1 − 1
2i

)
,

the positive integers ki are defined by (2.1).
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Theorem 3.1. For each positive integer m, we have

An

Gn
= e

(
1
2

+
m∑

i=1

1
logi pn

(
−ri+1 + ri +

i−1∑

s=1

rski−s

))
· exp

⎛

⎝
m∑

j=1

kj

logj pn

⎞

⎠

+O

(
1

logm+1 pn

)
.

Proof. By [1, Theorem 2], we have

An = pn −
m−1∑

i=1

rip
2
n

n logi pn
+ O

(
p2n

n logm pn

)
.

We combine this asymptotic formula with (2.5) and Proposition 2.1 to see
that

An

Gn
=

(
1 −

m+1∑

i=1

ripn

n logi pn
+ O

(
pn

n logm+2 pn

))
·
⎛

⎝exp

⎛

⎝1 +
m∑

j=1

kj

logj pn

⎞

⎠

+O

(
1

logm+1 pn

))
.

The Prime Number Theorem implies that pn ∼ n log pn as n → ∞. It follows:

An

Gn
= e

(
1 −

m+1∑

i=1

ripn

n logi pn
+ O

(
1

logm+1 pn

))
· exp

⎛

⎝
m∑

j=1

kj

logj pn

⎞

⎠

+O

(
1

logm+1 pn

)
. (3.1)

Applying (2.3) with x = pn and r = m − 1 to (3.1), we get

An

Gn
= e

(
1 −

m+1∑

i=1

ri

logi pn

(
log pn − 1 −

m−1∑

s=1

ks
logs pn

))
· exp

⎛

⎝
m∑

j=1

kj

logj pn

⎞

⎠

+O

(
1

logm+1 pn

)
.

Hence, we have

An

Gn
= e

(
1 −

m+1∑

i=1

ri

logi−1 pn
+

m+1∑

i=1

ri

logi pn
+

m+1∑

i=1

k1ri

logi+1 pn
+ · · · +

m+1∑

i=1

km−1ri

logm−1+i pn

)

× exp

⎛

⎝
m∑

j=1

kj

logj pn

⎞

⎠ +O

(
1

logm+1 pn

)
.

To complete the proof, we separate the terms in the first parentheses which
are O(1/ logm+1 pn). �
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Now, we use Theorem 3.1 and the asymptotic formula

exp

⎛

⎝
m∑

j=1

kj

logj pn

⎞

⎠ =
m∑

i=1

1
i!

⎛

⎝
m∑

j=1

kj

logj pn

⎞

⎠
i

+ O

(
1

logm+1 pn

)

to implement the following Maple code:

> restart:

Computation of the values ki:
> for j from 1 to m do

K[j] := j∗j!-sum(s!∗K[j-s], s=1..j-1):

Computation of the values ri:
> for i from 1 to m+1 do

R[i] := (i-1)!∗(1-1/2̂{i}):
end do:

> AsymptoticExpansion := proc(n) local S1,S2;

S1 := 1/2 + sum(b̂{w}∗(-R[w+1]+R[w]+sum(R[v]∗K[w-v],
v = 1.. (w-1))), w = 1..n);

S2 := sum(1/t!∗(sum(K[z]∗b̂{z}, z = 1..n))̂{t}, t = 0..n));

RETURN(subs(b = 1/log(p n), convert(series(S1∗S2, b,n+1),

polynom)));

end;

To give the explicit asymptotic expansion for the ratio of An and Gn up to
some positive integer m, it suffices to write

> expand(exp(1)*AsymptoticExpansion(m));

For instance, we set m = 5 to obtain

An

Gn
=

e

2
+

e

4 log pn
+

e

log2 pn
+

61e

12 log3 pn
+

1463e

48 log4 pn
+

100367e

480 log5 pn
+O

(
1

log6 pn

)
.

(3.2)
One of Hassani’s results [11, p. 1602] is that An/Gn = e/2+O(1/ log n). The
asymptotic expansion given in (3.2) improves this result.

4. New Estimates for the Quantity D(n)

After giving two asymptotic formulae for the quantity D(n) in Sect. 2.1, we
are interested in finding some explicit estimates for D(n).

4.1. Explicit Estimates for D(n) in Terms of pn

In this subsection, we give some explicit estimates for D(n) in terms of pn
which correspond to the first three terms of the asymptotic expansion given
in Proposition 2.1. We start with the following lower bound.
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Proposition 4.1. For every integer n ≥ 218, we have

D(n) > 1 +
1

log pn
+

2.7
log2 pn

. (4.1)

Proof. Substituting x = pn in [3, Corollary 3.9], we get

log pn >
pn
n

+ 1 +
1

log pn
+

2.85
log2 pn

(4.2)

for every integer n ≥ 2 324 692. In [3, Theorem 1.1], it is shown that ϑ(x) <
x + 0.15x/ log3 x for every x > 1. Applying the last inequality to (4.2), we
see that

D(n) > 1 +
1

log pn
+

2.85
log2 pn

− 0.15pn

n log3 pn
(4.3)

for every integer n ≥ 2 324 692. Setting x = pk in [16, Corollary 1], we get

pk ≤ k log pk (4.4)

for every integer k ≥ 7. Now, it suffices to apply (4.4) to (4.3) to see that the
inequality (4.1) holds for every integer n ≥ 2 324 692. For smaller values of
n, we use a computer. �

In the following proposition, we give two lower bounds for D(n) which
improve the inequality (4.1) for all sufficiently large values of n.

Proposition 4.2. For every positive integer n, we have

D(n) > 1 +
1

log pn
+

3
log2 pn

− 187
log3 pn

(4.5)

and
D(n) > 1 +

1
log pn

+
3

log2 pn
+

13
log3 pn

− 1160159
log4 pn

. (4.6)

Proof. We start with the proof of (4.5). By [3, Proposition 2.5], we have
|ϑ(x) − x| < 100x/ log4 x for every x ≥ 70 111 = p6946. Furthermore, in [3,
Proposition 3.10] it is found that the inequality

π(x) >
x

log x − 1 − 1
log x − 3

log2 x
+ 87

log3 x

holds for every x ≥ 19 423. With an argument similar to the one used in
the proof of Proposition 4.1, we get the inequality (4.5) for every integer
n ≥ 6 946. We conclude by direct computation.

Next, we give the proof of (4.6). In [4, Corollary 2.2], it is shown that the
inequality |ϑ(x) − x| < 580115x/ log5 x holds for every x ≥ 2. Furthermore,
we see from the proof of [4, Theorem 1.1] that

π(x) >
x

log x − 1 − 1
log x − 3

log2 x
− 13

log3 x
+ 580044

log4 x

for every x ≥ 1013. Again, with an argument similar to the one used in
the proof of Proposition 4.1, we get the inequality (4.6) for every integer
n ≥ π(1013) + 1. For smaller values of n, we use (4.5). �
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Since k1 = 1 and k2 = 3, Proposition 2.1 implies that there is a smallest
positive integer N0, so that

D(n) > 1 +
1

log pn
+

3
log2 pn

(4.7)

for every integer n ≥ N0. In the following corollary, we make the first step to
find this N0.

Corollary 4.3. For every integer n satisfying 264 ≤ n ≤ π(1019) = 234 057 667
276 344 607 and n ≥ π(e1160159/13) + 1, the inequality (4.7) holds.

Proof. The inequality (4.6) implies the correctness of (4.7) for every n ≥
π(e1160159/13) + 1. So it suffices to prove that the inequality (4.7) holds for
every integer n with 264 ≤ n ≤ π(1019). By [4, Theorem 1.1], we have

π(x) >
x

log x − 1 − 1
log x − 3

log2 x

(4.8)

for every x satisfying 65 405 887 ≤ x ≤ 5.5 · 1025 and x ≥ e580044/13. Büthe
[7, Theorem 2] found that ϑ(x) < x for every x, such that 1 ≤ x ≤ 1019.
With an argument similar to the one used in the proof of Proposition 4.1, we
use (4.8) and Büthe’s result to see that the inequality (4.7) holds for every
integer n with π(65 405 887) ≤ n ≤ π(1019). Finally, we check the remaining
cases with a computer. �

The following conjecture is based on Corollary 4.3.

Conjecture 4.4. The inequality (4.7) holds for every integer n ≥ 264.

Next, we establish some explicit upper bounds for D(n) in terms of pn.
From Proposition 2.1, it follows that for each ε > 0, there is a positive integer
N1 = N1(ε), such that

D(n) < 1 +
1

log pn
+

3 + ε

log2 pn

for every integer n ≥ N1. We find the following upper bound for D(n).

Proposition 4.5. For every integer n ≥ 74 004 585, we have

D(n) < 1 +
1

log pn
+

3.84
log2 pn

, (4.9)

and for every positive integer n, we have

D(n) < 1 +
1

log pn
+

3
log2 pn

+
213

log3 pn
. (4.10)

Proof. We start with the proof of (4.9) and first consider the case, where
n ≥ 841 508 302. From [3, Corollary 3.3], it follows that:

log pn <
pn
n

+ 1 +
1

log pn
+

3.69
log2 pn

. (4.11)
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Furthermore, by [3, Theorem 1.1], we have ϑ(x) > x−0.15x/ log3 x for every
x ≥ 19 035 709 163 = p841 508 302. We combine the last inequality involving
ϑ(x) and (4.11) to get

D(n) < 1 +
1

log pn
+

3.69
log2 pn

+
0.15pn

n log3 pn
.

Now, we use (4.4) to see that the inequality (4.9) holds for every integer
n ≥ 841 508 302. For smaller values of n, we check the required inequality
with a computer.

Next, we establish the inequality (4.10). In [3, Proposition 3.5], it is
shown that

π(x) <
x

log x − 1 − 1
log x − 3

log2 x
− 113

log3 x

for every x ≥ 41. By [3, Proposition 2.5], we have |ϑ(x) − x| < 100x/ log4 x
for every x ≥ 70 111. Now, we argue as in the proof of Proposition 4.2. For
the remaining cases, we use a computer. �

4.2. Explicit Estimates for D(n) in Terms of n

Since computation of pn is difficult for large n, the estimates for D(n) ob-
tained in Sect. 4.1 are ineffective for large n. Hence, we are interested in
estimates for D(n) in terms of n. First, we note that Proposition 2.4 implies
the asymptotic formula:

D(n) = 1 +
1

log n
− log log n − 3

log2 n
+ O

(
(log log n)2

log3 n

)
. (4.12)

The goal of this subsection is to find upper and lower bounds for D(n) in the
direction of (4.12). We start with lower bounds. Hassani [11, Proposition 1.6]
showed that the inequality D(n) > 1 − 17/(5 log n) is valid for every integer
n ≥ 2. Here, we give the following refinement.

Proposition 4.6. For every integer n ≥ 591, we have

D(n) > 1 +
1

log n
− log log n − 2.5

log2 n
. (4.13)

Proof. We denote the right-hand side of (4.13) by f(n). First, let n be an
integer satisfying n ≥ π(1019) = 234 057 667 276 344 607. By [5, Corollary 3.3],
we have

1
log pn

≥ 1
log n

− log log n

log2 n
+

(log log n)2 − log log n + 1
log2 n log pn

, (4.14)

which implies that the weaker inequality

1
log pn

≥ 1
log n

− log log n

log2 n
(4.15)
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also holds. We combine (4.14) and (4.15) to get
1

log pn
≥ 1

log n
− log log n

log2 n

+
(log log n)2 − log log n + 1

log2 n

×
(

1
log n

− log log n

log2 n

)
. (4.16)

Applying the last inequality and (4.15) to (4.1), we see that

D(n) > f(n) +
0.2

log2 n
+

(log log n)2 − 5.6 log log n + 1
log3 n

− (log log n)3 − 3.3(log log n)2 + log log n

log4 n
,

which completes the proof for every integer n ≥ π(1019).
With an argument similar to the one used in the case n ≥ π(1019), we

combine (4.15), (4.16), and Corollary 4.3 to get

D(n) > f(n) +
0.5

log2 n
+

(log log n)2 − 7 log log n + 1
log3 n

− (log log n)3 − 4(log log n)2 + log log n

log4 n

for every integer n with 264 ≤ n ≤ π(1019), which implies that the required
inequality holds for every integer n, such that 2 426 927 728 ≤ n ≤ π(1019).
We verify the remaining cases with a computer. �

We immediately get the following corollary.

Corollary 4.7. For every α < 1, there exists a positive integer n0 = n0(α), so
that D(n) > 1 + α/ log n for every integer n ≥ n0.

Remark. Hassani [11, Conjecture 1.7] conjectured that there exist a real num-
ber β with 0 < β < 5.25 and a positive integer n0, so that D(n) > 1+β/ log n
for every integer n ≥ n0. This conjecture is proved in Corollary 4.7. The in-
equality (4.13) implies that D(n) > 1 for every integer n ≥ 591. A computer
check shows that the last inequality for D(n) also holds for every integer n
with 10 ≤ n ≤ 591. Thus, we have

D(n) > 1 (n ≥ 10), (4.17)

which was also conjectured by Hassani [11, Conjecture 1.7].

Finally, we establish some new upper bounds for D(n) in terms of n.
Using estimates for the nth prime number and Chebyshev’s ϑ-function, Has-
sani [11, Proposition 1.6] found that D(n) < 1+21/(4 log n) for every integer
n ≥ 2. We give the following improvement of Hassani’s upper bound.

Proposition 4.8. For every integer n ≥ 2, we have

D(n) < 1 +
1

log n
− log log n − 4.2

log2 n
.
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In particular, for every β ≥ 1, there exists a positive integer n1 = n1(β), so
that D(n) < 1 + β/ log n for every integer n ≥ n1.

Proof. By [5, Corollary 3.6], we have

1
log pn

≤ 1
log n

− log log n

log2 n
+

(log log n)2 − log log n + 1
log2 n log pn

+
P8(log log n)
2 log3 n log pn

− P9(log log n)
2 log4 n log pn

for every integer n ≥ 2, where P8(x) = 3x2 −6x+5.2 and P9(x) = x3 −6x2 +
11.4x − 4.2. Since P9(x) > 0 for every x ≥ 0.5, we get

1
log pn

≤ 1
log n

− log log n

log2 n
+

(log log n)2 − log log n + 1
log3 n

+
P8(log log n)

2 log4 n
(4.18)

for every n ≥ 6. Now, we use Proposition 4.5 and the fact that 3.84/ log2 pn ≤
3.84/ log2 n to obtain

D(n) < 1+
1

log n
− log log n − 3.84

log2 n
+

(log log n)2 − log log n + 1
log3 n

+
P8(log log n)

2 log4 n
(4.19)

for every integer n ≥ 74 004 585. Notice that the inequality

(log log x)2 − log log x + 1
log3 x

+
P8(log log x)

2 log4 x
<

0.36
log2 x

(4.20)

holds for every x ≥ 1 499 820 545. Applying (4.20) to (4.19), we get the re-
quired inequality for every n ≥ 1 499 820 545. Finally, we use a computer to
check the required inequality for smaller values of n. �

5. New Estimates for the Geometric Mean of the First n
Prime Numbers

In the following, we use the identity (2.5) and the explicit estimates for D(n)
obtained in the previous section to find new bounds for Gn, the geomet-
ric mean of the first n prime numbers. First, we see that (2.5) and (4.17)
imply Gn < pn/e for every integer n ≥ 10, which was already proved by
Panaitopol [13] and Sándor [17, Theorem 2.1]. In the direction of Propo-
sition 2.5, Kourbatov [12, Theorem 2] used explicit estimates for π(x) and
Chebyshev’s ϑ-function to find that

Gn <
pn

exp
(
1 + 1

log pn
+ 1.62

log2 pn

)

for every prime number pn ≥ 32059, i.e., for every integer n ≥ 3439. Actually,
this inequality holds for every integer n with 92 ≤ n ≤ 3438, as well. In the
next proposition, we give sharper estimates for Gn.

Proposition 5.1. For every integer n ≥ 218, we have

Gn <
pn

exp
(
1 + 1

log pn
+ 2.7

log2 pn

) .
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For every positive integer n, we have

Gn <
pn

exp
(
1 + 1

log pn
+ 3

log2 pn
− 187

log3 pn

)

and

Gn <
pn

exp
(
1 + 1

log pn
+ 3

log2 pn
+ 13

log3 pn
− 1160159

log4 pn

) .

Proof. The first inequality is a direct consequence of (2.5) and Proposition
4.1. Furthermore, we apply the inequalities obtained in Proposition 4.2 to
the identity (2.5) and get the remaining inequalities. �

Next, we use Corollary 4.3 to get the following upper bound.

Proposition 5.2. For every integer n with 264 ≤ n ≤ π(1019) = 234 057 667 276
344 607 and n ≥ π(e1160159/13) + 1, we have

Gn <
pn

exp
(
1 + 1

log pn
+ 3

log2 pn

) .

Proof. We combine (2.5) with Corollary 4.3. �
Proposition 2.5 and the Prime Number Theorem imply that

Gn =
pn
e

+ O(n), (5.1)

which was already obtained by Hassani [11, p. 1602]. To find new upper
bounds for Gn in the direction of (5.1), we first state the following result.

Proposition 5.3. For every integer n ≥ 47, we have

Gn <
pn
e

(
1 − 1

log pn

)
.

Proof. Using Proposition 5.1 and the inequality ex ≥ 1 + x which holds for
every real x, we get

Gn <
pn
e

(
1 − log pn + 2.7

log2 pn + log pn + 2.7

)

for every integer n ≥ 218. Since log pm > 2.7/1.7 for every integer m ≥ 3, we
obtain the required inequality for every integer n ≥ 218. For the remaining
cases of n, we use a computer. �

In the direction of (5.1), we find the following upper bound for Gn.

Corollary 5.4. For every integer n ≥ 31, we have

Gn <
pn
e

− n

e

(
1 − 1

log pn
− 1

log2 pn
− 3.69

log3 pn

)
.

In particular, for every real γ with 0 < γ < 1/e, there is a positive integer
n2 = n2(γ), so that Gn < pn/e − γn for every integer n ≥ n2.

Proof. We use (4.11) and Proposition 5.3 to get the required inequality for
every integer n ≥ 456 441 574. We conclude by direct computation. �
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Remark. The second part of Corollary 5.4 proves a conjecture stated by
Hassani [11, Conjecture 4.3].

Next, we find new lower bounds for Gn. In view of Proposition 2.5,
Kourbatov [12, Theorem 2] used explicit estimates for the prime counting
function π(x) and Chebyshev’s ϑ-function to find that

Gn >
pn

exp
(
1 + 1

log pn
+ 4.83

log2 pn

)

for every integer n ≥ 3 439. In the next proposition, we give two sharper
lower bounds.

Proposition 5.5. For every integer n ≥ 74 004 585, we have

Gn >
pn

exp
(
1 + 1

log pn
+ 3.84

log2 pn

) , (5.2)

and for every positive integer n, we have

Gn >
pn

exp
(
1 + 1

log pn
+ 3

log2 pn
+ 213

log3 pn

) .

Proof. We use (2.5) and Proposition 4.5 to obtain the required inequalities.
�

To derive a lower bound for Gn in the direction of (5.1), we first establish
the following result.

Proposition 5.6. For every positive integer n, we have

Gn >
pn
e

(
1 − 1

log pn
− 4.74

log2 pn

)
.

Proof. First, we consider the case where n ≥ 883 051 281 = π(e23.72) + 1. It
is easy to see that

et < 1 + t +
2t2

3
(5.3)

for every t satisfying 0 < t < log(4/3). Hence, we obtain

exp
(

1
x

+
3.84
x2

)
< 1 +

1
x

+
13.52
3x2

+
5.12
x3

+
9.8304

x4

for every x ≥ 6. For x ≥ 23.72, we have 5.12/x + 9.8304/x2 < 0.23333 and
get

exp
(

1
x

+
3.84
x2

)
< 1 +

1
x

+
4.74
x2

(5.4)

for every x ≥ 23.72. Since log pn ≥ 23.72, it follows from (5.2) and the
inequality (5.4) that

Gn >
pn
e

(
1 − log pn + 4.74

log2 pn + log pn + 4.74

)
.

Since the right-hand side of the last inequality is greater than the right-
hand side of the required inequality, the corollary is proved for every integer
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n ≥ 883 051 281. A computer check shows that the desired inequality holds
for every integer n with 1 ≤ n ≤ 883 051 280, as well. �

In view of (5.1), Hassani [11, Corollary 4.2] found that

Gn >
pn
e

− 2.37n

for every positive integer n. The following corollary improves this inequality.

Corollary 5.7. For every integer n ≥ 3, we have

Gn >
pn
e

− n

e

(
1 +

3.74
log pn

− 5.74
log2 pn

− 7.59
log3 pn

)
.

In particular, for every δ > 1/e, there is a positive integer n3 = n3(δ), so
that Gn > pn/e − δn for every integer n ≥ n3.

Proof. First, we consider the case where n ≥ 2 324 692. We use (4.2) and the
inequality obtained in Proposition 5.6 to get

Gn >
pn
e

− n

e

(
1 − 1

log pn
− 1

log2 pn
− 2.85

log3 pn

)
− 4.74pn

e log2 pn
. (5.5)

We apply the inequality (4.2) to (5.5) and obtain the required inequality. For
every integer n satisfying 3 ≤ n ≤ 2 324 692 we check the required inequality
with a computer. �
Remark. Compared with (5.1), Corollaries 5.4 and 5.7 yield the more accurate
asymptotic formula:

Gn =
pn
e

− n

e
+ O

(
n

log pn

)
.

6. New Estimates for the Quantity log(1 + 2R(n)/pn)

First, we derive an asymptotic formula for log(1 + 2R(n)/pn) as n → ∞,
where

R(n) =
1
n

∑

k≤n

pk − pn
2

.

Proposition 6.1. We have

log
(

1 +
2R(n)

pn

)
∼ − 1

2 log n
(n → ∞).

Proof. We have pn ∼ n log n and, by [2], R(n) ∼ −n/4 as n → ∞. Hence,
log(1 + 2R(n)/pn) ∼ log(1 − 1/(2 log n)) as n → ∞. Since log(1 − 1/(2x)) ∼
−1/(2x) as x → ∞, the proposition is proved. �

Hassani [11, Corollary 1.5] found that

− 15
2 log n

< log
(

1 +
2R(n)

pn

)
< − 5

36 log n
, (6.1)

where the left-hand side inequality holds for every integer n ≥ 2, and the
right-hand side inequality holds for every integer n ≥ 10. In Proposition 6.1,
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we gave a more suitable approximation for the quantity log(1 + 2R(n)/pn)
as n → ∞. In this direction, we improve the inequalities found in (6.1). The
following proposition is about a lower bound for log(1 + 2R(n)/pn).

Proposition 6.2. For every integer n ≥ 26 220, we have

log
(

1 +
2R(n)

pn

)
> − 1

2 log n
+

log log n − 2.25
2 log2 n

− (log log n)2 − 4.5 log log n + 22.51/3
2 log3 n

. (6.2)

Proof. By Dusart [10], we have

pn ≥ r(n) (6.3)

for every integer n ≥ 2, where r(x) = x(log x + log log x − 1). We set

s1(x) = −x

4
− x

4 log x
+

x(log log x − 4.42)
4 log2 x

.

Now, we use [2, Theorem 1.8] and [11, Corollary 1.5] to obtain

s1(n) < R(n) < 0 (6.4)

for every integer n ≥ 256 376. We define h(x) = log(1 + 2s1(x)/r(x)). By
(6.3) and (6.4), it suffices to show that h(x) is greater than the right-hand
side of (6.2). For this purpose, we set

f(y) = (2 log3 y − 13 log2 y + 33.09 log y − 29.1575)y3

+ (1.5 log4 y − 11.5 log3 y + 34.63 log2 y − 41.1575 log y + 9.9075)y2

+ (−0.5 log3 y + 1.52 log2 y + 3.59 log y − 17.01605)y

+ 0.75 log4 y − 7.94 log3 y + 31.07 log2 y − 53.72605 log y + 29.84605

and

g(y) = y3 + y2 log y − 1.5y2 − 0.5y + 0.5 log y − 2.21.

It is easy to see that f(y) and g(y) are positive for every y ≥ e2.4. Hence
(

h(x) +
1

2 log x
− log log x − 2.25

2 log2 x
+

(log log x)2 − 4.5 log log x + 22.51/3
2 log3 x

)′

= − f(log x)
g(log x)r(x) log4 x

< 0

for every x ≥ exp(exp(2.4)). In addition, we have

lim
x→∞

(
h(x) +

1

2 log x
− log log x − 2.25

2 log2 x
+

(log log x)2 − 4.5 log log x+ 22.51/3

2 log3 x

)
= 0.

Thus, we get

h(x) > − 1
2 log x

+
log log x − 2.25

2 log2 x
− (log log x)2 − 4.5 log log x + 22.51/3

2 log3 x
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for every x ≥ exp(exp(2.4)). Hence, the desired inequality holds for every
integer n ≥ exp(exp(2.4)). The remaining cases are checked with a computer.

�

Next, we give an upper bound for log(1 + 2R(n)/pn).

Proposition 6.3. For every integer n ≥ 6077, we have

log
(

1 +
2R(n)

pn

)
< − 1

2 log pn
− 1

log2 pn
− 2.9

2 log2 n log pn
.

Proof. First, we consider the case where n ≥ 78 150 372 ≥ exp(exp(2.9)). We
define

s2(x) = −x

4
− x

4 log x
+

x(log log x − 2.9)
4 log2 x

.

By [2, Theorem 1.7] and the definition of R(n), we obtain R(n) < s2(n) < 0.
Hence

log
(

1 +
2R(n)

pn

)
< log

(
1 +

2s2(n)
pn

)
.

Since 2s2(n)/pn > −1, we apply the inequality log(1 + x) ≤ x, which holds
for every x > −1, to get

log
(

1 +
2R(n)

pn

)
< − n

2pn
− n

2pn log n
+

n(log log n − 2.9)
2pn log2 n

.

Now, we use a lower bound for the prime counting function given by Dusart
[9], namely that π(x) ≥ x/ log x + x/ log2 x for every x ≥ 599. Substituting
x = pn, we obtain

log
(

1 +
2R(n)

pn

)
< − 1

2 log pn
− 1

2 log2 pn
− 1

2 log n log pn
− 1

2 log n log2 pn

+
n(log log n − 2.9)

2pn log2 n
. (6.5)

Again by Dusart [9], we have π(x) ≤ x/ log x + 2x/ log2 x for every x > 1.
Applying this and the fact that log log n ≥ 2.9 to (6.5) we get

log
(

1 +
2R(n)

pn

)
< − 1

2 log pn
− 1

2 log2 pn
− 1

2 log n log pn
− 1

2 log n log2 pn

+
log log n − 2.9
2 log2 n log pn

+
log log n − 2.9
log2 n log2 pn

.

Finally, we use (4.18) to get

log
(

1 +
2R(n)

pn

)
< − 1

2 log pn
− 1

log2 pn

+
(log log n)2 + log log n − 4.8

2 log2 n log2 pn
+

P8(log log n)
4 log3 n log2 pn

− 1
2 log n log2 pn

− 2.9
2 log2 n log p

,
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which implies the required inequality. For smaller values for n, we use a
computer. �

In the direction of Proposition 6.1, we find the following upper bound
for log(1 + 2R(n)/pn) in terms of n, which leads to an improvement in the
right-hand side inequality of (6.1).

Corollary 6.4. For every integer n ≥ 92, we have

log
(

1 +
2R(n)

pn

)
< − 1

2 log n
+

log log n − 2
2 log2 n

+
4 log log n − 2.9

log3 n
+

2.9 log log n

2 log4 n
.

Proof. First, we consider the case where n ≥ 6077. From (4.16), it follows
that

− 1
log pn

≤ − 1
log n

+
log log n

log2 n
. (6.6)

Applying this to Proposition 6.3, we get

log
(

1 +
2R(n)

pn

)
< − 1

2 log n
+

log log n

2 log2 n
− 1

log n log pn

+
log log n

log2 n log pn
− 2.9

2 log3 n
+

2.9 log log n

2 log4 n
.

Again, we use (6.6) to obtain the required inequality for every integer n ≥
6077. We conclude by direct computation. �

We now establish the following more precise result compared with Propo-
sition 6.1.

Corollary 6.5. We have

log
(

1 +
2R(n)

pn

)
= − 1

2 log n
+

log log n

2 log2 n
+ O

(
1

log2 n

)
.

Proof. The claim follows directly from Proposition 6.2 and Corollary 6.4. �

7. The Proofs of Theorems 1.2–1.5

Now, we use the identity (1.1) and explicit estimates for D(n) and log(1 +
2R(n)/pn) obtained in Section 3 and Section 5 to prove Theorems 1.2–1.5.

Proof of Theorem 1.4. We first consider the case where n ≥ 465 944 315. By
(1.1), Proposition 4.6, and Proposition 6.2, we get

An

Gn
>

e

2
· exp

(
1

2 logn
− log logn − 2.75

2 log2 n
− (log logn)2 − 4.5 log logn+ 22.51/3

2 log3 n

)
.

Notice that 0.15 log x > (log log x)2 − 4.5 log log x + 22.51/3 for every x ≥
465 944 315. Hence

An

Gn
>

e

2
· exp

(
1

2 log n
− log log n − 2.6

2 log2 n

)
.
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Now, we use the inequality ex ≥ 1 + x + x2/2, which holds for every nonneg-
ative x, to get

An

Gn
>

e

2
·
(

1 +
1

2 log n
− log log n − 2.85

2 log2 n
− log log n

4 log3 n
+

0.65
log3 n

)
.

Since the function 2 · 0.05 − (log log t − 4 · 0.65)/(4 log t) is positive for every
t ≥ 2, the required lower bound for the ratio of An and Gn holds. A direct
computation for every integer n, such that 139 ≤ n ≤ 465 944 314 completes
the proof. �

Remark. Hassani [11] conjectured that there exist a real number α with
0 < α < 9.514 and a positive integer n0, such that An/Gn > e/2 + α/ log n
for every integer n ≥ n0. Theorem 1.4 proves this conjecture.

Now, we give a proof of Theorem 1.2. To do this, we use (4.18) and
Theorem 1.4.

Proof of Theorem 1.2. Let n be an integer with n ≥ 1 499 820 545. Using
(4.18) and Theorem 1.4, we get

An

Gn
>

e

2
+

e

4 log pn
+

e

4

(
2.8

log2 n
− (log logn)2 − log logn+ 1

log3 n
− P8(log logn)

2 log4 n

)
,

where P8(x) = 3x2 − 6x + 5.2. Now, we apply (4.20) to see that the required
inequality holds. We complete the proof by verifying the remaining cases with
a computer. �

The following corollary confirms that the ratio of the arithmetic and
geometric means of the prime numbers is always greater than e/2, as conjec-
tured by Hassani [11].

Corollary 7.1. For every positive integer n, we have
An

Gn
>

e

2
.

Proof. From Theorem 1.2, it follows that the required inequality holds for
every integer n ≥ 62. We verify the remaining cases with a computer. �

Next, we use Propositions 4.5 and 6.3 to give the following proof of
Theorem 1.3.

Proof of Theorem 1.3. First, let n be an integer with n ≥ 74 004 585. By
(1.1), (5.3), and Propositions 4.5 and 6.3, we obtain the inequality:

An

Gn
<

e

2
·
(

1 +
1

2 log pn
+

9.02
3 log2 pn

+
1.33

3 log3 pn
+

13.2312
3 log4 pn

)
.

Since log pn ≥ 19.937, we have 9.02/3+1.33/(3 log pn)+13.2312/(3 log2 pn) <
3.04, which completes the proof for every integer n ≥ 74 004 585. We conclude
by direct computation. �

Finally, we use Theorem 1.3 and the inequality (4.18) to prove Theorem
1.5.
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Proof of Theorem 1.5. Using Theorem 1.3 and the inequality (4.18), we get

An

Gn
<

e

2
+

e

4 log n
− e(log log n − 6.08)

4 log2 n
+

e((log log n)2 − log log n + 1)
4 log3 n

+
eP8(log log n)

8 log4 n
(7.1)

for every integer n ≥ 294 635. Applying (4.20) to (7.1), we see that the claim
is true for every integer n ≥ 1 499 820 545. A computer check shows the
correctness of the required inequality for every integer n satisfying 2 ≤ n ≤
1 499 820 544. �

Remark. One of the conjectures concerning the ratio of An and Gn stated by
Hassani [11] is still open, namely that the sequence (An/Gn)n∈N is strictly
decreasing for every integer n ≥ 226.
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[6] Brüdern, J.: Einführung in die analytische Zahlentheorie, Springer Lehrbuch
(1995)
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Arch. Wiskd. (5) 1(1), 55–56 (2000)

[15] Rivera, C. (ed.): Conjecture 67. Primes and e (2010). http://primepuzzles.net/
conjectures/conj 067.htm

[16] Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime
numbers. Ill. J. Math. 6(1), 64–94 (1962)

[17] Sándor, J.: On certain bounds and limits for prime numbers. Notes Number
Theory Discret. Math. 18(1), 1–5 (2012)

[18] Sándor, J., Verroken, A.: On a limit involving the product of prime numbers.
Notes Number Theory Discret. Math. 17(2), 1–3 (2011)

Christian Axler
Institute of Mathematics
Heinrich-Heine University Düsseldorf
40225 Düsseldorf
Germany
e-mail: christian.axler@hhu.de

Received: August 25, 2017.

Revised: March 27, 2018.

Accepted: April 13, 2018.

http://primepuzzles.net/conjectures/conj_067.htm
http://primepuzzles.net/conjectures/conj_067.htm

	On the Arithmetic and Geometric Means of the First n Prime Numbers
	Abstract
	1. Introduction
	2. Several Asymptotic Formulae
	2.1. Two Asymptotic Formulae for D(n)
	2.2. An Asymptotic Formula for Gn

	3. A Proof of Theorem 1.1
	4. New Estimates for the Quantity D(n)
	4.1. Explicit Estimates for D(n) in Terms of pn
	4.2. Explicit Estimates for D(n) in Terms of n

	5. New Estimates for the Geometric Mean of the First n Prime Numbers
	6. New Estimates for the Quantity log(1 + 2R(n)/pn)
	7. The Proofs of Theorems 1.2–1.5
	Acknowledgements
	References




