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1. Introduction

The study of immersed spacelike hypersurfaces with constant mean curvature
in a Lorentzian manifold has attracted the interest of a considerable group
of geometers, as evidenced by the amount of works that it has generated in
the last decades. This is due not only to its mathematical interest, but also
to its relevance in General Relativity. For example, constant mean curvature
spacelike hypersurfaces are particularly suitable for studying the propagation
of gravitational radiation (cf. [30]; see also [22] for a summary of several
reasons justifying this interest).

From the mathematical point of view, the study of the geometry of con-
stant mean curvature spacelike hypersurfaces is mostly due to the fact that
they exhibit nice Bernstein type properties. In this context, several authors
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have recently treated the problem of uniqueness for complete constant mean
curvature spacelike hypersurfaces of generalized Robertson–Walker (GRW)
spacetimes, that is, Lorentzian warped products with 1-dimensional negative
definite base and Riemannian fiber. Along this branch, we point out the works
of Romero, Rubio and Salamanca [26–28], where the authors studied non-
compact complete spacelike hypersurfaces in GRW spacetimes whose fiber
has a parabolic universal Riemannian covering. In this setting, they guaran-
teed the parabolicity of complete spacelike hypersurfaces, under boundedness
assumptions on the warping function restricted to a spacelike hypersurface
and on the hyperbolic angle function of the hypersurface. As an application
of this new technique, they obtained several uniqueness results on complete
maximal spacelike hypersurfaces.

Going a step further, our aim in this paper is to extend the previous
mentioned parabolicity criteria to the context of complete constant weighted
mean curvature spacelike hypersurfaces immersed in a spatially weighted
GRW spacetime. As some applications of this criteria, we obtain unique-
ness results concerning these spacelike hypersurfaces in the case where the
GRW spacetime is spatially weighted.

We recall that, given a pseudo-Riemannian manifold (M, g) and a smooth
function φ ∈ C∞(M), the weighted manifold Mφ associated to M and φ is the
triple (M, g,dμ = e−φdM), where dM is the standard volume element of M.

In this context, Bakry and Émery introduced in [8] the Bakry–Émery–Ricci
tensor as a suitable generalization of the classical Ricci tensor, Ric, defined
by,

Ricφ = Ric + Hess φ,

where Hess stands for the Hessian with respect to the metric g. So, it seems
natural to try to extend results stated in terms of the Ricci curvature tensor
to analogous results for the Bakry–Émery–Ricci tensor.

It is also interesting to remark that weighted manifolds are closely re-
lated to some classical mathematical concepts, as they can be used as a
powerful mathematical tool in order to obtain new results related to them.
Specifically, in the case where Ricf is constant, we can induce on M a struc-
ture of a gradient Ricci soliton. Its mathematical relevance is due to the
Perelman’s solution of the Poincaré conjecture since gradient Ricci solitons
correspond to self-similar solutions to the Hamilton’s Ricci flow and often
arise as limits of dilations of singularities developed along the Ricci flow. For
an overview of results in this context one can consult [29]. On the other hand,
weighted manifolds have also been considered when studying harmonic heat
flows and heat kernels. For instance, Grigor’yan and Saloff–Coste established
in [15] a result which relates the heat kernel on a complete, noncompact
Riemannian manifold M with the Dirichlet heat kernel on the exterior of a
compact set of M. They got a relation between both heat kernels either in
the case when M is transient or when it is recurrent, and this was possible
since they applied in the proof the theory of weighted manifolds.

This manuscript is organized as follows: In Sect. 2, we introduce some
basic notions and facts related to spacelike hypersurfaces in GRW spacetimes
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and weighted manifolds in general. In Sect. 3, we establish our φ-parabolicity
criteria concerning complete spacelike hypersurfaces immersed in a spatially
weighted GRW spacetime. Specifically, in Theorem 1 we prove that

Let S be a complete spacelike hypersurface in a spatially weighted
GRW spacetime Mφ with weight function φ, whose fiber F is com-
plete with φ-parabolic universal Riemannian covering. If the hy-
perbolic angle function Θ of S is bounded and the restriction f(h)
on S of the warping function f of M satisfies supS f(h) < ∞ and
infS f(h) > 0, then S is φ-parabolic.

In Sect. 4, we apply the above criteria in order to get uniqueness results
for spacelike hypersurfaces in spatially weighted GRW spacetimes. We also
establish some nice consequences for the particular cases where M is static
(i.e. with constant warping function) or a steady state type spacetime (i.e.
with warping function f(t) = et). Finally, in Sect. 5 we present new Calabi–
Bernstein type results establishing non-parametric versions of the results ob-
tained in Sect. 4.

2. Set Up

Let (F, gF ) be a connected, n-dimensional, oriented Riemannian manifold,
I ⊂ R an open interval endowed with the metric −dt2 and f : I → R a
positive smooth function. Let us consider the product manifold M = I × F.
The class of Lorentzian manifolds which will be of our concern here is the
one obtained by furnishing M with the Lorentzian metric,

g = −π∗
I (dt2) + f2(πI)π∗

F (gF ), (2.1)

where πI and πF are the projections onto the factors I and F, respectively.
In this case, we simply write,

M = −I ×f F. (2.2)

Let us observe that M is a Lorentzian warped product with warping function
f and fiber F.

When F has constant sectional curvature, the warped product (2.2)
has been known in the mathematical literature as a Robertson–Walker (RW)
spacetime, an allusion to the fact that, for n = 3, it is an exact solution
of the Einstein’s field equations (cf. Chapter 12 of [25]). In the general case,
after [6], the warped product (2.2) has usually been referred to as a generalized
Robertson–Walker (GRW) spacetime, and we will stick to this usage along this
paper.

Let S be an n-dimensional connected manifold. A smooth immersion
x : S → M is said to be a spacelike hypersurface if S, furnished with the metric
induced from (2.1) via x, is a Riemannian manifold. If this is so, we will always
assume that the metric on S is the induced one, which will be denoted by gS .
In this setting, it follows from the connectedness of S that one can uniquely
choose a globally defined timelike normal unit vector field N ∈ X(S)⊥, having
the same time-orientation of ∂t, i.e., such that g(N, ∂t) ≤ −1, where ∂t is the
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coordinate vector field induced by the universal time on M. One then says
that N is the future-pointing Gauss map of S.

We will consider two particular functions naturally attached to a space-
like hypersurface S immersed into a GRW spacetime M, namely, the (vertical)
height function h = (πI)

∣
∣
S

and the hyperbolic angle function Θ = g(N, ∂t).
Given any vector field V ∈ X(M), we denote the projection V F of V onto F
by,

V F = (πF )∗(V ) = V + g(V, ∂t)∂t. (2.3)

Since ∂t is globally defined on M, from the last term of (2.3) we see that V F

is always well-defined. In particular, NF = N + Θ∂t, and therefore,
∣
∣NF

∣
∣
2

= g(NF , NF ) = Θ2 − 1. (2.4)

Let us denote by ∇ and ∇ the gradients with respect to the metrics of
M and S, respectively. Then, a simple computation shows that the gradient
of πI on M is given by,

∇πI = −g(∇πI , ∂t)∂t = −∂t,

so that the gradient of h on S is,

∇h = (∇πI)� = −∂�
t = −∂t − ΘN. (2.5)

Thus, from (2.5) we get,

|∇h|2 = Θ2 − 1, (2.6)

where |∇h|2 = gS(∇h,∇h) denotes the norm of the vector field ∇h on S.
At this point we recall that, given a semi-Riemannian manifold (P, g)

and a smooth function φ on P, the weighted manifold Pφ associated to P and
φ is the triple (P, g,dμ = e−φdP ), where dP is the canonical volume element
of P. In this setting, we will consider the so-called Bakry–Émery–Ricci tensor,
introduced by Bakry and Émery in [8] as a suitable extension of the standard
Ricci tensor Ric, which is defined by,

Ricφ = Ric + Hess φ. (2.7)

For a spacelike hypersurface S immersed in a weighted GRW spacetime
M, the φ-divergence operator on S is defined by,

divφ(X) = eφdiv(e−φX),

for any tangent vector field X on S and, given a smooth function u : S → R,
its drifted Laplacian is defined by,

Δφu = divφ(∇u) = Δu − gS(∇u,∇φ). (2.8)

Furthermore, according to Gromov [16], the φ-mean curvature Hφ of S is
defined by,

nHφ = nH − g(∇φ,N), (2.9)

where H denotes the standard mean curvature of S with respect to its future-
pointing Gauss map N.

It follows from a splitting theorem due to Case [9, Theorem 1.2] that if
M is a weighted GRW spacetime endowed with a weight function φ which is
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bounded and such that Ricφ(V, V ) ≥ 0 for any timelike vector field V, then φ
must be constant along R. Motivated by this result, in what follows we will
deal with spatially weighted GRW spacetimes M, which means that the weight
function φ does not depend on the parameter t ∈ I, that is, g(∇φ, ∂t) = 0.
We also observe that we can construct spatially weighted GRW spacetimes
in a natural way taking the standard product of (I,−dt2) with a Riemannian
weighted manifold Fφ and considering the weight function on Mφ̃ = −I ×Fφ

as being φ̃(t, x) = φ(x).

Remark 1. We note that the φ-mean curvature of a slice {t0}×F in a spatially
weighted GRW spacetime is given by,

Hφ(t0) = (log f)′(t0).

Indeed, since ∂t is a timelike normal vector field to the slices {t} × F, from
(2.9) we have that Hφ(t0) = H(t0) = (log f)′(t0).

3. φ-Parabolicity of Spacelike Hypersurfaces

A smooth function u on a weighted manifold Pφ is said to be φ-superharmonic
if Δφu ≤ 0. Taking this into account, the weighted manifold (P, g,dμ =
e−φdP ) is called φ-parabolic if there is no nonconstant, nonnegative,
φ-superharmonic function on P. On the other hand, for any compact sub-
set K ⊂ P, we define the φ-capacity of K as,

capφ(K) = inf
{∫

P

|∇u|2dμ : u ∈ Lip0(P ) and u
∣
∣
K

≡ 1
}

,

where Lip0(P ) is the set of all compactly supported Lipschitz functions on
P. The following statement relates the notion of φ-capacity to the concept of
φ-parabolicity (cf. [14, Proposition 2.1]).

Lemma 1. The weighted manifold (P, g,dμ = e−φdP ) is φ-parabolic if, and
only if, capφ(K) = 0 for any compact set K ⊂ P.

Let us recall that given two Riemannian manifolds (P, g) and (P ′, g′),
a diffeomorphism ψ from P onto P ′ is called a quasi-isometry if there exists
a constant c ≥ 1 such that,

c−1|v|g ≤ |dψ(v)|g′ ≤ c|v|g
for all v ∈ TpP, p ∈ P (cf. [20] for more details). Suppose that we can endow
both P and P ′ with the same weight function φ. We can reason as in Section 5
of [13] to verify that the φ-capacity changes under a quasi-isometry at most
by a constant factor. So, from Lemma 1, we can state the following result.

Lemma 2. Let (P, g) and (P ′, g′) be two Riemannian manifolds endowed with
the same weight function φ. If P and P ′ are quasi-isometric, then P and P ′

are φ-parabolic or not simultaneously.

Given a spacelike hypersurface x : S → M in a GRW spacetime M =
−I ×f F, the following lemma provides sufficient conditions to guarantee that
the hypersurface S and the fiber F are quasi-isometric (cf. [26, Lemma 4.1]).
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Lemma 3. Let x : S → M be a spacelike hypersurface in a GRW spacetime
M = −I ×f F, whose hyperbolic angle function Θ is bounded. If the warping
function f on S satisfies,

(i) supS f(h) < ∞ and
(ii) infS f(h) > 0,

then π = πF ◦ x is a quasi-isometry from S onto F.

We can now present the main result of this section.

Theorem 1. Let S be a complete spacelike hypersurface in a spatially weighted
GRW spacetime Mφ with weight function φ, whose fiber F is complete with
φ-parabolic universal Riemannian covering. If the hyperbolic angle function
Θ of S is bounded and the restriction f(h) on S of the warping function f of
M satisfies,

(i) supS f(h) < ∞ and
(ii) infS f(h) > 0,

then S is φ-parabolic.

The proof of Theorem 1 follows the same steps of [26, Theorem 4.4] (see
also [27, Theorem 1]). For this, we will need a standard result onto covering
spaces (cf. [17] for instance).

Lemma 4. Let ρ : (Ẽ, x̃0) → (E, x0) be a covering space and let h : (W, y0) →
(E, x0) be a continuous map, where W is a path connected and locally path
connected topological space. Then, there exists a lift h̃ : (W, y0) → (Ẽ, x̃0) of
h if, and only if, h∗(π1(W, y0)) ⊂ ρ∗(π1(Ẽ, x̃0)).

Proof of Theorem 1. Using [6, Lemma 3.1], we know that the projection on
the fiber, π : S → F, is a covering map. Moreover, by Lemma 3, we can find
a constant c ≥ 1 such that,

c−1gF (dπ(v),dπ(v)) ≤ gS(v, v) ≤ c gF (dπ(v),dπ(v)), (3.1)

for all v ∈ TpS and p ∈ S.

Let (S̃, gS̃) be the universal Riemannian covering of (S, gS) and denote
by π̃S : S̃ → S the corresponding Riemannian covering map. From Lemma 4
we conclude that there exists a lift h̃ : S̃ → F̃ of the map h = π ◦ π̃S : S̃ → F.
It is easy to check that h̃ is, in fact, a diffeomorphism from S̃ to F̃ . Note that
(3.1) implies

c−1gF̃ (dh̃(ṽ),dh̃(ṽ)) ≤ gS̃(ṽ, ṽ) ≤ c gF̃ (dh̃(ṽ),dh̃(ṽ)),

for any ṽ ∈ Tp̃S̃, p̃ ∈ S̃, which means that h̃ is a quasi-isometry from (S̃, gS̃)
onto (F̃ , gF̃ ).

Finally, let u be a nonnegative φ-superharmonic function on S, and put
ũ = u ◦ π̃S . The function ũ is a nonnegative φ-superharmonic function on
the φ-parabolic Riemannian manifold S̃. Therefore, ũ must be constant and,
consequently, u is also constant. �

As a direct consequence of Theorem 1 we get the following corollaries.
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Corollary 1. Let S be a complete spacelike hypersurface in a spatially weighted
GRW spacetime Mφ with weight function φ and whose fiber F is complete,
simply connected and φ-parabolic. If the hyperbolic angle function Θ of S
is bounded and the warping function on S, f(h), is bounded and it satisfies
infS f(h) > 0, then S is φ-parabolic.

We recall that a GRW is said to be static when its warping function is
constant, which, without loss of generality, can be supposed equal to 1.

Corollary 2. Let S be a complete spacelike hypersurface in a static spatially
weighted GRW spacetime Mφ with weight function φ and whose fiber F is
complete with φ-parabolic universal Riemannian covering. If the hyperbolic
angle function Θ of S is bounded, then S is φ-parabolic.

4. Uniqueness Results

As an application of Theorem 1, we will prove in this section some uniqueness
results concerning spacelike hypersurfaces immersed in a spatially weighted
GRW spacetime. For this, we will also need the following lemma.

Lemma 5. Let S be a spacelike hypersurface immersed in a spatially weighted
GRW spacetime Mφ with weight function φ. Then,

Δφh = −(log f)′(h)(n + |∇h|2) − nΘHφ, (4.1)
ΔφF(h) = −n(f ′(h) + f(h)ΘHφ), (4.2)

where F(t) =
∫ t

t0
f(s)ds, and

Δφ(f(h)Θ) = nf(h)g(∇Hφ, ∂t) + nf ′(h)Hφ + f(h)Θ|A|2
+ f(h)ΘHess φ(N,N)

+ f(h)Θ
(

RicF (NF , NF ) − (n − 1)(log f)′′(h)|∇h|2) , (4.3)

where RicF stands for the Ricci curvature tensor of the fiber F.

Proof. Equations (4.1) and (4.2) correspond to [10, Lemma 1], and (4.3)
corresponds to [4, Lemma 1]. However, until the moment reference [4] is not
yet published, so for the sake of completeness we present it here a proof
of (4.3).

In [5, Corollary 8.2] it is proven that

Δ(f(h)Θ) = nf(h)g(∇H, ∂t) + nf ′(h)H + f(h)Θ|A|2
+ f(h)Θ

(

RicF (NF , NF ) − (n − 1)(log f)′′(h)|∇h|2) . (4.4)

Taking into account (2.9), it follows that,

nf(h)g(∇H, ∂t) = nf(h)g(∇Hφ, ∂t) + f(h)∂�
t g(∇φ,N).

Moreover, from a straightforward computation we get,

∂�
t (g

(∇φ,N)
)

= −f ′

f
(h)g(∇φ,N) + ΘHess φ(N,N) − g(∇φ,A∂�

t ),
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and ∇(f(h)Θ) = −f(h)A∂�
t . So (4.4) can be written as,

Δ(f(h)Θ) = nf(h)g(∇Hφ, ∂t) − f ′(h)g(∇φ,N) + f(h)ΘHess φ(N,N)

+ g(∇φ,∇(f(h)Θ)) + nf ′(h)H + f(h)Θ|A|2
+ f(h)Θ

(

RicF (NF , NF ) − (n − 1)(log f)′′(h)|∇h|2) . (4.5)

Finally, (4.3) follows from (4.5) and (2.8). �

We can now prove our first uniqueness result. A spacelike hypersurface
is called φ-maximal if its φ-mean curvature Hφ is identically zero. A slab
[t1, t2] × F = {(t, q) ∈ M : t1 ≤ t ≤ t2} of a GRW spacetime M is called a
timelike bounded region.

Theorem 2. Let Mφ be a spatially weighted GRW spacetime whose fiber F
is complete with φ-parabolic universal Riemannian covering, and such that
the warping function f is monotone. The only φ-maximal complete spacelike
hypersurfaces contained in a timelike bounded region of M and with bounded
hyperbolic angle function Θ are the slices {t0} × F, where t0 ∈ I is such that
f ′(t0) = 0.

Proof. Let S be such a spacelike hypersurface. From Lemma 5, we obtain,

ΔφF(h) = −nf ′(h).

Consequently, the monotonicity of f implies that ΔφF(h) is globally either
nonpositive or nonnegative signed. Since S is contained in a timelike bounded
region of M and the warping function f is monotone, the function F(h) is
clearly bounded on S. From Theorem 1 we know that S is φ-parabolic, so
F(h) is constant in S and, hence, h must also be constant in S. �

In what follow, we will assume that the ambient space obeys the so-
called null convergence condition (NCC). We recall that a GRW spacetime
M satisfies NCC if,

RicF ≥ (n − 1)f2(log f)′′gF , (4.6)

which is equivalent to the Ricci curvature of M being nonnegative on null or
lightlike directions (cf. [23]). In our next result we will also suppose that the
weight function φ is convex (that is, Hess φ ≥ 0). For a throughout discussion
concerning convex functions on Riemannian manifolds, we refer the reader
to [31, Chapter 3].

Theorem 3. Let Mφ be a spatially weighted GRW spacetime satisfying (4.6),
with convex weight function φ and whose fiber F is complete with φ-parabolic
universal Riemannian covering. Let S be a complete φ-maximal spacelike hy-
persurface immersed in M, with bounded hyperbolic angle function Θ and
such that the restriction f(h) on S of the warping function f of M satisfies,

(i) sup f(h) < ∞ and
(ii) inf f(h) > 0.

Then S is totally geodesic. In addition, if the inequality (4.6) is strict for all
non-zero vector fields on F or φ is strictly convex on F, then S is a slice
{t0} × F, where t0 ∈ I is such that f ′(t0) = 0.
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Proof. From Lemma 5, we have that the drifted Laplacian of the bounded
function fΘ is given by,

Δφ(f(h)Θ) = f(h)Θ|A|2 + f(h)ΘHess φ(N,N)

+ f(h)Θ
(

RicF (NF , NF ) − (n − 1)(log f)′′(h)|∇h|2) .(4.7)

Since φ is convex and we are assuming that the null convergence condition
(4.6) holds, it follows that Δφ(f(h)Θ) ≤ 0. Theorem 1 assures that S is φ-
parabolic, so f(h)Θ must be constant. Therefore, returning to (4.7), we infer
that |A| ≡ 0, that is, S is totally geodesic,

Hessφ(N,N) = HessF φ(NF , NF ) = 0, (4.8)

and

RicF (NF , NF ) − (n − 1)(log f)′′(h)|∇h|2 = 0.

Consequently, if the inequality (4.6) is strict, or if φ is strictly convex on F,
then (4.7) also gives that

∣
∣NF

∣
∣ = |∇h| = 0 on S, that is, S is a slice. �

We recall that the Gaussian space G
n corresponds to the Euclidean

space R
n endowed with the Gaussian probability density e−φ(x) = (2π)− n

2

e− |x|2
2 . From Corollary 3 of [18] we have that G

n has finite φ-volume. Con-
sequently, taking into account Remark 3.8 of [19], we conclude that G

n is
φ-parabolic. On the other hand, it is not difficult to verify that the weight
function φ of Gn is strictly convex. Consequently, from Theorem 3 we get,

Corollary 3. The only complete φ-maximal spacelike hypersurfaces of −R ×
G

n having bounded hyperbolic angle function, are the spacelike hyperplanes
{t} × G

n.

Now, considering as ambient space a static GRW spacetime, we obtain
the following result,

Theorem 4. Let Mφ be a static spatially weighted GRW spacetime, whose
fiber F is complete with φ-parabolic universal Riemannian covering and such
that its Bakry–Émery–Ricci tensor RicF

φ is nonnegative. Let S be a complete
spacelike hypersurface immersed in M with constant φ-mean curvature Hφ.
If the hyperbolic angle function Θ of S is bounded, then S is totally geodesic.
In addition, if RicF

φ is definite positive at some point of S, then S is a slice
{t} × F.

Proof. From Lemma 5, (2.7), and (4.8) we get that,

ΔφΘ = (RicF
φ (NF , NF ) + |A|2)Θ. (4.9)

Consequently, since we are supposing that RicF
φ is nonnegative and that Θ

is negative and bounded on S, we can apply Corollary 2 to conclude that
Θ is constant on S. Thus, returning to (4.9) we get that |A| ≡ 0, that is,
S is totally geodesic. Moreover, if RicF

φ is definite positive at some p ∈ F,
considering once more Eq. (4.9) and taking into account relation (2.4), we
conclude that Θ ≡ −1 on S, which means that S is a slice of M. �
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We recall that Xin [33] and Aiyama [1] proved simultaneously and in-
dependently that the only spacelike hypersurfaces of the Lorentz–Minkowski
space L

n+1 = −R × R
n, with constant mean curvature and having bounded

hyperbolic angle function, are the spacelike hyperplanes. Hence, from Theo-
rem 4 we get the following extension of this Xin–Aiyama result.

Corollary 4. The only complete spacelike hypersurfaces of −R × G
n, with

constant φ-mean curvature and having bounded hyperbolic angle function,
are the spacelike hyperplanes {t} × G

n.

Proceeding, we will use a Bochner’s formula due to Wei and Wylie [32]
to obtain the following theorem.

Theorem 5. Let Mφ be a static spatially weighted GRW spacetime endowed
with a convex weight function φ and whose fiber F is complete, with nonneg-
ative sectional curvature, and such that its universal Riemannian covering is
φ-parabolic. Let S be a complete spacelike hypersurface lying in a semi-space
of M and with constant φ-mean curvature Hφ. If the hyperbolic angle function
Θ is bounded, then S is a slice {t} × F.

Proof. Since we are supposing that F has nonnegative sectional curvature, it
follows from inequalities (3.3) and (3.4) of [12] that,

Ric(X,X) ≥ nHgS(AX,X) + |AX|2. (4.10)

On the other hand, taking into account that,

Hess φ(X,X) = Hess φ(X,X) − g(∇φ,N)gS(AX,X),

from the convexity of the weight function φ we get,

Hess φ(X,X) ≥ −g(∇φ,N)gS(AX,X). (4.11)

From (4.10) and (4.11) we get the following lower bound for Ricφ

Ricφ(X,X) ≥ nHφgS(AX,X) + |AX|2. (4.12)

Inequality (4.12) provides us,

Ricφ(∇h,∇h) ≥ nHφgS(A(∇h),∇h) + |A(∇h)|2. (4.13)

Since Hφ is constant, we have,

∇Δφh = −nHφA(∇h). (4.14)

On the other hand, from Bochner’s formula (cf. [32]),
1
2
Δφ|∇h|2 = |Hess h|2 + gS(∇h,∇Δφh) + Ricφ(∇h,∇h). (4.15)

Consequently, from (2.6), (4.13)–(4.15) we get,
1
2
ΔφΘ2 =

1
2
Δφ|∇h|2 ≥ |Hess h|2 ≥ 0. (4.16)

Thus, from Corollary 2 we have that Θ is constant and, returning to
(4.16), we get |Hess h|2 = 0 in S. Then, since n|Hess h|2 ≥ (Δh)2, we have
that h is harmonic. So, since Δh = −nHΘ, we also get that H = 0 in S and
from (4.10) we have that S has nonnegative Ricci curvature. Therefore, since
we are supposing that S lies in a semi-space of M, we can apply the strong
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Liouville property due to Yau in [34] (see also [21, Theorem 4.8]) to conclude
that h must be constant and, hence, S is a slice of M. �

Extending the ideas of [2], we now consider spatially weighted steady
state type spacetimes, that is, GRW spacetimes of the type −R ×et F whose
fiber F is endowed with a weight function φ. In this setting, our next result
is an extension of Theorem 8 of [2].

Theorem 6. Let Mφ be a spatially weighted steady state type spacetime, whose
fiber F is complete, with nonnegative sectional curvature, and let S be a com-
plete spacelike hypersurface which lies in a timelike bounded region of M.
Suppose that |∇φ| is bounded on S. If the φ-mean curvature Hφ of S is
constant and the hyperbolic angle function Θ is bounded, then Hφ = 1. In
addition, if the universal Riemannian covering of F is φ-parabolic, then S is
a slice {t} × F.

Proof. We claim that the mean curvature H of S is bounded. Indeed, since
g(∇φ, ∂t) = 0, from (2.9) we have that,

n|H| ≤ n|Hφ| + |g(∇φ,N)|
= n|Hφ| + |g(∇φ,NF )|. (4.17)

Thus, from (2.4) and (4.17) we get,

n|H| ≤ n|Hφ| + |∇φ|(Θ2 − 1). (4.18)

Consequently, since Hφ is constant and ∇φ and Θ are supposed to be bounded
on Σn, it follows from (4.18) that H is also bounded on S.

On the other hand, from inequality (16) of [2] we have that the Ricci
curvature of S satisfies,

Ric(X,X) ≥ n − 1 − n2H2

4
.

So, we conclude that the Ricci curvature of S is bounded from below.
Thus, we can apply the generalized maximum principle of Omori [24]

and Yau [34] to guarantee that there exists a sequence {pk} in S such that,

lim
k

h(pk) = sup
S

h, lim
k

|∇h(pk)| = 0 and lim sup
k

Δh(pk) ≤ 0.

But, from (2.6) and (2.8), we also get that,

lim
k

Θ(pk) = −1 and lim sup
k

Δφh(pk) ≤ 0.

Hence, taking into account formula (4.1), we can reason in a similar way to
the proof of Theorem 8 of [2] to obtain that Hφ = 1. Furthermore, from
formula (4.2) we also have that,

Δφeh = −neh(1 + Θ) ≥ 0.

Therefore, assuming that the universal Riemannian covering of F is
φ-parabolic, we can apply Theorem 1 to conclude that h is constant in S. �

Our next result extends Theorem 5.3 of [11].
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Theorem 7. Let Mφ be a spatially weighted steady state type spacetime whose
fiber F is complete, with φ-parabolic universal Riemannian covering, and let
S be a complete spacelike hypersurface which lies in a timelike bounded region
of M, with 1 ≤ Hφ ≤ α for a certain α ≥ 1. If the hyperbolic angle function
Θ of S satisfies −Θ ≤ Hφ, then S is a slice {t} × F.

Proof. From formula (4.1) we get,

Δφe−h = e−h
(|∇h|2 − Δφh

)

≤ ne−h
(|∇h|2 + 1 + HφΘ

)

= ne−hΘ (Θ + Hφ) . (4.19)

Hence, our hypothesis on Θ guarantees that the function e−h is a φ-superhar-
monic positive function on S. Therefore, we can apply once more Theorem 1
to get that h is constant on S. �

5. Calabi–Bernstein Type Results

Let Ω ⊆ F be a connected domain and let u ∈ C∞(Ω) be a smooth function.
Then, S(u) will denote the vertical graph over Ω determined by u, that is,

S(u) = {(u(x), x) : x ∈ Ω} ⊂ M = −I ×f F.

The graph is said to be entire if Ω = F. The metric induced on Ω from the
Lorentzian metric of the ambient space via S(u) is,

gS(u) = −du2 + f2(u)gF . (5.1)

It can be easily seen that a graph S(u) is a spacelike hypersurface if, and
only if, |Du|2F < f2(u), Du being the gradient of u in F and |Du|F its norm,
both with respect to the metric gF . It is well known (cf. [6, Lemma 3.1])
that in the case where F is a simply connected manifold, every complete
spacelike hypersurface S immersed in M such that the warping function f is
bounded on S is an entire spacelike graph over F. In particular, this happens
for complete spacelike hypersurfaces contained in a timelike bounded region
of M. It is interesting to observe that, in contrast to the case of graphs into a
Riemannian space, an entire spacelike graph S(u) in a Lorentzian spacetime
is not necessarily complete, in the sense that the induced Riemannian metric
is not necessarily complete on F. However, it can be proved that if F is
complete and |Du|2F ≤ f2(u) − c for certain positive constant c > 0, then
S(u) is complete. Although a particular case of this claim is proven in [3,
Theorem 4.1], and the general proof is given in ([4, Proposition 9]), we will
expose it here for the sake of completeness.

Proposition 1. Let F be a complete Riemannian manifold and S(u) an entire
spacelike vertical graph in M = −I ×f F. If,

|Du|2F ≤ f2(u) − c

for certain positive constant c > 0, then Σn(u) is complete.
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Proof. From (5.1), the Cauchy–Schwarz inequality and the assumptions of
the proposition we get,

gS(u)(X,X) = −gF (Du,X)2 + f2(u)gF (X,X) ≥ (

f2(u) − |Du|2F
)

gF (X,X)
≥ cgF (X,X),

for every X ∈ X(S(u)). This implies that L ≥ √
cLF , where L and LF denote

the length of a curve on S(u) with respect to the Riemannian metrics gS(u)

and gF , respectively. As a consequence, as F is complete by assumption, the
induced metric on S(u) from the metric of M is also complete. �

The future-pointing Gauss map of a spacelike vertical graph S(u) over
Ω is given by the vector field,

N(x) =
f(u(x))

√

f2(u(x)) − |Du(x)|2F

(

∂t|(u(x),x) +
1

f2(u(x))
Du(x)

)

, x ∈ Ω.

(5.2)

Moreover, the shape operator A of S(u) with respect to its orientation (5.2)
is given by,

AX = − 1
f(u)

√

f2(u) − |Du|2F
DXDu − f ′(u)

√

f2(u) − |Du|2F
X

+

(

−gF (DXDu,Du)

f(u) (f2(u) − |Du|2F )3/2
+

f ′(u)gF (Du,X)

(f2(u) − |Du|2F )3/2

)

Du, (5.3)

for any tangent vector field X tangent to Ω. Consequently, if S(u) is a space-
like vertical graph over a domain Ω of the fiber F of a spatially weighted
GRW spacetime M endowed with a weight function φ, it is not difficult to
verify from (2.9) and (5.3) that the φ-mean curvature function Hφ(u) of S(u)
is given by,

nHφ(u) = −divφ

(

Du

f(u)
√

f(u)2 − |Du|2F

)

− f ′(u)
√

f(u)2 − |Du|2F

(

n+
|Du|2F
f(u)2

)

.

The differential equation Hφ(u) = 0 with the constraint |Du|F < f(u) is
called the φ-maximal spacelike hypersurface equation in M, and its solutions
provide φ-maximal spacelike graphs in M.

In [7] An et al. obtained a Calabi–Bernstein type result for −R × G
n

showing that the graph S(u) of a function u(x) = t over G
n, with |Du|G

bounded away from 1, is φ-maximal if and only if u is constant. Now, we
present an extension of this result.

Theorem 8. Let Mφ be a spatially weighted GRW spacetime, whose fiber F
is complete with φ-parabolic universal Riemannian covering, and such that
the warping function f is monotone. The only entire bounded solutions of the



84 Page 14 of 17 A. L. Albujer et al. MJOM

following modified φ-maximal spacelike hypersurface equation,

(E)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

divφ

(

Du

f(u)
√

f(u)2 − |Du|2F

)

= − f ′(u)
√

f(u)2 − |Du|2F

(

n +
|Du|2F
f(u)2

)

|Du|F ≤ αf(u),

where 0 < α < 1 is constant, are the constant functions u = t0, with f ′(t0) =
0.

Proof. We observe that the constraint on |Du|F assures the boundedness of
the hyperbolic angle function Θ(u) of S(u). Indeed, from (2.4), (2.6) and (5.2)
we obtain that,

|∇h|2 =
|Du|2F

f2(u) − |Du|2F
. (5.4)

Hence, using (2.6) and (5.4) we see that |Du|F ≤ αf(u) implies Θ(u) ≥
−1√

1 − α2
.

Moreover, since we are looking for bounded solutions for (E), taking
c = (1 − α2) infS(u) f2(u) we can apply Proposition 1 to see that such a
solution must be complete. Therefore, the result follows from Theorem 2. �

It is not difficult to see that we can reason as in the proof of the previous
result to obtain non-parametric versions of all others theorems of Sect. 4. For
instance, we have the following non-parametric version of Theorem 7.

Theorem 9. Let Mφ be a spatially weighted steady state type spacetime, whose
fiber F is complete with φ-parabolic universal Riemannian covering. The only
entire bounded solutions of the equation,

(E′)

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

divφ

(

Du

eu
√

e2u − |Du|2F

)

=−nHφ(u)− eu

√

e2u − |Du|2F

(

n+
|Du|2F
e2u

)

1 ≤ Hφ(u) ≤ α

|Du|F ≤
√

1 − 1
H2

φ(u)
eu

where α ≥ 1 is a constant, are the constant functions u = t0.

Proof. Let us observe first that, under the assumptions of the theorem, the
solutions of (E′) determine complete entire graphs S(u). In fact, from the
last inequality of (E′) we easily obtain that

e2u − |Du|2F ≥ c = e2 infS(u) u sup
S(u)

1
H2

φ(u)
> 0,

and the completeness of S(u) follows again from Proposition 1.
Therefore, using (5.4) and the last inequality of (E′) we can easily verify

that the hyperbolic angle function Θ(u) of S(u) satisfies −Θ(u) ≤ Hφ(u) and,
hence, the result follows from Theorem 7. �
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Remark 2. As it was observed by the referee of this paper, an important prop-
erty of Robertson–Walker spacetimes is that they are locally conformally flat,
a condition that does not hold in the generalized Robertson–Walker space-
times. Hence, a nice generalization of Robertson–Walker spacetimes could be,
instead of weakening the assumption on the geometry of the fiber, a more
general assumption on the warped product structure, and to consider locally
conformally flat multiply warped products. Therefore, it remains as an inter-
esting open problem to obtain analogous versions of our previous results for
this other context.
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