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Abstract. The coefficient of the chromatic polynomial counts the num-
ber of partitions of the vertex set of a simple and finite graph G into
k independent vertex sets, equivalently, it gives the number of proper
colorings of G with exactly k colors subject to some constraints. In this
work, we study this invariant, we establish new formulas in this context
for some families of graphs and we treat some specific cases as Thorn
graphs. Consequently, we derive identities for the classical Stirling num-
bers of the second kind, besides that, this gives rise to new explicit
formulae for the r-Stirling numbers of the second kind.
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1. Introduction

Several problems in graph theory have combinatorial interpretations involv-
ing classical sequences in enumerative combinatorics, namely the Stirling
numbers, the Fibonacci numbers, the Bell numbers, and their generaliza-
tions, see for instance [2,10,13,14,17]. Also, important identities and explicit
formulas related to some classical sequences are established using elements
of graph theory, [3,16]. In this work, we present a particular focus on the
Stirling and the r-Stirling numbers of the second kind.

For n, k non negative integers such that k ≤ n, the Stirling number of
the second kind is the number of set partitions of an n-element set into k non-
empty subsets, denoted by S(n, k), with S(n, 1) = 1 for n ≥ 1, S(n, n) = 1,
S(n, n − 1) =

(
n
2

)
and S(n, 2) = 2n−1 − 1.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-018-1130-z&domain=pdf


87 Page 2 of 12 H. Belbachir et al. MJOM

The Stirling numbers of the second kind satisfy the triangular recurrence
relation, for n, k ≥ 1

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).

Many research papers were devoted to the study of these numbers, their
restrictions and their properties, such as, generating functions, recurrence
relations and explicit formulas, see for instance [1,8,19] and references there
in.

The ordinary generating function of the Stirling numbers of the second
kind is given by

∑

n≥k

S(n, k)xn =
xk

(1 − x)(1 − 2x) · · · (1 − kx)
.

The generalized Stirling numbers of the second kind have been first
introduced by Carlitz in 1978 and studied by Broder in 1984, who gave in [6]
combinatorial interpretations and several algebraic properties.

The r-Stirling numbers of the second kind count the restricted set par-
titions of an n-element set into k non-empty blocks such that the r first
elements belong to distinct blocks. We use Sr(n, k) to denote these numbers.

Some particular values are

Sr(n, k) =

⎧
⎨

⎩

0 for n < r,
δk,r for n = r,
rn−r for n ≥ r,

where δk,r is the Kronecker delta.
For n ≥ k > r ≥ 0, we have the triangular recurrence relation

Sr(n, k) = Sr(n − 1, k − 1) + kSr(n − 1, k).

For r = 1 and r = 0, these numbers coincide with the classical Stirling
numbers of the second kind.
The ordinary generating function of the r-Stirling numbers of the second kind
is given by

∑

n

Sr(n, k)zn =
zk

(1 − rz)(1 − (r + 1)z) · · · (1 − kz)
.

Now, we give definitions of concepts in graph theory that we will need later.
Let G = (V,E) be a simple and finite graph of vertex set V = V (G)

and edge set E = E(G) with |V (G)| = n and |E(G)| = m. A stable partition
(or independant partition) of V (G) is a partition of V (G) into independent
vertex subsets (or stables), where a subset of V (G) is called a stable if no two
vertices in the subset are adjacent. A proper coloring of G is an assignment
of colors to V (G) so that each two adjacent vertices receive different colors.
A proper λ-coloring of G is a proper coloring using at most λ colors. The
chromatic number of the graph G denoted by χ(G) is the smallest number λ
such that G admits a λ-coloring.

Counting the number of ways to color a simple and finite graph G is of
interest, besides the fact that it constitutes an important area in graph theory,
it gives also attractive questions in enumerative combinatorics, in particular,
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when the permutations of the colors are disregarded. Furthermore, when the
colorings are restricted in number of colors, we are in front of counting the
number of stable partitions of the vertex set of G into a given number of
stables. The sequence that enumerates these stable partitions appeared in
the literature with different notations and under several denominations, it
is considered by Goldman et al. [12] and referred as chromatic vector of
G, we find it also under the name chromatic spectrum by Voloshin [20].
Also, it should be noted that in 1982, Prodinger and Tichy defined in [18]
the Fibonacci number of a graph G to be the total number of these stable
partitions including the empty set.

Throughout this paper, we shall use the notation S(G, k) to denote the
sequence that counts the number of stable partitions of V (G) into k blocks. It
has to be noted that it generalizes the classical Stirling numbers of the second
kind, since for an empty graph En (graph without edges) S(En, k) = S(n, k),
that’s why it was referred as the graphical Stirling number or Stirling numbers
for graphs by [10,14], where they evaluated the Stirling numbers for some
well-known graphs.

Indeed, S(G, k) = 0 for 0 ≤ k ≤ χ(G)−1, S(G,n) = 1 and S(G,n−1) =(
n
2

) − m.
The object that encodes the number of λ-colorings is called the Chro-

matic polynomial, it has been introduced in 1912 by Birkhoff [4] in an attempt
to solve the four-color problem. Let P (G,λ) be this polynomial, S(G, k) for
χ(G) ≤ k ≤ n constitutes the coefficient of the falling factorial (λ)k =
λ(λ − 1)(λ − 2) · · · (λ − k + 1) in the chromatic polynomial’s formula, de-
scribed as

P (G,λ) =
n∑

k=χ(G)

S(G, k)(λ)k. (1)

Maamra and Mihoubi in [15,16] have used the coefficients of the chro-
matic polynomial to derive some applications on Stirling numbers of the
second kind.

In the present paper, a special focus on the coefficient S(G, k) is given. In
the next section, we start by some preliminary results on the Stirling numbers
for some special graphs. In Sect. 3, we extend the study to a complementary
class of graphs and we establish identities and explicit formulas for the Stirling
numbers and the r-Stirling numbers of the second kind.

2. Preliminary Results

In combinatorics, references were made to treat the sequence that enumerates
the number of proper colorings subject to some constraints for some well
known graphs [10,11,13,14,21]. For this, the deletion–contraction principle
was a valuable tool and had useful applications in that context. It was first
used to compute the chromatic polynomial, its application remains also valid
in the case of counting the number of partitions, this follows from the fact
that coloring the vertex set of a graph amounts to partition their vertices
into stables.
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Figure 1. Deletion–contraction procedure

Theorem 2.1. [14] Let G be a simple graph of order n, e ∈ E(G) and 0 ≤
k ≤ n − 1, then

S(G, k) = S(G − e, k) − S(G/e, k),

where G − e and G/e are the transformation graphs obtained by deleting and
contracting edge e from G, respectively.

See the illustration in Figure 1.
We must note that the graph G/e may not be a simple graph, but

because of the fact that the contraction of distinct vertices will not create
any loops, we can ignore multiple edges between vertices as this does not
affect the calculation of the number of partitions (as two adjacent vertices
remain adjacent regardless of the number of edges between them).

In the sequel, let us show some former formulas to calculate S(G, k) for
some well known graphs. For basic terminology in graph theory and some
descriptions of special graph classes, see Brandstadt et al. [5].

For the complete graph (the graph in which all the vertices are pairwise
adjacent), denoted by Kn, we have one coloring, subject to the above con-
straints when k = n and no possible colorings, otherwise. Thus, the chromatic
polynomial P (Kn, k) = (k)n.

Let Pn, Cn, Tn and Sn be a path, a cycle, a tree and a star of order n,
where a path of order n, Pn is an alternating sequence of vertices and edges
beginning and ending with vertices such that the vertices are all distinct, a
cycle is a closed path, a tree is a graph with no cycle and a star of order n is a
tree with one central vertex and n−1 leaves (n−1 pendant vertices adjacent
to the central one) and it is represented by one isolated vertex when n = 1.

Counting the number of stable partitions for paths, cycles and trees
has also been considered by several authors with different interpretations
[10,11,13,14,18].

For Pn, Sn and Tn of order n, the number of partitions into k stable sets
is expressed in terms of the Stirling number of the second kind, for 1 ≤ k ≤ n,

S(Pn, k) = S(Sn, k) = S(Tn, k) = S(n − 1, k − 1). (2)
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This has been generalized to the m-trees denoted by T
(m)
n (where the m-tree

is a graph defined by construction, starting with an (m + 1)-vertex complete
graph and then repeatedly adding vertices in such a way that each added
vertex has exactly m neighbors), as

S(Tm
n , k) = S(n − m, k − m) for m ≤ k ≤ n and 0 otherwise. (3)

For a cycle of order n, Cn, it is defined by the following alternating sum

S(Cn, k) =
n−1∑

j=k−1

(−1)n−1−jS(j, k − 1), for n ≥ 3 and 2 ≤ k ≤ n. (4)

3. Counting the Number of Stable Partitions for Other
Families of Graphs

Inspired by the previously cited works and exploiting the works carried out
in this context, we propose in this section to calculate the number of stable
partitions for other families of graphs. In what follows, inductive proofs using
the deletion–contraction principle, bijective proofs and generating functions
are used to demonstrate the results. As consequences, we give new identities
concerning the Stirling number of the second kind. Besides that, important
explicit formulas in terms of the generalized r-Stirling numbers are estab-
lished.
We give some notations and definitions.

Given a simple and finite graph of order n, Gn. For any fixed p ≥ 1,
consider the super-graph obtained by joining a path of order p, Pp to Gn by a
bridge as illustrated in Fig. 2 and let us denote the resultant graph by Gn,p.
If Gn is a cycle of order n, Cn, then the resultant graph is called a tadpole.

The number of stable partitions of Gn,p can be expressed in terms of
the number of stable partitions of the disjoint unions of paths and the initial
graph Gn, where the disjoint union of two simple and finite graphs H1 and
H2 denoted by H1 ∪H2, is the graph H whose vertex set is V (H) = V (H1)∪
V (H2) and whose edge set is E(H) = E(H1) ∪ E(H2).

Theorem 3.1. For 1 ≤ k ≤ n and p ≥ 1 we have,

S(Gn,p, k) =
p∑

i=0

(−1)iS(Gn ∪ Pp−i, k),

where P0 = ∅, thus Gn ∪ P0 = Gn.

Proof. The proof proceeds by induction on p using the deletion–contraction
principle. The recurrence is valid for the trivial case (p = 1) with the con-
vention that Gn ∪ P0 = Gn and P1 = E1 (one isolated vertex) and can be
verified using Theorem 2.1. Now, suppose the identity true for Gn,p and let
us establish it for Gn,p+1. From Theorem 2.1, we have,

S(Gn,p+1, k) = S(Gn ∪ Pp+1, k) − S(Gn,p, k),
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Figure 2. Representation of Gn,p

then, using the induction hypothesis, we get,

S(Gn,p+1, k) = S(Gn ∪ Pp+1, k) −
p∑

i=0

(−1)iS(Gn ∪ Pp−i, k),

we set j = i + 1 and we obtain,

S(Gn,p+1, k) =
p+1∑

j=1

(−1)jS(Gn ∪ Pp−j+1, k) + S(Gn ∪ Pp+1, k), (5)

which gives the result. �

Lemma 3.2. [13] Let H1 ∪ H2 be the disjoint union of H1 and H2. Then we
have,

S(H1 ∪ H2, k) =
k∑

i=1

i∑

j=0

S(H1, i)S(H2, k − j)
(

i

i − j

)(
k − j

i − j

)
(i − j)!. (6)

As a corollary, an identity on the classical Stirling numbers of the second
kind evaluated with three summations can be derived.

Corollary 3.3. For n ≥ 4, 0 ≤ k ≤ n and 1 ≤ l < n, we have

S(n, k) =
∑

i,s,t

(−1)iS(l, s − 1)S(n − l − i − 1, k − t)
(

s

t

)(
k + 1 − t

s − t

)
(s − t)!,

where i, s, t satisfy 0 ≤ i < n − l, 1 ≤ s ≤ min(k, l) + 1 and 0 ≤ t ≤ s.

Proof. Let Pn be a path of order n and Pl a subpath of Pn of order l, 1 ≤
l < n. Therefore, Pn can be written as Gl,n−l for 1 ≤ l < n.
Applying Theorem 3.1 we obtain for 1 ≤ k ≤ n, n ≥ 2 and 1 ≤ l < n,

S(Pn, k) = S(Gl,n−l, k) =
n−l∑

i=0

(−1)iS(Pl ∪ Pn−l−i, k),

we use Lemma 3.2 (the indices i and j in relation (6) are changed to s and
t, respectively), we get, for 0 ≤ i ≤ n − l, 1 ≤ s ≤ k and 0 ≤ t ≤ s,

S(Pn, k) =
∑

i,s,t

(−1)iS(Pl, s)S(Pn−l, k − t)
(

s

s − t

)(
k − t

s − t

)
(s − t)!,
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Figure 3. Some examples of generalized thorn graphs

we replace S(Pn, k) by its value given in (2), we obtain, for 0 ≤ i < n − l,
1 ≤ s ≤ k and 0 ≤ t ≤ s

S(n − 1, k − 1) =
∑

i,s,t

(−1)iS(l − 1, s − 1)S(n − l − i − 1, k − t − 1)

×
(

s

s − t

)(
k − t

s − t

)
(s − t)!,

by changing of variables k and n, we get, for n ≥ 2, 1 ≤ k ≤ n and 1 ≤ l < n,

S(n, k) =
∑

i,s,t

(−1)iS(l − 1, s− 1)S(n− l − i, k − t)

(
s

s− t

)(
k − t + 1

s− t

)

(s− t)!,

where i, s, t satisfy 0 ≤ i < n − l, 1 ≤ s ≤ min(k, l) + 1 and 0 ≤ t ≤ s. �

More generally, let us consider a graph G∗ = G(t1, t2, . . . , tn) of Gn

which is obtained by attaching ti (≥ 0) new vertices of degree 1 to a vertex
vi of Gn, i = 1, . . . , n. This definition refers to a class of graphs known in the
literature as Thorn graphs. For Gn being a tree G∗ = T ∗ is called a thorn
tree.

Moreover, we define a generalized thorn graph G(t) to be a graph ob-
tained from G by attaching new trees Ti of order ti ≥ 0 to a given vertex vi

of Gn, i = 1, . . . , n such that t =
∑n

i=1 ti. Then, if all Ti’s are single vertices
then G(t) is a thorn graph. See for instance some generalized thorn graphs in
Fig. 3.

Theorem 3.4. For t ≥ 1 and 1 ≤ k ≤ n + t, we have,

S(G(t), k) =
k−1∑

i=0

S(Gn, k − i)
∑

j1+···+ji+1=t−i

(k − 1)j1 · · · (k − i − 1)ji+1 .

Proof. Recall that G(t) is a generalized thorn graph defined by attaching
some trees to some vertices of a simple and finite graph of order n, Gn. Thus
|G(t)| = n + t. To simplify, we adopt the convention: βt,k = S(G(t), k) and
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β0,k = S(G, k). First, we prove using a bijective combinatorial argument the
following recurrence relation

βt+1,k = (k − 1)βt,k + βt,k−1. (7)

As was agreed at the beginning of the proof, we have βt+1,k = S(G(t+1), k).
Motivated by the connection to colorings, if we take v the vertex of the end
of any attached tree Ti in G(t+1) then we have two possible situations. Either
the end vertex has one color already used by other vertices or it has its own
color, in this case there is βt,k−1 colorings and it turns out that there is
(k−1)βt,k possible colorings in the former case, since v has all possible colors
except one used by its neighbor. Hence,

βt+1,k = (k − 1)βt,k + βt,k−1.

Now, we use the induction over t to prove the following recurrence

βt,k = (k − 1)tβ0,k +
t−1∑

j1=0

(k − 1)j1βt−1−j1,k−1. (8)

It is easy to verify using relation (7) for the trivial case (t = 1) that the
identity (8) is true. By relation (7) and the induction hypothesis we have

βt+1,k = (k − 1)t+1β0,k +
t−1∑

j1=0

(k − 1)j1+1βt−1−j1,k−1 + βt,k−1, (9)

we set j′
1 = j1 + 1 and we get,

βt+1,k = (k − 1)t+1β0,k +
t∑

j′
1=1

(k − 1)j′
1βt−j′

1,k−1, (10)

thus the Relation (8) is true for t ≥ 1. Also, we have,

βt−1−j1,k−1 = (k − 2)t−1−j1β0,k−1 +
t−1−j1−1∑

j1=0

(k − 1)j2βt−2−j1−j2,k−2, (11)

hence, using the same approach as in (8), we establish by induction over t,

βt,k = (k − 1)tβ0,k + β0,k−1

∑

j1+j2=t−1

(k − 1)j1(k − 2)j2

+
∑

j1,j2/j1+j2≤t−2

(k − 1)j1+j2βt−2−j1−j2,k−2.

By developing the sum in the right hand side with the same way and applying
the same inductive procedure, we get the result, for i ≥ 1,

βt,k =
k−1∑

i=0

β0,k−i

∑

j1+j2+···+ji+1=t−i

(k − 1)j1 · · · (k − i − 1)ji+1 .

�
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Paw, tadpole, subdivided star and caterpillar graphs are particular cases
of the generalized thorn graphs G(t). See definitions of these graph classes in
Brandstadt et al. [5].

For Gn = Sn (a star) and all Ti’s are paths, we get subdivisions of star
graphs.

For Gn = Cn (a cycle), i = 1 and T1 is a path, we obtain a tadpole
graph, where a tadpole graph is the graph obtained by joining a path to a
cycle with a bridge.

For G(t) = G∗ a thorn graph and Gn a path of length n, we get a
caterpillar, where a caterpillar is a tree with the property that the removal
of its endpoints leaves a path.

For instance, we propose to count the number of stable partitions into
k stable sets for some graphs cited above.
From Theorem 3.4 and Relation (4), the number of stable partitions for a
tadpole graph Cn,p constructed with a cycle of order n ≥ 3 joined to a path
of order t, is given by

k−1∑

i=0

n−1∑

j=k−i−1

(−1)n−1−jS(j, k − i − 1)
∑

j1+···+ji+1=t−i

(k − 1)j1 · · · (k − i − 1)ji+1 .

For a caterpillar constructed with a path of order n ≥ 2, attached to t pendent
vertices, using Theorem 3.4 and Relation (2), the number of stable partitions
is equal to

k−1∑

i=0

S(n − 1, k − i − 1)
∑

j1+···+ji+1=t−i

(k − 1)j1 · · · (k − i − 1)ji+1 .

Observe that the paths are particular cases of the considered class G(t).
Moreover, the number of stable partitions of paths have already been done
by several authors with several interpretations, cited previously. Considering
this fact, the following identity holds.

Corollary 3.5. For n ≥ 1, l ≤ n and 1 ≤ k ≤ n, we have,

S(n + t − 1, k − 1) =
k−1∑

i=0

S(n − 1, k − i − 1)

∑

j1+···+ji+1=t−i

(k − 1)j1 · · · (k − i − 1)ji+1 .

Proof. With the same way, as in Corollary 3.3, we consider a path of length
n + t and a path of length n as initial graph. Then, the identity results in by
replacing G(t) and evaluating the sequence in Theorem 3.4. �

Notice that the previous theorem can be extended to the following one,
in which

∑
j1+···+ji+1=t−i(k−1)j1 · · · (k−i−1)ji+1 is replaced by the r-Stirling

numbers of the second kind.
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Theorem 3.6. For t ≥ 1 and 1 ≤ k ≤ n + t, we have,

S(G(t), k) =
k−1∑

i=0

S(Gn, k − i)Sk−i−1(t + k − i − 1, k − 1).

Proof. The r-Stirling numbers of the second kind have the generating func-
tion denoted by φk(u) and described as follows

φk(u) =
∑

n≥k

Sr(n + r, k + r)un =
uk

(1 − (r + 1)u) · · · (1 − (r + k)u)
. (12)

On other hand, it is well known that
1

1 − ju
=

∑

n≥0

(ju)n. (13)

From Relations (12) and (13) we obtain,

φk(u) = uk
∑

n1≥0

((r + 1)u)n1
∑

n2≥0

((r + 2)u)n2 · · ·
∑

nk≥0

((r + k)u)nk , (14)

summing by parts, relation (14) can be written as follows

φk(u) = uk
∑

n1,n2,··· ,nk≥0

(r + 1)n1(r + 2)n2 · · · (r + k)nkun1+n2+···+nk , (15)

also, relation (15) gives

φk(u) = uk
∑

n≥0

(
∑

n1+n2+···+nk=n

(r + 1)n1(r + 2)n2 · · · (r + k)nk)un, (16)

thus,

φk(u) =
∑

m≥k

(
∑

n1+n2+···+nk=m−k

(r + 1)n1(r + 2)n2 · · · (r + k)nk)um, (17)

by identification with the generating function we get,

S(n + r,m + r)r =
∑

n1+n2+···+nm=n−m

(r + 1)n1(r + 2)n2 · · · (r + m)nm , (18)

by changing of variables, we obtain
∑

j1+j2+···+jk=t−i

(k−1)j1(k−2)j2 · · · (k−i−1)ji+1 = Sk−i−1(t+k−i−1, k−1).

(19)
�

Consequently, we derive an identity of the Stirling numbers of the second
kind in terms of Stirling and the r-Stirling numbers of the second kind.

Corollary 3.7. For t ≥ 1 and 0 ≤ k ≤ n + t we have,

S(n + t, k) =
k∑

i=0

S(n, k − i)Sk−i(t + k − i, k).

Proof. From Corollary 3.5 and Theorem 3.6, we get the formula. �
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This gives rise to an explicit formula related to binomial coefficient
which expresses the Stirling numbers of the second kind in terms of the
generalized r-Stirling numbers of the second kind, evaluated with two sum-
mations.

Corollary 3.8. For 0 ≤ k ≤ n + t, n ≥ 0, t ≥ 1 and l ≤ k, we have

S(n + t, k) =
k−l∑

i=0

S(n, k − i)
∑

j

(
t

j

)
Sl(t + l − j, i + l)(k − l − i)j .

Proof. This is obtained using Theorem 3.6 combined with relation (33 See
P. 249 in [6]) in Broder’s explicit formulas for the r-Stirling numbers of the
second kind [6]. �

Note that for l = 1, an identity of the Stirling numbers of the second
kind can be deduced.

Corollary 3.9. For 0 ≤ k ≤ n + t, n ≥ 0, t ≥ 1, we have

S(n + t, k) =
k−1∑

i=0

S(n, k − i)
∑

j

(
t

j

)
S(t + 1 − j, i + 1)(k − i − 1)j .
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