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Characterization of Curves that Lie on
a Geodesic Sphere or on a Totally Geodesic
Hypersurface in a Hyperbolic Space
or in a Sphere

Luiz C. B. da Silva and José Deibsom da Silva

Abstract. The consideration of the so-called rotation minimizing frames
allows for a simple and elegant characterization of plane and spherical
curves in Euclidean space via a linear equation relating the coefficients
that dictate the frame motion. In this work, we extend these investi-
gations to characterize curves that lie on a geodesic sphere or totally
geodesic hypersurface in a Riemannian manifold of constant curvature.
Using that geodesic spherical curves are normal curves, i.e., they are the
image of an Euclidean spherical curve under the exponential map, we
are able to characterize geodesic spherical curves in hyperbolic spaces
and spheres through a non-homogeneous linear equation. Finally, we
also show that curves on totally geodesic hypersurfaces, which play the
role of hyperplanes in Riemannian geometry, should be characterized
by a homogeneous linear equation. In short, our results give interesting
and significant similarities between hyperbolic, spherical, and Euclidean
geometries.
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1. Introduction

The geometry of spheres is certainly one of the most important topic of in-
vestigation in differential geometry; the search for necessary and/or sufficient
conditions for a submanifold be a sphere being one of its major pursuit. A re-
lated and interesting problem then is: how can we characterize those curves
α : I → R

m+1 that belong to the surface of a (hyper)sphere? In R
3, after

equipping a curve with its Frenet frame {t,n,b}, it is possible to prove that
spherical curves are characterized by the equation κ/τ − d/ds

(
κ′/τκ2

)
= 0,

where κ and τ are the curvature and torsion, respectively [20,34]. Similar
relations can be also written in R

m+1. On the other hand, by equipping a

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-018-1109-9&domain=pdf
http://orcid.org/0000-0002-2702-9976
http://orcid.org/0000-0001-7967-2667


70 Page 2 of 15 L. C. B. da Silva and J. D. da Silva MJOM

curve with a rotation minimizing (RM) frame, one is able to characterize
spherical curves by means of a simple and elegant linear equation involving
the coefficients that dictate the frame motion: a regular curve α : I → R

m+1

is spherical if and only if the normal development curve (κ1(s), . . . , κm(s))lies
on a line not passing through the origin [2]. An RM frame {t,n1, . . . ,nm}
along α : I → R

m+1 is characterized by the equations t′(s) =
∑m

i=1 κi(s)ni(s)
and n′

i(s) = −κi(s)t(s), where s is an arc-length parameter. The basic idea
here is that ni rotates only the necessary amount to remain normal to t: in
fact, ni is parallel transported along α with respect to the normal connection
[14]. Due to their minimal twist, RM frames are of importance in applica-
tions, such as in computer graphics and visualization [16,33], sweep surface
modeling [3,27,29], and in differential geometry as well [2,11,12,15], just to
name a few.

The goal of this work is to extend these investigations for curves on ge-
odesic spheres in S

m+1(r) and H
m+1(r), the (m + 1)-dimensional sphere and

hyperbolic space of radius r, respectively. For spherical curves in R
m+1, an

important observation is that, up to a translation, their position vectors lie on
the normal plane to the curve: 〈α − p, α − p〉 = R2 ⇔ 〈t, α − p〉 = 0 (we shall
call α a normal curve). This makes sense due to the double nature of Rm+1 as
both a manifold and as a tangent space. In fact, this problem has to do with
the more general quest of studying curves that lie on a given (moving) plane
generated by two chosen vectors of a moving trihedron, e.g., one would define
osculating, normal or rectifying curves as those curves whose position vec-
tor, up to a translation, lies on their osculating, normal or rectifying planes,
respectively [8,10]: osculating curves are the plane curves (if we substitute
the principal normal by an RM vector field, we still have a characterization
for plane curves [11]) and rectifying curves are precisely geodesics on a cone
[9,10]. This equivalence is no longer valid in other geometries. Nonetheless,
it is still possible to extend the concept of normal curves to non-Euclidean
settings, such as in affine geometry [21] and also in S

m+1(r) and H
m+1(r),

as we will made clear in this work. Indeed, to extend these notions to a Rie-
mannian setting one should replace the line segment α(s) − p by a geodesic
connecting p to α(s), as pointed out by Lucas and Ortega–Yagües in the
study of rectifying curves [23,24]: they proved that rectifying curves in the
3d sphere and hyperbolic space are geodesics on a conical surface, in analogy
with what happens in the Euclidean case.

Here, we show, as a consequence of the Gauss lemma for the exponential
map in a Riemannian manifold Mm+1, that on a sufficiently small neighbor-
hood of p ∈ Mm+1 a curve α : I → Mm+1 is normal (with center p) if
and only if it lies on a geodesic sphere (with center p) in Mm+1. Using this
equivalence in the (m + 1)-dimensional sphere S

m+1(r) and hyperbolic space
H

m+1(r), we are able to characterize those curves that lie on the hypersurface
of a geodesic sphere in terms of an RM frame. The main result is

Theorem: Let α be a regular curve in S
m+1(r) or Hm+1(r). Then, α lies

on a geodesic sphere if and only if
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m∑

i=1

ai κi +
1
r

cot
(z0

r

)
= 0, if α ⊆ S

m+1(r)

m∑

i=1

ai κi +
1
r

coth
(z0

r

)
= 0, if α ⊆ H

m+1(r)
, (1)

for some constants z0 (the radius of the geodesic sphere) and ai, 1 ≤ i ≤ m.
For completeness, we also discuss in this work the characterization of

geodesic spherical curves in terms of a Frenet frame (Theorem 4) and show
that the characterization of (geodesic) spherical curves is the same as in Eu-
clidean space. Finally, the relation between totally geodesic hypersurfaces,
which play the role of hyperplanes in Riemannian geometry, and curves with
a normal development (κ1, . . . , κm) lying on a line passing through the origin
is more delicate, since in general, a manifold has no totally geodesic hyper-
surfaces up to the trivial ones [25,26,32]. Nonetheless, in this work, we are
able to show that if a Riemannian manifold contains totally geodesic hyper-
surfaces, then any curve on a totally geodesic hypersurface is associated with
a normal development that lies on a line passing through the origin (Theo-
rem 5). We show in addition that a curve in S

m+1(r) and H
m+1(r) lies on a

totally geodesic hypersurface if and only if its normal development is a line
passing through the origin (Theorem 6).

The remaining of this work is organized as follows. In Sect. 2, we review
the concept of RM frames, introduce some background material for the ge-
ometry of Sm+1(r) and H

m+1(r), and present the concept of normal curves
in Riemannian geometry. In Sect. 3, we then characterize geodesic spherical
curves via RM and Frenet frames in a constant curvature ambient space, and
in Sect. 4, we turn our attention to curves on totally geodesic hypersurfaces.
Finally, in Sect. 5, we present our concluding remarks.

2. Preliminaries

Let us denote by E
m+1 the (m + 1)-dimensional Euclidean space, i.e., Rm+1

equipped with the standard Euclidean metric 〈·, ·〉e. Given a regular curve
α : I → E

m+1 parametrized by arc-length s, i.e., 〈t, t〉e = 1, where t(s) =
α′(s), the usual way to introduce a moving frame along it is by means of
the Frenet frame {e0 = t, e1, . . . , em} [20,22]. However, we can also consider
any other adapted orthonormal moving frame along α(s): the equation of
motion of such a moving frame is then given by a skew-symmetric matrix. Of
particular importance are the so-called Rotation Minimizing (RM) Frames
[2,14]: we say that {t,n1, . . . ,nm} is an RM frame if t and n′

i are parallel.
The basic idea here is that ni rotates only the necessary amount to remain
normal to the tangent t (so, justifying the terminology). The equation of
motion of an RM moving frame is

d
ds

⎛

⎜
⎜
⎜
⎝

t
n1

...
nm

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0 κ1 · · · κm

−κ1 0 · · · 0
...

...
. . .

...
−κm 0 · · · 0

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

t
n1

...
nm

⎞

⎟
⎟
⎟
⎠

. (2)
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Remark 1. In E
3, if we write n1 = cos θ n−sin θ b and n2 = sin θ n+cos θ b for

some function θ(s), the coefficients κ1, κ2 relate with the curvature function
κ and torsion τ according to [2,18]

⎧
⎨

⎩

κ1(s) = κ(s) cos θ(s)
κ2(s) = κ(s) sin θ(s)
θ′(s) = τ(s)

. (3)

There is a similar relation for curves in E
4 in terms of Euler angles [17]: we

should rotate {ei}3i=1 to obtain {ni}3i=1.

In general, RM frames are not uniquely defined, since any rotation of ni

on the normal hyperplane still gives an RM field, i.e., there is an ambiguity
associated with the action of SO(m) (e.g., in E

3 the angle θ is only well de-
fined up to an additive constant). Nonetheless, the prescription of curvatures
κ1, . . . , κm uniquely determines a curve up to rigid motions of Em+1 [2,14].
In addition, a remarkable advantage of using RM frames is that they allow
for a simple characterization of spherical and plane curves:

Theorem 1. [2] A regular C2 curve α : I → E
m+1 lies on a sphere of radius r

if and only if its normal development, i.e., the curve (κ1(s), . . . , κm(s)), lies
on a line not passing through the origin. In addition, α is a plane curve if
and only if the normal development lies on a line passing through the origin.

It is also possible to characterize spherical curves through a Frenet frame
approach

Theorem 2. [20,22] Let α : I → E
3 be a C4 regular curve with a non-zero

torsion. It lies on a sphere of radius r if and only if

τ(s)ρ(s) +
d
ds

(
ρ′(s)
τ(s)

)
= 0. (4)

where ρ = 1/κ is the radius of curvature.

Remark 2. It is possible to arrive at a similar characterization for Cm+2

spherical curves in E
m+1, e.g., for spherical curves in E

4 and E
5 with non-

zero curvature and torsions, we have
⎧
⎪⎨

⎪⎩

d
ds

{
1
τ2

d
ds

[
1
τ1

d
ds

(
1
κ

)]
+ τ1

κ

}
+ τ2

τ1

d
ds

(
1
κ

)
= 0

d
ds

{
1
τ3

d
ds

[
1
τ2

d
ds

[
1
τ1

d
ds

1
κ

]]
+ τ2

τ1τ3

d
ds

1
κ + 1

τ3

d
ds

τ1
κτ2

}
+ τ3

τ2

d
ds

[
1
τ1

d
ds

1
κ

]
+ τ1τ3

κτ2
= 0

(5)
where κ, τ1, . . . , τm−1 are the curvature and torsions associated with the
Frenet frame {ei}m

i=0: e
′
0 = τ0e1 and e′

i = −τiei−1 + τi+1ei+1 for 1 ≤ i ≤ m,
where τ0 = κ and τm+1 = 0 (see Theorem 4, and comments following it, to
have an idea of how devise a proof for the above formulas). Needless to say,
the approach via RM frames is simpler, it only demands a C2 condition, and
no additional conditions on the torsions and curvature are required.
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2.1. Rotation Minimizing Frames and Normal Curves in Riemannian
Geometry

It is also possible to introduce Frenet frames in Riemannian manifolds [19,
30], see also [4,19,23,24,31]. Analogously, one can also define RM frames
[14,15]. To introduce such concepts, one should take covariant derivatives in
the direction of the unit tangent instead of the ordinary one. More precisely,
let Mm+1 be a Riemannian manifold with Levi–Civita connection ∇ and
metric 〈·, ·〉 [13]. We say that x ∈ X(M) is an RM vector field along a regular
curve α : I → Mm+1 if ∇t x = λ t, where X(M) is the module of tangent
vector fields, t(s) = α′(s) is the unit tangent, and s an arc-length parameter
[14].

To build a Frenet frame in M , the curvature function and principal
normal (if κ 
= 0) are defined as usual, that is

κ = ‖∇t t‖ and n =
1
κ

∇t t, (6)

respectively. The binormal vector b is chosen in a way that {t,n,b} is a
positively oriented orthonormal frame along Tα(s)M . The torsion is given by

τ = −〈∇t b,n〉, (7)

and the Frenet equations can be written as

∇t

⎛

⎝
t
n
b

⎞

⎠ =

⎛

⎝
0 κ 0

−κ 0 τ
0 −τ 0

⎞

⎠

⎛

⎝
t
n
b

⎞

⎠ . (8)

In this work, we will be primarily interested in the (m+1)-dimensional sphere
S

m+1(r) and in the hyperbolic space Hm+1(r). We will, respectively, use them
modeled as submanifolds of Em+2 and E

m+2
1 :

S
m+1(r) = {q ∈ R

m+2 : 〈q, q〉e = r2} (9)

and
H

m+1(r) = {q ∈ R
m+2 : 〈q, q〉1 = −r2, x1 > 0}, (10)

equipped with the induced metric denoted by 〈·, ·〉 (the context will make
clear if we are using 〈·, ·〉e or 〈·, ·〉1). Here, Em+2

1 denotes the Lorentz space
equipped with the index 1 metric 〈x,y〉1 = −x1y1 +

∑m+2
i=2 xiyi.

Denoting by ∇ and ∇0 the Levi–Civita connections on S
m+1(r) (or

H
m+1(r)) and E

m+2 (or E
m+2
1 , respectively), they are related by the Gauss

formula as follows:
∇0

x y = ∇x y ∓ 1
r2

〈x,y〉 q, (11)

where q denotes the position vector, i.e., the canonical immersion
q : S

m+1(r) → E
m+2 for the minus sign and q : H

m+1(r) → E
m+2
1 for

the plus sign.

Remark 3. The models above do not represent the unique choices. Another
common way of looking at the spherical geometry is the intrinsic model based
on stereographic projection [13,30]. On the other hand, besides the hyper-
boloid model above, other common models for the hyperbolic space are the
Poincaré ball and half-plane models [1,28,30]. In any case, the important fact
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is that these models are all isometric. Thus, intrinsically speaking, they are
all the same, and the choice between them being a matter of convenience.

The concept of normal curves will be of fundamental importance in our
work. In Euclidean space we say that α is a normal curve if

α(s) − p ∈ span{t(s)}⊥, (12)

where p is a fixed point (the center of the normal curve). We can straight-
forwardly prove that normal curves in E

m+1 are precisely the spherical ones
(in this case, p is the center of the respective sphere): 〈α − p, t〉 = 0 ⇔
〈α − p, α − p〉 = constant. This definition makes sense due to the double
nature of E

m+1 as both a manifold and a tangent space. To extend it to
a Riemannian manifold Mm+1, we should replace α − p by a geodesic con-
necting p to a point α(s) on the curve, as done in [23,24] for the study of
rectifying curves:

Definition 1. A regular curve α : I → S
m+1(r) or α : I → H

m+1(r) is a nor-
mal curve with center p if the geodesic βs connecting p to α(s) is orthogonal
to α, i.e., 〈tα, tβ〉(s) = 0 for all s ∈ I. In S

m+1(r) we additionally assume
that α does not contain the antipodal −p of p: −p 
∈ Im(α).

The above definition is also valid in a generic Riemannian manifold
Mm+1 once we restrict ourselves to work on a sufficiently small neighborhood
of p (out of the injectivity radius the geodesic βs may fail to be unique).
The equivalence between spherical and normal curves can be extended to a
Riemannian manifold by applying the Gauss lemma for the exponential map
[13]:

Proposition 1. On a sufficiently small neighborhood of p ∈ Mm+1, a curve
α : I → Mm+1 is normal (with center p) if and only if it lies on a geodesic
sphere (with center p). In other words, a normal curve is the image of an
Euclidean spherical curve under the exponential map.

Finally, given p ∈ S
m+1(r), v ∈ S

m(1) ⊂ TpS
m+1(r) or p ∈ H

m+1(r),
v ∈ S

m(1) ⊂ TpH
m+1(r), the exponential map is

expp(uv) = cos
(u

r

)
p + r sin

(u

r

)
v (13)

or
expp(uv) = cosh

(u

r

)
p + r sinh

(u

r

)
v, (14)

respectively. Observe that the geodesics β(u) = expp(uv) above are defined
for any value u ∈ R, and then, the equivalence in Proposition 1 is valid
globally.

3. Spherical Curves in S
m+1(r) and H

m+1(r)

As previously said, by equipping a curve in E
m+1 with an RM frame, it is

possible to characterize spherical curves by means of a linear relation involv-
ing the coefficients which dictate the frame motion. We now extend these
results for curves on geodesic spheres of Sm+1(r) and H

m+1(r) (see Fig. 1).
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(a) (b) (c)

Figure 1. Geometry of the normal development, geodesic
spheres, and totally geodesics submanifolds in S

m+1(r) and
H

m+1(r): a (m = 2 in the figure) lines not passing through
the origin (dashed blue line) represent geodesic spherical
curves (Theorem 3) and lines through the origin (dotted red
line) represent plane curves, i.e., curves on totally geodesic
hypersurfaces (Theorem 6); b and c lines passing through
the origin (dotted red line) represent hyperplanes passing
through the origin and when intersected with S

m+1(r) or
H

m+1(r), give rise to totally geodesic hypersurfaces, while
lines not passing through the origin (dashed blue line) rep-
resent hyperplanes not passing through the origin and, when
intersected with S

m+1(r) or H
m+1(r), give rise to geodesic

spheres (in the hyperboloid model, an intersection with hy-
perplanes forming smaller angles with the hyperboloid axis
give rise to equidistant surfaces and horospheres) [30]

Theorem 3. Let α be a regular C2 curve in S
m+1(r) or H

m+1(r). Then, α
lies on a geodesic sphere if and only if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m∑

i=1

ai κi +
1
r

cot
(z0

r

)
= 0, if α ⊆ S

m+1(r)

m∑

i=1

ai κi +
1
r

coth
(z0

r

)
= 0, if α ⊆ H

m+1(r)
, (15)

for some constants z0 (the radius of the geodesic sphere1) and ai, 1 ≤ i ≤ m.

Proof. We will do the proof for α ⊆ S
m+1(r) only, the case for Hm+1(r) being

analogous (one just needs to use the hyperbolic versions of the trigonometric
functions).

If α : I → S
m+1(r) is a normal curve parametrized by arc-length s, then

we may write
α(s) = expp(z0 v(c0 s)), (16)

1 For Sm+1(r) we may impose z0 < πr/2, which guarantees that the center of the geodesic

sphere is well defined: if z0 = πr/2, both p and its antipodal −p are equidistant from the
geodesic sphere.
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where z0 and c0 = [r sin(z0/r)]−1 are constants and v : I → S
m(1) ⊆

TpS
m+1(r) is a unit speed curve. In our model of S

m+1(r) as submanifold
of Em+2, a tangent vector v at p satisfies 〈p,v〉e = 0. If {tα,n1, . . . ,nm} is
an RM frame along α, the unit tangent of α can be written as

tα(s) = v′(c0s). (17)

On the other hand, the unit speed geodesic βs connecting p to a point
α(s) is

βs(u) = cos
(u

r

)
p + r sin

(u

r

)
v(c0 s) ⇒ βs(z0) = α(s). (18)

The normality condition 〈tα, tβ〉 = 0 implies

“tβs
at α(s)” = tβs

(z0) =
m∑

i=1

ai(s)ni(s). (19)

The derivative of the coefficients ai = 〈tβs
,ni〉 gives

a′
i = 〈∇tα

tβs
,ni〉 + 〈tβs

,∇tα
ni〉 = 〈∇0

tα
tβs

,ni〉, (20)

where the last equality is a consequence of the fact that ni is RM and also
that ∇x y = ∇0

x y for two orthogonal vectors x, y, see Eq. (11). Now, using
that tβ along α can be also written as

tβs
(z0) = −1

r
sin
(z0

r

)
p + cos

(z0
r

)
v(c0 s), (21)

we have

∇0
tα
tβ =

1
r

cos(z0/r)
sin(z0/r)

v′(c0 s) =
cot(z0/r)

r
tα. (22)

Inserting the expression above in Eq. (20) shows that a′
i = 0, and therefore,

the coefficients ai, 1 ≤ i ≤ m, are all constants.
Finally, taking the derivative of 〈tβ , tα〉 = 0 along α gives

0 = 〈∇tα
tβ , tα〉 + 〈tβ ,∇tα

tα〉

=
〈

cot(z0/r)
r

tα, tα

〉
+

〈
m∑

i=1

aini,

m∑

j=1

κjnj

〉

=
1
r

cot
(z0

r

)
+

m∑

i=1

aiκi. (23)

Conversely, suppose that α is a regular curve and that it satisfies
∑

i aiκi+
cot(z0r−1)/r = 0. The proof is based on the following observation: for a
spherical curve, if we invert the direction of the motion of βs we have a geo-
desic connecting α(s) to p, whose initial velocity vector according to Eq. (21)
should be −tβ . Now, let us define

w(s) = −
m∑

i=1

aini (24)

and
P (s) = cos

(z0
r

)
α(s) − r sin

(z0
r

)
w(s). (25)
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Taking the derivative of the last equation, we find P ′(s) = 0 and then
P is a constant point. Consequently, it means that the geodesics with initial
point α(s) and initial velocity w(s) travel always the same distance to arrive
at P , i.e., α is a spherical curve. �

Finding RM frames along a curve may be a difficult problem and, in
general, one must resort to some kind of numerical method, see e.g. [33].
However, for a curve α in S

2(r, p) ⊆ R
3, computing RM frames is not difficult:

u = (α(s)−p)/r is RM [11,33]. This result can be extended for other ambient
spaces by taking into account Eq. (22) in the proof above. Then, we have

Corollary 1. For a regular C2 curve α(s) on a geodesic sphere of Sm+1(r), or
H

m+1(r), the tangents of the geodesics connecting the center of the geodesic
sphere to points on the curve is a rotation minimizing vector field.

The previous theorem was obtained by expressing tβ in terms of an RM
basis for the normal plane span{tα}⊥. If we use the Frenet frame instead,
then we can extend a classical characterization result for spherical curves in
R

3.

Theorem 4. Let α be a regular C4 curve with non-zero torsion in S
3(r) or

H
3(r). The curve α lies on a geodesic sphere if, and only if

d
ds

[
1
τ

d
ds

(
1
κ

)]
+

τ

κ
= 0. (26)

Proof. We will do the proof for α ⊆ S
3(r) only, the case for H

3(r) being
analogous.

Let α be a spherical curve and {tα,n,b} its Frenet frame, then there
exists a point p, such that the geodesic βs connecting p to α(s) satisfies
〈tβ , tα〉 = 0. Let us write

tβ = c1n + c2b, (27)

for some functions c1, c2.
Taking the (covariant) derivative gives

∇tα
tβ = c′

1n + c′
2b + c1∇tα

n + c2∇tα
b

1
r

cot
(z0

r

)
tα = −c1κtα + (c′

1 − τc2)n + (c′
2 + τc1)b, (28)

where we used Eqs. (8) and (22) to arrive at the second equality above. Now,
comparing coefficients leads to

⎧
⎨

⎩

−κc1 = 1
r cot

(
z0
r

)

c′
1 − τc2 = 0

c′
2 + τc1 = 0

. (29)

From the first and second equations, we find

c1 = − 1
rκ

cot
(z0

r

)
⇒ τc2 = c′

1 = − d
ds

[
1
rκ

cot
(z0

r

)]
. (30)
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Now, using the expression above in combination with the 3rd equation of
(29) furnishes

− τc1 = c′
2 = − d

ds

{
1
τ

d
ds

[
1
rκ

cot
(z0

r

)]}
. (31)

The desired result follows from the finding above and the 1st equation of
(29).

Conversely, let α be a regular curve satisfying Eq. (26). As in the proof
for the characterization of spherical curve via RM frames, the idea is to find
a (fixed) point P and a vector field w, such that all the geodesics emanating
from α with initial velocity w reach P after traveling the same distance. Let
us define the following vector field along α(s)

w(s) = − 1
rκ(s)

cot
(z0

r

)
n(s) − 1

τ(s)
d
ds

[
1

rκ(s)
cot
(z0

r

)]
b(s), (32)

which satisfies ∇tα
w = r−1 cot(z0r−1) tα . Now, define

P (s) = cos
(z0

r

)
α(s) − r sin

(z0
r

)
w(s). (33)

Taking the derivative of P shows that P ′(s) = 0, and therefore, P is constant
and will be the center of the geodesic sphere that contains α. �

Remark 4. One can also equip a curve with a Frenet frame in higher di-
mensional Riemannian manifolds [30], p. 29, and use them to characterize
(geodesic) spherical curves. One can follow the same steps as in the previous
theorem, i.e., use that a spherical curve must be normal and then investigate
the coefficients ci of tβ in terms of the Frenet frame. The expressions, how-
ever, are quite cumbersome and we will not attempt to write it here. We just
remark that, as happens in 3d, the values of r and of the geodesic sphere
radius do not appear in the expression characterizing spherical curves. Note
in addition that the curve must be of class Cm+2, in contrast with the C2

requirement in Theorem 3 via RM frames.

4. Curves on Totally Geodesic Hypersurface

The so-called totally geodesic submanifolds in a Riemannian ambient space
have the simplest shape and play the role of affine subspaces. Despite their
simplicity, in general, Riemannian manifolds do not have non-trivial totally
geodesic submanifolds [25,32]. The existence of such submanifolds imposes
severe restrictions on the geometry of the ambient manifold [26]. Riemann-
ian space forms are examples of manifolds that contain non-trivial totally
geodesic submanifolds.

Definition 2. A submanifold N of a Riemannian manifold M is a totally ge-
odesic submanifold if any geodesic on the submanifold N with the induced
Riemannian metric is also a geodesic on M (e.g., one dimensional totally
geodesic submanifolds are geodesics).
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In the following, we shall restrict our attention to orientable hypersur-
faces. There are many equivalent ways of characterizing a totally geodesic
hypersurface. Indeed, all the conditions below are equivalent [5], p. 114,

1. N ⊂ M is totally geodesic.
2. The principal curvatures vanish in every point of N .
3. The normal field to N remains normal if parallel transported along any

curve on N .
4. Any tangent field to N remains tangent if parallel transported along

any curve on N .
Note that property 3 essentially says that the normal field of a totally geodesic
hypersurface is constant, which is a crucial feature of Euclidean hyperplanes:
π is a hyperplane if and only if there exist u0 and x0 constants, such that π =
{x : 〈x − x0,u0〉 = 0}. Thus, we may see hyperplane curves in a Riemannian
manifold as those curves on totally geodesic hypersurfaces.

In Euclidean space, it is known that normal development curves
(κ1, . . . , κm) which are lines passing through the origin characterize hyper-
plane curves (Theorem 1). Here, we (partially) extend this result to totally
geodesic curves on any Riemannian manifold.

Theorem 5. Let α : I → Nm ⊂ Mm+1 be a regular curve and {t,n1, . . . ,nm}
a rotation minimizing frame along it. If α lies on a totally geodesic hypersur-
face N , then its normal development curve (κ1, . . . , κm) lies on a line passing
through the origin.

Proof. Let u be a normal vector field on N . Since N is totally geodesic, we
can use that ∇t u = 0. In addition, we can also write u =

∑m
i=1 aini for the

normal u along α. The coefficient ai = 〈u,ni〉 satisfies

a′
i = 〈∇t u,ni〉 + 〈u,∇t ni〉 = 0. (34)

Then, for all i ∈ {1, . . . , m}, ai is a constant. Finally

0 = ∇t u =
m∑

i=1

ai∇t ni =
m∑

i=1

(−aiκi t) (35)

and therefore,
∑

aiκi = 0 represents the equation of a line passing through
the origin. �

Let us now discuss the reciprocal of the theorem above. Given a curve
α : I → M satisfying

∑m
i=1 ai κi = 0 for some constants a1, . . . , am, we may

define u(s) =
∑

ai ni. Then, it follows that

∇t u =
∑

−aiκi t = 0. (36)

Thus, u is parallel transported along α. The problem now is to find a codi-
mension 1 totally geodesic submanifold containing α and whose normal field
is equal to u when restricted to α. A candidate to solution is the submanifold
given by the following parametrization:

X(s1, . . . , sm) = expα(s1)

(
m∑

i=2

si ui

)

, (37)
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where {ui(s)}m
i=2 is an orthonormal basis for span{t(s),u(s)}⊥ for all s = s1.

Observe, however, the fact that X is geodesic along α does not implies that
it will also be geodesic in all its points. In fact, the existence of non-trivial
totally geodesic submanifolds is an exceptional fact. On the other hand, in
both S

m+1(r) and H
m+1(r), the situation is easier, since that totally geodesic

submanifolds do exist and are precisely the intersection of affine subspaces of
R

m+2 with S
m+1(r) and H

m+1(r) [30] (see Fig. 1). Then, we have

Theorem 6. Let α be a regular C2 curve in S
m+1(r), or H

m+1(r), equipped
with an RM frame {t,n1, . . . ,nm}. Then, α is a hyperplane curve, i.e., it
lies on a totally geodesic hypersurface, if and only if the normal development
(κ1, . . . , κm) is a line passing through the origin.

Proof. The direction “hyperplane curve ⇒ ∑m
i=1 aiκi = 0 (ai constant)” is a

consequence of the previous theorem. For the reciprocal, define a vector field
along α as u(s) =

∑m
i=1 aini(s). Using that the normal development is a line

passing through the origin, we have

du
ds

≡ ∇0
t u = ∇t u =

m∑

i=1

−aiκi t = 0, (38)

where for the second equality, we used that 〈t,u〉 = 0 in Eq. (11). Therefore,
u is a constant vector in R

m+2 and it follows that α is contained in the
hyperplane, in R

m+2, given by {x ∈ R
m+2 : 〈x,u〉 = 0}. In fact

〈α,u〉′ = 〈t,u〉 = 0 ⇒ 〈α,u〉 = c constant. (39)

The constant c must be zero. Otherwise, α would be contained on an in-
tersection of S

m+1(r), or H
m+1(r), with a hyperplane not passing through

the origin, which is a geodesic sphere [30]. Since the normal development
of a spherical curve does not pass through the origin, we conclude that
c = 0. �

5. Concluding Remarks

In this work, we furnished necessary and sufficient conditions for a curve to lie
on the hypersurface of a geodesic sphere or totally geodesic hypersurface on a
hyperbolic space or on a sphere by means of rotation minimization frames. It
would be desirable to extend our investigations to the more general setting of
Riemannian manifolds that are not necessarily of constant curvature. In this
context, the important concept of normal curves is only valid locally, i.e., one
must take into account the injectivity radius of the corresponding exponential
map. In addition, it is worth mentioning that a Frenet-like theorem, i.e., two
curves are congruent if and only if they have the same curvatures, is valid
only for manifolds of constant curvature [6,7]. This may lead to problems in
obtaining similar results to ours in terms of the curvatures associated with a
given rotation minimizing frame. This is presently under investigation by the
authors for some homogeneous spaces and will be the subject of a follow-up
work.
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