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Study of the Regularity of Solutions for a
Elasticity System with Integrable Data with
Respect to the Distance Function to the
Boundary
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Abstract. In this article, we are interested in the existence, uniqueness
and regularity of the solution of the linear elasticity system. More pre-
cisely, the quasi-static elasticity system. In the first part, we study the
existence of a weak solution and the regularity in the space W 1,p

0 (Ω), ∀p ∈
]1,+∞[ for a p-integrable source function. In the second part, the very
weak solution is introduced which can be considered when the second
member is a function with a very weak solution, for example, a locally
integrable function. Such source functions lead to a lack of regularity
for the solution in the fact that existence in classical spaces is no longer
assured. So, to overcome this difficulty, the strategy consists in approach-
ing it by another more regular problem “converging” towards the initial
problem “in a direction to be specified”.
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1. Introduction

Scientists have for centuries attempted to write some models describing the
behavior of the material. More or less generally, accurate or robust, these
models are based on the representation of the deformation phenomena using
the vector fields and tensors. This describes, in particular, the deformation
of the object as well as the internal constraints (the internal forces involved
between portions) that it undergoes. The behavior laws then join the con-
straints with the resultant deformation.

The theory of linear elasticity lies within the framework of the descrip-
tion of slow deformable solids, and on the other hand it is imposed that the
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elastic constitutive law connecting the stress tensor to that of the deforma-
tions is linear. When the elastic solid has an isotropic behavior (it does not
favor any direction of space),we obtain the law of behavior of Hooke,

σij = λ

n∑

K=1

εKK(u)δij + 2μεij(u).

with σ and ε, respectively, representing the stress tensor and the deformed
tensor. In addition, λ and μ are the positive coefficients of Gabriel Lamé.

Still, in the case of a homogeneous material, the various coefficients
introduced above are constants, taking into account that �u is a field of dis-
placement and the conservation of mass and the quality of the material is
written as:

ρ
∂2 �u
∂t2

− μΔ�u − (λ + μ) �∇( �∇ · �u) = �f,

where �f represents the external force acting on the material and ρ is the
constant representing the density of the medium homogeneous.

When the displacement is independent of time, we then speak of the
quasi-static elasticity . We then come back to

(λ + μ)∇(div �u) + μΔ�u + �f = 0.

This system differs from that of Laplace in the diffusion term (λ +
μ)∇(div �u) which gives it all its richness, but also all its complexity.

As λ and μ are nonzero positive constants, we can simplify the constants
and reduce the system to the following form:

(P ) :
{

E �u = −Δ�u − λ∇ div �u = �f in Ω.

�u = �0 on ∂Ω,

where E denotes the elasticity operator which is a second-order linear elliptic
operator.

In the literature, we find many works dedicated to the mathematical
study of linear elasticity system. In fact, Ciarlet, in [4,5] explained the phys-
ical phenomenon and presented the well-posed character of the system. In
short, by calculating the index of the operator associated with the elasticity,
he showed the regularity W 2,p(Ω) for p � 2 in a bounded domain of class C2

subset of R2 (see Theorem 2.2.4 page 80 of [4]).
In addition, Grisvard was also interested in the problem, but in a poly-

hedric domain included in R
3. He shows the regularity of solution in W r,2(Ω)

for r ∈ [32 , 2[. It denotes by r the index of regularity which depends on the
solid angles formed by the vertices of the polyhedron (see [12]). Also, Shi and
Wright (see [20, page 295]) worked on the regularity in W 2,p(Ω) ∩ W 1,p

0 (Ω)
with 1 < p < ∞, but in a domain included in R

3 having a regularity between
C1 and C1,1. For applications on the elasticity problems, we refer the reader
to [7–9].

We note that the elasticity problem is treated in R
3 mostly in all ref-

erences in the literature, simply because the natural phenomenon is done in
a space of dimension 3. This does not mean that we can not consider the
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equation in R
n, but in this case, the interest at the physical level is limited.

Here, we are interested in this mathematical generalization by focusing on
external forces depending on the distance to the boundary.

1.1. Notation and Definition

For a measurable set in R
n, we denote by |E| its Lebesgue measure and for

a measurable function u from the open bounded set Ω into R
n, we define the

following auxiliary functions (see [15]):
1. The distributional function m of u defined as, m : R →]0,Ω[ such that

m(t) = mes{x ∈ Ω : u(x) > t} = |u > t|,
2. The monotone rearrangement of u (denoted by u∗), is the generalized

inverse of m, i.e.,

u∗(s) = inf{t ∈ R : |u > t| ≤ s, }, s ∈]0, |Ω|[,
u∗(0) = ess sup

Ω
u.

The Lorentz spaces Lp,q(Ω) are defined (see [6,7]), for 1 ≤ p < +∞, 1 ≤ q <
+∞, as,

Lp,q(Ω) =

{
u : Ω → R measurable :

∫ |Ω|

0

[
t1/p|u|∗∗(t)

]q dt

t
< +∞

}
,

Lp,∞(Ω) =

{
u : Ω → R measurable : sup

t≤|Ω|
t1/p|u|∗∗(t) < +∞

}
,

with

|u|∗∗ =
1
t

∫ t

0

|u|∗(s) ds, for t > 0.

We note that we can associate with a banach space V a sobolev space,

W 1V := {v ∈ L1
loc(Ω) such that |∇v| ∈ V }.

In particular,

W 1
0 Lp,q(Ω) = {u ∈ W 1,1

0 (Ω) : |∇u| ∈ Lp,q(Ω)}.

Definition 1.1 (Lebesgue weighted spaces) (see [7]). Let Ω be a bounded sub-
set of Rn. If ω : Ω →]0,+∞[ is an integrable function, we define the Lebesgue
weighted spaces as

Lp(Ω, ω) :=
{

f is measurable : |f |pLp(Ω,ω) =
∫

Ω

|f(x)|p ω(x) dx < ∞
}

.

In particular, we define Lp(Ω, δα) with 0 � α � 1, 1 � p < +∞ and
δ(x) = dist (x, ∂Ω) in the following way:

• f ∈ Lp(Ω, δp) if
∫

Ω

|f(x)|pδ(x)α dx < +∞.

• f ∈ L1(Ω, δ(1 + | ln δ|)) if
∫

Ω

|f(x)|δ(1 + | ln δ|) dx < +∞.

These spaces are complete associated with norm | · |Lp(Ω,ω).
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For Ω, an open bounded domain subset of Rn, we will consider formu-
lations equivalent to the initial elasticity system, for this reason, we define

Mn×m(Ω;R) =
{

A : A(x) ∈ Mn×m(R), x ∈ Ω
}

,

�u =

⎛

⎜⎝
u1

...
uN

⎞

⎟⎠ , �f =

⎛

⎜⎝
f1

...
fN

⎞

⎟⎠ , G =

⎛

⎜⎝

�G1

...
�Gn

⎞

⎟⎠ =

⎛

⎜⎝
G1

1 . . . G1
N

...
...

...
Gn

1 . . . Gn
N

⎞

⎟⎠ =
(
Gi

α

)
1�i�n
1�α�N

with

‖G‖1 = max
α

n∑

i=1

|Gi
α|

and

div G =

⎛

⎜⎝
div �G1

...
div �Gn

⎞

⎟⎠ ∈ Mn×1(Ω;R).

We will show (see Proposition 2.1) that (P ) can be written in divergence
form, for a suitable tensor A as

(Q) :
{−Dα(Aαβ

ij Dβuj) = −DαGi
α + f i in Ω

ui = 0 on ∂Ω,

which is written with Einstein’s notation of repeated indexes, but can be fully
written as

⎧
⎪⎨

⎪⎩
−

N∑

j=1

n∑

α, β=1

Dα(Aαβ
ij Dβuj) = −

n∑

α=1

DαGi
α + f i

ui = 0,

(1.1)

where Dα =
∂

∂xα
with 1 � α, β � n, 1 � i, j � N and the coefficients Aαβ

ij

verify the Legendre–Hadamard coercivity conditions (see Proposition 2.1).

Definition 1.2. of weak solution (Q) or of (P ). We call weak solution of (Q)
or of (P ) a function �u ∈ W 1,p

0 (Ω)n for a real 1 < p < +∞ which verifies the
system in the sense of distributions.

In most cases, we will appeal to the following theorems of existence and
regularity.

Theorem 1.1 (Morrey’s Theorem) (see [14, Theorem 6.48 and 6.55], [10,19]
Lemma 2 page 265]). Let Ω be an open bounded domain subset of Rn of class
C1,1, for the coefficients Aαβ

ij continuous on Ω̄ and satisfies the coercivity
conditions in the sense of Legendre–Hadamard (see below 2.1), we have:
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1. If G = 0 and �f ∈ Lp(Ω;RN ) for 1 < p < n,
then, the problem (Q) admits a unique solution �u in the sense of distri-
butions belonging to W 1,p∗

0 (Ω;RN ) with p∗ =
np

n − p
and in addition,

‖∇�u‖Lp∗ (Ω)n×N � Cp‖ �f‖Lp(Ω)N .

2. If �f = 0 and G ∈ Lp(Ω;Rn×N ) with 1 < p < +∞,
then, it admits one and only one solution �u, in the sense of distributions,
�u ∈ W 1,p

0 (Ω,RN ) and

‖∇�u‖Lp(Ω;Rn×N ) � Cp‖G‖Lp(Ω).

2. Case of the Elasticity System: Classical Results of Existence
and Regularity

2.1. Formulation Equivalent to the Elasticity System

The purpose of this section is to show that the system can be written in three
equivalent manners. First, in the initial vectorial one (P ), then by component
and finally in the scalar form. First of all, we start initially by the vectorial
and tensorial form already illustrated in the introduction:

(P )div :
{−Δ�u − λ∇ div �u = div G in Ω,

�u = �0 on ∂Ω.

By writing this equation component by component for �u and G,

(P )c :

⎧
⎪⎨

⎪⎩
−Δui − λ

n∑

β=1

∂2uβ

∂xi∂xβ
=

n∑

β=1

∂Gi

∂xβ
in Ω,

ui = 0 on ∂Ω,

with ui being the ith component of �u and
∑n

β=1

∂Gi
β

∂xβ
= div Gi.

Finally, we will prove that the system can also be written in the condensed
form:

(P )s :

{
−Dα

(
Aαβ

ij (Dβuj)
)

= DαGi
α in Ω.

uj = 0 on ∂Ω,

where Dα =
∂

∂xα
, with 1 � α, β � n and 1 � i, j � n. To determine the

coefficients Aαβ
ij , we have the following proposition.

Proposition 2.1. We designate by E the elasticity operator such that,

E �u = −Δ�u − λ∇ div �u.

Then,

E �u = −Dα(Aαβ
ij (Dβuj)),

where, for all 1 � i, j, α, β � n, we have
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1. Aαβ
ij (x) = δαβδij + λδiαδjβ , with δij which is the Kronecker symbol.

2. 0 � Aαβ
ij � 1 + λ.

3. For all η ∈ R
n and ζ ∈ R

n,
∑n

i, j=1

∑n

α, β=1
Aα, β

ij ζαζβηiηj � |η|2|ζ|2.
4. For all P ∈ R

n×n,
∑n

i,j=1

∑n

α, β=1
Aαβ

ij P i
αP j

β � ‖P‖2 with ‖P‖2 =
∑n

α,i=1
(P i

α)2.

Proof. 1. We have:

−Δui = −
n∑

β=1

D2
βui

= −
n∑

α,β,j=1

Dα(δαβδijDβuj),

and

−λ
∂

∂xi
(div �u) = −λ

( n∑

α,i=1

δiαDα

)( n∑

j, β=1

δβjDβuj

)

= −λ

n∑

α,β,j=1

δαiδjβDαDβuj .

Consequently,

−Δui − λ
∂

∂xi
(div �u) = −

n∑

α,β,j=1

Dα

(
(δαβδij + λδiαδjβ)Dβuj

)
.

Therefore,

Aαβ
ij (x) = δαβδij + λδiαδjβ . (2.1)

2. Due to (2.1), we observe that the coefficients Aαβ
ij are bounded. In fact,

if α = β = i = j, then Aαβ
ij � 1 + λ. Otherwise, Aαβ

ij = 0.
3. Let us check the Legendre–Hadamard condition, ∀ζ ∈ R

n and η ∈ R
n

we have:

n∑

i,j=1

n∑

α,β=1

Aαβ
ij ζαζβηiηj =

n∑

α,β=1

δαβζαζβ

n∑

i,j=1

δijη
iηj

+λ

n∑

α,i=1

δiαηiζα

n∑

β,j=1

δjβηjζβ

� |ζ|2|η|2 + λ(ζ.η)2 � |ζ|2|η|2.
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This condition is weak, but it does not imply the uniform ellipticity of
the coefficients. For that, ∀P ∈ Rn×n, we have:

n∑

α,β=1

n∑

i,j=1

Aαβ
ij P i

αP j
β =

n∑

α,β=1

n∑

i,j=1

δαβP i
αP j

βδij + λ

n∑

α,β=1

n∑

i,j=1

δiαP i
αP j

βδjβ

=
n∑

α,i=1

P i
αP i

α + λ

n∑

α=1

Pα
α

n∑

β=1

P β
β =

n∑

α,i=1

(P i
α)2

+λ(tr(P ))2 � ‖P‖2
2.

Hence, the desired result.
�

2.2. Classical Weak Solutions of the Elasticity System with Standard Data

Using these formulations and Theorem 1.1 and the regularity theorem of
elliptic problems (see [11]), we have,

Theorem 2.1. Let Ω be an open bounded domain of class C1,1 subset of Rn, we
suppose that �f ∈ Lp(Ω)n with p ∈]1,+∞[. Then, there exists a unique solution
�u of elasticity system (P ) which belongs to W 1,p∗

0 (Ω)n with p∗ =
np

n − p
, if p <

n and p∗ < +∞ if p � n, such that, noting that ∇�u : ∇ �ϕ =
∑n

i,j=1

∂ui

∂uj

∂ϕi

∂xj
,

we have

a(�u, �ϕ) :=
∫

Ω

∇�u : ∇ �ϕ dx + λ

∫

Ω

div(�u) div( �ϕ)dx

=
∫

Ω

�f · �ϕ dx ∀ �ϕ ∈ W 1,p′
0 (Ω)n, (Pvar)

Furthermore,

�u ∈ W 2Lp(Ω), ||�u||W 2Lp(Ω) � c|| �f ||Lp(Ω).

Idea of the proof. Since (P ) is a linear elliptic system, then,
– For p = 2, it suffices to verify the Lax–Milgram conditions and use the

regularity property of the elliptic problem to obtain the existence of a
unique solution �u ∈ H1

0 (Ω)n ∩ H2(Ω)n.

– For all p ∈]1,+∞[, �f ∈ Lp(Ω)n, using the approximation of �f by a
bounded sequence of functions, and using Morrey’s Theorem 1.1, we
obtain the solution

�u ∈ W 1,p∗
0 (Ω)n and ‖∇�u‖Lp∗ (Ω)n2 � C ′

p‖ �f‖Lp(Ω)n .

�
Remark 2.1. A weak solution is equivalent to a weak variatinal solution
(P )var.

Lemma 2.1. Suppose that �f ∈ Lp,q(Ω)n, for some p ∈]1,+∞[ and q ∈ [1,+∞[.
Then the solution �u of the elasticity system belongs to W 2Lp,q(Ω)n∩W 1,1

0 (Ω)n

and in addition, there exists a positive constant C > 0 such that,

‖ �u ‖W 2Lp,q(Ω)n � C‖ �f ‖Lp,q(Ω)n .
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Proof. We note that throughout the proof C0, C1, C2, C and C ′ denote pos-
itive constants which may vary from line to line. Owing to the results of
Theorem 2.1 and regularity theorem of elliptic problems in [11], we can con-
struct a linear and bounded mapping on Lp(Ω)n into Lp(Ω) for all p ∈]1,∞],

T0 : Lp(Ω)n −→ Lp(Ω),
�f −→ T0

�f = max
α

‖Dα �u‖1,

where

T0
�f(x) = max

α
‖Dα �u(x)‖1.

||Dαu(x)||1 =
n∑

i=1

|Dαui(x)|.

It is bounded in the following sense

‖ T0
�f ‖Lp(Ω) = ‖ �u ‖W 2Lp(Ω)n � C ′‖ �f ‖Lp(Ω)n .

To extend this situation to the Lorentz space, we use the interpolation of
Marcinkiewicz (see [2]). For all 1 < p0 � p1 � ∞, we will verify the conditions
of this interpolation, then we will show that T0 is of weak type (p0, p0) and
(p1, p1);

‖ T0
�f ‖Lp0,∞(Ω) � C0‖ �f ‖Lp0,1(Ω)n

‖ T0
�f ‖Lp1,∞(Ω) � C1‖ �f ‖Lp1,1(Ω)n .

In fact, the injection into the Lorentz space (see [6,7,15]) gives us

Lpi,1 ↪→ Lpi,pi = Lpi ↪→ Lpi,∞, i = 0, 1.

Combining these injections with the regularity theorem (see, Theorem 9.15,
page 241 in [11]), we obtain,

‖ T0
�f ‖Lp0,∞(Ω) � ‖ T0

�f ‖Lp0 (Ω) � C0‖ �f ‖Lp0 (Ω)n � C0‖ �f ‖Lp0,1(Ω)n .

Similarly,

‖ T0
�f ‖Lp1,∞(Ω) � ‖ T0

�f ‖Lp1 (Ω) � C1‖ �f ‖Lp1 (Ω)n � C2‖ �f ‖Lp1,1(Ω)n .

Therefore, T0 is of weak type (p0, p0) and (p1, p1). Let 0 < θ < 1 and p ∈
]1,+∞] such that 1

p =
1 − θ

p0
+

θ

p1
, then T0 maps Lp,q into Lp,q, and is

bounded.
This implies in particular the estimate which controls ‖ �u ‖W 2Lp,q(Ωn).

i.e.,

‖ T0
�f ‖Lp,q(Ω) = ‖ �u ‖W 2Lp,q(Ω)n

� C(θ) max{C0, C1}‖ �f ‖Lp,q(Ω)n .

�
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3. Existence and Regularity of the Solution for Integrable
Data with Respect to Distance

The object of this work is to study the elasticity system when the source
function �f is in the space L1(Ω, δ)n of integrable functions with respect to
the distance function δ. Therefore, �f is more singular than in Theorem 2.1.
As in the case of the linear problem −Δu = f ∈ L1(Ω, δ), u = 0 treated
by Brézis [2], Diaz and Rakotoson [6, Theorem 1, 2 and 3 page 2 and 3], [16,
Proposition 2 page 2900], [17, Proposition 2 page 1137]. We note that the
solution �u can not generally have its gradient in L1(Ω)n.

Our aim is then to determine the regularity of the gradient of the so-
lution under these conditions. Since the existence and the uniqueness of the
solution �u does not follow from the previous theorems, and this solution is
not necessarily in W 1,1(Ω)n, we go as in the case of the equations, using the
notion of very weak solution introduced in the framework of the data L1(Ω, δ)
by H. Brezis. Hereafter, Ω is a bounded domain atleast of class C1,1 subset
of Rn and δ(x) = dist(x, ∂Ω).

3.1. Definition of Very Weak Solution Given by Brézis.

Definition 3.1 (see [6, definition 3.1 page 47], [2]). Let E = −Δ − λ∇ div be
the second-order elliptic operator and �f ∈ L1(Ω, δ) such that,

(P ) :
{

E �u = �f in Ω,
�u = 0 on ∂Ω.

We say that, �u is a very weak solution of the problem if

(P )vw :

⎧
⎨

⎩

�u ∈ L1(Ω)n,∀ �ϕ ∈ C2(Ω̄)n and �ϕ = �0 on ∂Ω,∫

Ω

�u · E∗ �ϕ(x) dx =
∫

Ω

�f · �ϕ(x) dx,

with E∗ is the adjoint operator of E, noting that E∗ = E.

Remark 3.1. Since we do not know the regularity of �u, we transport the
information on the derivatives of the test functions by making integrations
by parts. Noting that each integral of the problem (P )vw has a meaning.

Proposition 3.1. Uniqueness of the very weak solution
If the very weak solution exists, then it is unique.

Proof. Let �g ∈ C∞
c (Ω)n. According to the Schauder estimations, there exists

a function �ϕ ∈ C2(Ω)n such that �ϕ = 0 is a weak solution for E �ϕ = �g. Thus,
if �u is the difference of two very weak solutions, then :

0 =
∫

Ω

�u · E �ϕdx =
∫

Ω

�u · �gdx ∀ �g ∈ C∞
c (Ω)n,

hence

�u = 0.

�
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Theorem 3.1 (see [18, Lemma 1 page 3]). The set
{

�ϕ ∈ C2(Ω̄)n : �ϕ = �0 on ∂Ω
}

,

is dense in

W 2Lp,q(Ω) ∩ W 1
0 Lp,q(Ω)n, 1 < p < +∞, q ∈ [1,+∞[.

When p = q in this theorem, the result states without detailed proof in
[11, page 254 exercise 9.6].

The following lemma results from existence for the linear problems es-
sentially due to Diaz and Rakotoson (see Theorem 1 page 812 in [7], Theorem
3.8 page 50 in [6]).

Lemma 3.1. Let �f = (f i)i=1,..,n and the function f i ∈L1(Ω, δαi((1+| log δ|)βi)
with 0 < αi, βi � 1.

Then, there exists a matrix that is a second order F = ( �F 1, �F 2, . . . , �Fn)t

defined over Ω and a positive constant CΩ > 0 independent of Ω, αi and βi

such that,

1. div(F) = �f , this equality is defined in the distributional sense with F ∈
Mn×n(Ω;R).

2. If αi ∈]0, 1[ and βi = 0 then F i ∈ Vαiβi
= L

n
n−1+αi (Ω)n.

3. If αi = βi = 0 then F i ∈ Vαiβi
= L

n
n−1 ,∞(Ω)n.

4. If αi = βi = 1 then F i ∈ Vαiβi
= L1(Ω)n.

5. If αi = 1 and βi = 0 then F i ∈ Vαiβi
= L1+ 1

n (Ω, δ)n.

Thus, the matrix F ∈ ∏n
i=1 Vαiβi

= W and ∀i = 1, . . . , n we have,

‖F i‖Vαiβi
� CΩ‖f i‖L1(Ω,δαi (1+| log δ|)βi ).

Equivalent to

‖F‖W � CΩ

n∑

i=1

‖f i‖L1(Ω,δαi (1+| log δ|)βi ).

Idea of the proof: According to Dı́az and Rakotoson [6] page 50, if the function
f i ∈ L1(Ω, δαi(1 + | log δ|)βi) and under one of the conditions 2, 3, 4 and 5,
there exists a function vi ∈ L1(Ω) verified in a very weak sense of the following
problem:

{−Δvi = f i in Ω
vi = 0 on ∂Ω,

and

‖∇vi‖Vαiβi
(Ω)n � C(Ω)‖f i‖L1(Ω,δαi (1+| log δ|)βi ).

Thus,

F i = ∇vi ∈ Vαiβi
(Ω)n

which makes it appropriate. �
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3.2. Existence and Uniqueness of the Solution for the Data in L1(Ω, δ)n .

Theorem 3.2. Let �f ∈ L1(Ω, δ)n. Then, there exists the one and only very
weak solution of (P )vw. Furthemore, �u ∈ Ln′,∞(Ω)n with n′ =

n

n − 1
, such

that,
∫

Ω

�u · E∗ �ϕ dx =
∫

Ω

�f · �ϕ dx, ∀ �ϕ ∈ W 2Ln,1(Ω)n ∩ H1
0 (Ω)n,

where E∗ = −Δ − λ∇ div and there exists a constant C(Ω, E∗) > 0 such
that,

‖ �u ‖Ln′,∞(Ω)n � C(Ω, E∗)‖ �f ‖L1(Ω,δ)n .

Proof. For k � 1, we define the following truncation:

Tk( �f) = �fk =
(
Tk(f1), Tk(f2), . . . , Tk(fn)

)t

with

Tk(f i) :=
{

f i if |f i| � k,
k sign(f i) elsewhere.

By this truncation, we have constructed a function �fk that belongs to L∞(Ω)n

∩ L1(Ω, δαi(1 + | log δ|βi)n, which converges to �f in L1(Ω, δαi(1 + | log δ|βi)n

as k goes to infinity and the following problem:

(Pk) :
{−Δ �uk − λ∇ div �uk = �fk in Ω,

�uk = �0 on ∂Ω.

According to the Theorem 1.1, (Pk) is well-posed and admits a unique solu-
tion �uk ∈ W 1,p

0 (Ω)n,∀p ∈]1,+∞[. In particular, ∀ �ϕ ∈ C2(Ω̄), �ϕ = 0 on ∂Ω,
∫

Ω

�uk · E∗ �ϕ dx =
∫

Ω

�fk · �ϕ dx. (3.1)

Thanks to the completeness of the space Ln′,∞, it suffices to prove that
the sequence �uk verifies the Cauchy creteria to converge in this space. In fact,
for k � 1 and n � 1, we define,

�ukn = �uk − �un and �fkn = �fn − �fk.

Then, from the relation (3.1) and the density Lemma 3.1, we have ∀ �ϕ ∈
H2(Ω)n ∩ H1

0 (Ω)n,
∫

Ω

�ukn · E∗ �ϕ dx =
∫

Ω

�fkn · �ϕ dx. (3.2)

The idea is to construct and control the norm ‖ �ukn ‖Ln′,+∞(Ω)n from Eq.
(3.2).
Let B be a measurable subspace of Ω, according to Morrey’s Theorem 1.1
and Lemma 2.1 there exists �ϕB ∈ W 2Lp,q(Ω)n ∩ H1

0 (Ω)n verifying,
⎧
⎨

⎩
E∗ �ϕB =

�ukn

| �ukn| χB in Ω

�ϕB = �0 on ∂Ω.
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It is conveniant that if �ukn = 0, the fonction
�ukn

|�ukn| = 0. Using the Hardy–

Littlewood inequality (see [15, section 1.2 page 11], [2, chapter 2 page 43]),
we estimate the function

�gknB =
�ukn

| �ukn|χB ∈ Ln,1(Ω)n. We have,

| �gknB |Ln,1(Ω)n � | χB |Ln,1(Ω)n �
∫ |Ω|

0

(
t

1
n |χB |∗∗(t)

)
dt

t

�
∫ |Ω|

0

t
1
n

(
1
t

∫ t

0

(χB)∗(s) ds

)
dt

t

=
∫ |Ω|

0

t
1
n −2 min(t, |B|) dt

� CΩ|B| 1
n .

Thus,

‖ �ϕB‖W 2Ln,1(Ω)n � C‖�gknB‖Ln,1(Ω)n � C|B| 1
n . (3.3)

We choose �ϕB as a test function in (3.2) and we deduce that,
∫

B

| �ukn|dx =
∫

Ω

�fkn · �ϕB dx =
∫

Ω

�fkn · �ϕB
δ(x)
δ(x)

dx.

On the other hand, with the injection of Sobolev associated with the Lorentz
space (see [16, Lemma 1 page 1133], [7, Theorem 1 page 813]), we know that,

�ϕB ∈ W 2Ln,1(Ω)n ↪→ W 1L∞(Ω)n. (3.4)

As �ϕB ∈ W 1
0 L∞(Ω)n, we can apply the Hardy inequality (see [6,13]) whence,

| �ϕB |(x)
δ(x)

� ‖∇ �ϕB‖L∞(Ω). (3.5)

Combining (3.3), (3.4) and (3.5), we obtain

| �ϕB |
δ(x)

� ‖∇ �ϕB‖L∞(Ω) � |C �ϕB |W 2Ln,1(Ω) � C|B|1/n.

In fact,
∫

Ω

| �ukn|dx �
∥∥∥∥

�ϕB

δ(x)

∥∥∥∥
L∞(Ω)

∫

Ω

| �fkn|δ(x) dx � C|B|1/n‖ �fkn‖L1(Ω,δ)n .

Multiplying the two members of the inequality by |B|−1/n, we have,

|B|−1/n

∫

B

| �ukn|dx � C| �fkn|L1(Ω,δ)n .

Applying the supremum on the previous inequality, then the inequality be-
comes,

sup
|B|=t

|B|−1/n

∫

B

| �ukn|dx � C‖ �fkn‖L1(Ω,δ)n (3.6)
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By Hardy–Littlewood equality (see [15], [2, chapter 2 page 43]), the relation
(3.6) becomes,

t1− 1
n

1
t

∫ t

0

| �ukn|∗(s) ds � C| �fkn|L1(Ω,δ)n . (3.7)

Thanks to the definition of the maximum function (see [15], [2, section 2.3
page 52]), the estimation (3.7) is written as,

t1/n′ | �ukn|∗∗(t) � C‖ �fkn‖L1(Ω,δ)n . (3.8)

Consequently,

sup
|t|�|Ω|

t1/n′ | �ukn|∗∗(t) � C‖ �fkn‖L1(Ω,δ)n −→ 0 if k, n −→ +∞.

Finally, we pass by the estimation of �u in Ln′,∞(Ω)n. For that, we repeat the
same procedure, we replace �ukn and �fkn, respectively, by �uk and �fk. We will
then have,

sup
|t|�|Ω|

t1/n′ | �uk |∗∗(t) � C‖ �fk ‖L1(Ω,δ)n .

and we pass by the limit k −→ +∞, we obtain finally that,

‖�u‖Ln′,∞(Ω)n = sup
|t|�|Ω|

t1/n′ |�u|∗∗(t) � C‖ �f ‖L1(Ω,δ)n .

Hence the desired result. �

3.3. Theorem of the Regularity of Very Weak Solution

Proposition 3.2. Let �f ∈ L1(Ω; δ)n ∩ W−1,p′
(Ω)n, 1 < p′ < +∞. If �u is

a weak solution associated to the data �f , then �u is the unique, very weak
solution.

Proof. As the problem is linear, we can assume that �f = (f1, . . . , fn), f i � 0,
∀ i = 1, . . . , n. Since f i ∈ L1(Ω; δ) ∩ W−1,p′

(Ω), then using Brézis–Browder
Theorem, we have

< f i, ϕi >W −1,p′ ,W 1,p
0

=
∫

Ω

f iϕi dx,

∀ϕi ∈ W 1,p
0 (Ω) and f iϕi ∈ L1(Ω). As �u is a weak solution, then �u ∈ W 1,p′

(Ω)
and

a(�u; �ϕ) =
∫

Ω

�f · �ϕdx ∀ �ϕ ∈ C∞
c (Ω)n.

Therefore, by density, we conclude

a(�u; �ϕ) =
∫

Ω

�f · �ϕ ∀ �ϕ ∈ W 1,p
0 (Ω)n.

Noting that
{

�ϕ ∈ C2(�Ω) : �ϕ = 0 on ∂Ω
}

⊂ W 1,p
0 (Ω)n,

we then integrate by parts and obtain the desired result. �
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As a corollary of this proposition 3.2, we have the following existence
and uniqueness theorem:

Theorem 3.3. Let �f be a function belonging to
∏n

i=1
L1(Ω; δαi) with 0 <

αi < 1. Then, there exists a very weak solution of (P )vw which belongs to
W 1

0 L
n

n−1+α (Ω), where α = max1�i�n αi.
Moreover, this solution is also the weak solution of (P ) associated to �f .

Proof. As shown by Dı́az and Rakotoson (see [6, lemma 3.7 page 49]), the
weighted space L1(Ω, δαi) is injected into the dual space of W 1

0 L
n

1−αi (Ω), this
means that,

L1(Ω, δαi) ⊂ (W 1
0 L

n
1−αi (Ω))∗ = (W−1L

n
n−1+αi )(Ω).

Moreover, according to Lemma 3.1, there exists a matrix function F in∏n
i=1 L

n
n−1+αi (Ω)n ⊂ L

n
n−1+α (Ω)n2

, such that div(F) = �f . We can write
(P ) in the divergence form:

(P )df :

{
−Dα

(
Aαβ

ij (Dβuj)
)

= DαF i
α in Ω,

uj = 0 on ∂Ω.

Applying Morrey’s Theorem 1.1, we deduce then that the problem is well-
posed and admits a unique solution �v ∈ W 1

0 L
n

n−1+ᾱ (Ω)n. We deduce from
Proposition 3.2 that �v is the very weak solution and �v = �u. �

Now the question is what happens when ᾱ = max
i

αi tends to 0 or 1.

Knowing that

L1(Ω, δ0) = L1(Ω) and L1(Ω, δ1) = L1(Ω, δ),

When ᾱ goes to 1, this means that if one of the functions fi ∈ L1(Ω, δ), would
the solution �u be in W 1L1(Ω)n? Similarly, if one of the functions fi ∈ L1(Ω),
then would �u belong to W 1L

n
n−1 (Ω)n?

As in the case of equations, if αi = 0 ∀i, this means that if �f ∈ L1(Ω)n, �u is
in a larger space that is W 1L

n
n−1 ,∞(Ω)n and if max

I
αi = 1, then ∇�u is not

necessarily in L1(Ω)n.

Theorem 3.4. For a source function �f ∈ L1(Ω)n, the solution �u of (P ) belongs
to W 1Ln′,∞(Ω)n. Furthermore, there exists a positive constant C such that,

‖�u‖W 1Ln′,∞(Ω)n � C‖ �f‖L1(Ω)n .

Proof. From Lemma 3.1, part 3, there exists a function �F i ∈ Ln′,∞(Ω)n such
that div �F i = f i and consequently,

‖ �F i‖Ln′,∞(Ω)n � C‖f i‖L1(Ω).

Then, we can consider the following divergence form of the elasticity
problem:

(P )df :

{
−Dα

(
Aαβ

ij (Dβuj)
)

= DαF i
α in Ω

uj = 0 on ∂Ω.
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We have F ∈ Ln′,∞(Ω)n2 ⊂ Ln′−ε(Ω)n2 ∀ 0 < ε < n′ − 1. Then,
applying the result of Theorem 1.1, we obtain the existence of a unique weak
solution �u in W 1Ln′−ε(Ω)n, where ε ∈ ]0, n′ − 1[. In other words, the weak
solution �u ∈

⋂
p<n′W

1Lp(Ω)n. To prove a finer result of the theorem, we can

introduce the linear and continuous operator T which operates from Lp into
itself with 1 < p < +∞ such that,

T : Lp(Ω)n2 −→ Lp(Ω)n2
,

F −→ TF = ∇�u.

According to Morrey’s result Theorem 1.1 there exists a constant Cp > 0
such that,

‖ ∇�u ‖Lp(Ω)n2 � Cp‖ F ‖Lp(Ω)n2 ∀ p0 < n′ � p < n′ + 1 = p1.

We apply Marcinkiewicz interpolation (see [2]) which extends the regularity
of the Lebesgue space to the Lorentz space. Then, T is continuous from Lp,q

into Lp,q for all q ∈ [1,∞]. In particular, we obtain the continuity of T of
Ln′,∞ into itself. Consequently,

‖ �u ‖W 1Ln′,∞(Ω)n � C‖ F ‖Ln′,∞(Ω)n2 � C‖ �f‖L1(Ω)n .

Thus, the weak solution �u associated to �f ∈ L1(Ω)n ∩ W−1Ln′−ε(Ω)n and
according to Proposition 3.2, �u is a very weak solution. �

Theorem 3.5. Let �f ∈ L1(Ω, δ(1 + | ln δ|))n, then the solution �u of (P )vw is
in W 1,1

0 (Ω)n.

Preuve. For k � 1 and n � 1, we define,

�ukn = �uk − �un and �fkn = �fn − �fk,

with �uk already defined in the Theorem 3.2. Since the space W 1,1(Ω) is
complete, it suffices to prove that the sequence �uk verifies the Cauchy criteria
in this space.

The procedure consists by constructing and controlling the norm
‖ �ukn ‖W 1,1(Ω)n . Recalling that E∗ = −Δ−λ∇ div and supposing the follow-
ing problem:

(P ∗
kn) :

⎧
⎨

⎩
E∗ �ϕ = div

( ∇�ukn

|∇�ukn|
)

in Ω.

�ϕ = �0 on ∂Ω.

We note that �gkn =
∇�ukn

|∇�ukn| . As �ukn ∈ W 1,p(Ω)n, then �gkn ∈ LP (Ω)n, it

follows that according to Morrey Theorem 1.1, this problem is well-posed,
in particular admits a unique solution �ϕ ∈ W 1,p(Ω)n. Moreover, using Cam-
panato [3] and [1] technique, we show that the solution �ϕ of such system
belongs to W 1

0 bmor(Ω)n and there exists a constant C > 0 such that,

‖∇ �ϕ‖bmor(Ω)n � C

∥∥∥∥
∇�ukn

|∇�ukn|
∥∥∥∥

L∞(Ω)n

� C(Ω).
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Furthermore, thanks to the injection between bmo and Lexp (see [6]), we
obtain that,

�ϕ ∈ W 1
0 bmor(Ω)n ↪→ W 1

0 Lexp(Ω)n.

Combining the relation (3.10) and the problem (P ∗
kn), we have,

∫

Ω

|∇�ukn|dx =
∫

Ω

�fkn. �ϕ dx

�
∫

Ω

�fkn. �ϕ δ(1 + | ln δ|)
δ(1 + | ln δ|) dx. (3.9)

AS �ϕ ∈ W 1
0 Lexp(Ω)n then, the Hardy inequality (see [6,13]) is applicable,

whence
| �ϕ(x)|

δ(x)(1 + | ln δ|) � C(Ω)‖∇ �ϕ‖Lexp(Ω)n . (3.10)

Then, the relations (3.9) and (3.10) leads to,
∫

Ω

|∇�ukn|dx � | �ϕ(x)|
δ(x)(1 + | ln δ|)

∫

Ω

| �fkn |δ(x) (1 + | ln δ|) dx

� C(Ω)‖∇ �ϕ‖Lexp(Ω)n

∫

Ω

| �fkn |δ(x) (1 + | ln δ|) dx

� C(Ω)
∫

Ω

| �fkn| δ(x) (1 + | ln δ|) dx −→
k,n→∞

0.

�
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