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1. Introduction

J. Fourier provided the modern mathematical theory of heat conduction,
Fourier series and Fourier integrals with applications on La Théorie Ana-
lytique de la Chaleur. He discovered a double integral representation of a
non-periodic function f(z) for all real x which is universally known as the
Fourier Integral Theorem in the form

o0

=5 [ e'“”‘l / f(é)e‘i’ffdﬁldk- (1.1)

— 0o

This theorem is regarded as one of the most fundamental representation
theorems of mathematical analysis. The Fourier integral theorem was used by
Fourier to introduce the Fourier transform and the inverse Fourier transform
as follows:

oo

Flf@) = F0) = = [ e p(a)da, (1.2)
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FYF(k)} e P (k)dk. (1.3)

3k

The Laplace transform is a special case of the Fourier transform. The Laplace
transform was introduced by the following formula:

o0

L@} = [ @do = Fl), Re(w)>0. (1)

O. Heaviside made the Laplace transform very popular by applying it to solve
ordinary differential equations and to develop modern operational method.
At present, there is a very extensive literature available for the Laplace
transform of a function f(z) of one variable and its applications [2,4,8,9].
But there is a very little work available for the double Laplace transform
of f(z,y) of two positive real variables z and y and their properties. The
double Laplace transform of f(x,y) is defined in [3] by the formula:

F(p,q) = La{f(z,y); (p,a)} = L{IF (p,y); qa}
z//f(x,y)e_pr_qydxdy. (1.5)
0 0

Debnath [4] presented a study of interest by the double Laplace transform,
its properties with examples and applications to ordinary, partial differential
equations and integral equations.

The following Laplace-type integral transform, Lo, was introduced by
Yiirekli and Sadek [12] as follows:

Lo{f( / eV f(r)dz = F(y), Re(y) >0.  (16)
0

Yiirekli and et al. gave a lot of properties of the Lo-transform and they applied
this transform to solve some special differential equations [5,6,10,11,13].

The following inverse Lo-transform was introduced by Aghili, Ansari
and Sedghi [1] as follows:

c+ioco
L P )it} = f(a) = 5= / 2F(yF)e vy
Z Res{2F (\/y Y g = T H- (1.7)

In the present paper, the authors introduce the double Lao-transform, its
properties with examples and applications. Several simple theorems dealing
with general properties of the double Laplace transform are proved. The
convolution of f(z,y) and g(z,y), its properties and convolution theorem
with proof are given. Also, the authors introduce the method of the double
Laplace-type Lao-transform to solve problems in applied mathematics.
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2. The Main Definitions and Theorems

Definition 2.1. The double Laplace-type transform Los of a function f(x,y)
of two variables defined in the first quadrant of the xy-plane is defined by
the following double integral form:

lf“(p,q)=£22{f(x,y);(p,q)}=//xye_”z”z_ysz(w,y)dwdy, (2.1)
0 0

provided the integral exists.
The double Los-transform is related to the double Laplace transform Lo-
transform (1.5) by means of the identity:

ALoo A f (2, y); (0, 0)} = Lo{f('/,4"%); (0%, %)} (2.2)

or equivalently

4F(p,q) = F(p*, %)

Definition 2.2. The inverse of the Loo{f(x,y); (p,q)} = lg'(p7 q) function is
defined as follows:

c+100 d+ico
_ = 1 2 2 =
Lo {F(p,q); (z,y)} = flz,y) = —— / / P T F(pt/2q?)dpdg,

c—100 d—1i00

(2.3)

where F (p, ¢) must be an analytic function for all p and ¢ in the region defined
by the inequalities Re(p) > ¢ and Re(q) > d which ¢ and d are real constants
to be chosen suitably. We obtain the formula (2.3) from (2.2). Substituting
p? = p and ¢? = ¢ into the relation (2.2), we have

Loo{f ("2, 5M2); (p, q)} = 4F (p"/2, ¢*12). (2.4)

Applying the E;;—transform to both sides of the relation (2.4), we get

ctioco d+ioco
1 =
Pty = = / e dp / eWE(p'?,¢'?)dg,  (2.5)
c—1i00 d—ioco

and then, we obtain (2.3).

Corollary 2.3. The double Loo-integral transform and its inverse 5521 -integral
transform satisfy the linear property.

Proof. Using the definitions of the £95 and /.32_21—integral transforms and lin-
earity of the integrals, we arrive at the linear properties for this transforma-
tions. O

Ezxzample.

_ kln! n
ﬁzzl{pkﬂqnﬂé (x,y)} = 2%y (2.6)
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Proof. We know from [3],

" 1 n 1 kln! z
Lor{a™y™"; (0, 0)} = Lafaty™ (0%, 4)} = 1z = P9 (27)
and from (2.7), we could write
= kn!
AF(pt/?,¢1?) = p (2.8)
Using the definition (2.3), we obtain
1 c+i00 1 d+i0c0 R
_ - pr? g 4e1’ F(pt/2_g1/2)q
flay) =5 e dpy— / e F(p'=,q/7)dg
c—100 d—ioco
1 c+ioco 1 d+ioc0o kl |
2 2 m:
= — P dp— W _————d 2.9
2mi c p2m'd / o gt 29)
where for n = m and k = j, we know
gt Kl  on K
Res{e sy G=qm ¢ =Y s, (2.10)
and
k! 2n
Res{epw2 pg/“ = pm} = y?naz?k, (2.11)
Using (2.10) and (2.11), we arrive at the relation (2.6). O

Corollary 2.4. If the following relation,
Lo {F(p,a); (x.9)} = L3 {A(p): e} L5 {B(a); ), (2.12)

holds true, we have
L3 {F(p.q); (z,y)}

= >~ Res{e" A(/p)ip = pm}

< 3" Res{e™ B(/g):q = ¢;}. (2.13)

j=1
Definition 2.5. If a positive constant K exists, such that for all z > X and

y>Y
Fla,y)| < Keo=tW (2.14)

then, f(x,y) is called exponential order as  — oo, y — o0.
And this property is considered as follows:

flz,y) = (’)(ea”by) as r — 00.y — 00. (2.15)
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Or, equivalently, for o« > a, 8 > b,
lim eI f(a,y)|

T—00, Y—00

=K lim e (@D~ — (2.16)

T—00, Yy—00

Theorem 2.6. If a function f(x,y) is a conlinuous function in every finite
intervals (0,X), (0,Y) and of exponential order e“2x2+b2y2, then the double

Laplace-type transform of f(x,y) exists for all p and q, provided that Re(p*) >
a® and Re(q?) > b2.

Proof. We have from the definition (2.1),

F(p.q //xye PO f(, y)dady
00
< K/xefwg(pk‘f)dx/ye*yz(quQ)dy
0 0
K
=5 [ 62)17 (2.17)
where Re(p?) > a?, Re(q?) > b2
It follows from (2.17)
lim |1§(p, q)|=0or lim 1’::’(p7 q) =0. (2.18)
p—oo, g—o0 p—oo, ¢—00

O

Corollary 2.7. The relation (2.18) can be regarded as the limit property of the
Loo-transform. F(p, q) = p?q® or ﬁ’(p, q) = p*> +¢* are not the Log-transform
of any function f(x,y), because F(p,q) does not tend to zero as p — oo and

q— Q.

Theorem 2.8. The following properties hold true under suitable conditions on

f(z,y):
Loa{e™ " = f(2,9); (0, 0)} = F(Vp? + a2, V@2 + 17), (2.19)
Loz f(ax)g(by); (p,q)} = ajbzﬁ(g)ﬁ(%), a,b> 0, (2.20)
Loal @) (0.0} = 557 D).
L22{9(y); (. 0)} = 2—]132@(51), p,q #0, (2.21)
Lol @+ )} = 5 PG = Pl p# 0. (222
Loo{f(z® —y%); (p,q)} = m[mﬂ + F(¢?)], when f is even,

(2.23)
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= ;[F(pQ) — F(qQ)]7 when f is odd,

1P+ )
(2.24)
Coa{f (@) H(z — ); (p,0)} = 2%2[1%) PR Rzt 2>,
(2.25)

Qﬂﬂ@H@—xﬁ@ﬂﬂzi%FW@iﬁﬁ,x#%y>x, (2.26)

ﬁmwuﬂﬂx+wmn@}=§%ﬁwxq¢o, (2.27)
1 1

S — 0, 2.28
4p%(p? +¢?) P (2.28)

Loo{H(z —y); (p,q)} =

where the integrals involved converge absolutely.

Proof. Using the definitions of the Los-integral transform, the Lo-integral
transform and [4], we can prove the properties in Theorem 2.8. g

Theorem 2.9. We have the following relation between Loo{ f(z,y); (p,q)} and
Lo{f(z.y); (p.a)}:

ALoo{f(2® = &,y" =" )H (2® = &5 —”); (0, 0)}
= e P Lop {f (2 y); (0 )} (2.29)
where H (2% — &2, y? —n?) is the Heaviside function [4,7].

Proof. Using the definition of the Los-transform (2.1) and Heaviside function,
we get

Loo{f(x* =&, 9* —n*)H(z® — E,9° —n°); ()}

//a:g/eff”zpzfyzqzf(a:2 — &2, y? —n*)dady. (2.30)
772 52
Making the change variables 22 — ¢2 = u? and y? — n? = v?, we find
T (u +f 2 (v2+ 2) 2 2 2
ng{f(u v? uve” 4 f(u?, v )dudw
0 0

= 6_521’2_"2‘12//uve_“2p2_”2q2f(u2,UQ)dudv.
00
(2.31)

Now, by setting u?> = x and v? = y into (2.31), we arrive at the relation
(2.29). O
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Theorem 2.10. If f(x,y) = f(Va2 + a?,\/y? + b2) for all x,y and a,b € R
and Zf £22{f(xa y)7 (pa q)} GI'Z'StS, then

a® b2

Lo {f(2,y); (p.q)} = [1 — e P %) / / wye P F TV f (2, y)dedy
0 0
(2.32)
holds true.

Proof. Using the definition of the Loo-transform (2.1), we have

Fp.q) = Lon{f(2.9); (p@)} = / / rye V0V f (2, y)drdy
0 0

a? b?

://xye_pzxz_qzyzf(x,y)dxdy
00

+//xye*pzmtq?yz’f(z,y)dxdy. (2.33)
a? b2
Changing the variables on the second double integral to 22 = u? + a? and

y? = v? + b? and using the hypothesis, we obtain the relation (2.32):

a? b?

F(p, //xye Pt f (2, y)dady

+//uve‘p2u2_q2“2f(u,v)dudv. (2.34)
00

Definition 2.11. The convolution of f(z,y) and g(z,y) is denoted by
(f * %) @.) / / Enf((a® — €)% (s — ) P)a(em)dedn.  (2:35)

Using the definition (2.35), it can easily be verified that the following prop-
erties of convolution hold true:

[f * *(g * *h)|(z,y) = [(f * *xg) * xh](z,y), (Associative) (2.36)
(f xxg)(z,y) = (g xxf)(z,y), (Commutative) (2.37)

[f **(ag + bh)](x,y) = a(f * xg)(z,y) + b(f * xh)(x,y), (Distributive)
(2.38)
(f #x0)(z,y) = f(z,y) = (0 **f)(z,y), (Identity) (2.39)

where §(x,y) is the Dirac delta function of z and y.

Corollary 2.12. By virtue of these convolution properties, it is clear that the
set of all Log-transformable functions forms a commutative semigroup with
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respect to the convolution operation xx. In general, this set does not form a
group, because f * xg~1 does not have a Las-transform.

Theorem 2.13. (Convolution Theorem) If Loa2{f(z,y); (p,q)} = F(p,q) and
Loa{g(z,9); (p,0)} = G(p,q), then
Loo{[(f #x9) (@, 9)]; (0, @)} = La2{f (2, 9); (0, )} L22{9(x,); (P, @)}
= F(p.0)G(p. ). (2.40)

Or equivalently,

L3 {F(p, 0GP, 0 (w.9)} = (f % #9) @), (2.41)
where (f * xg)(x,y) is defined by the double integral (2.35).
Proof. Using the definitions (2.35),(2.1), we have

Loo{(f * xg)(z,v); (P, q aye PPV (f % xg) (2, y)dady

2y —p212—q2y2

0\8 0\8

[l
[

X

T Y
[//&f( )2 (y2—n?)'/?)g(€,n)dEdn | dady.
00

(2.42)

Using the Heaviside unit step function [see 1] and changing the order of
integration, we obtain for 0 < { <z, 0 <z <occand 0 <n <y, 0 <y < o0,

Loo{(f **g)(x,y); / / zye P T =Y dady
><//€ D2 (=) g(€,mH (x — &,y —n)dédn
0 0

/fng &,m)dédn

0

x / / ye P f (22— 2)V2, (42 — ?) YA H(x — £,y — n)dedy
0 O

= //Ene"’zgz‘f”zg(f,n)ﬁ(p, g)dédn = F(p, )G (p, q). (2.43)
0 0

O

Remark 2.14. We have the following relation:
Lo fla,y)H(x —a,y = )i (p.)} = e~ Lo f(a,); (P @)} (2:44)
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Using the definition of Las-transform (2.1) and changing the variables of
integration from 22 — a? to 22 and from y? — b2 to y2, we obtain the relation
(2.44).

Corollary 2.15. If f(z,y) = k(2)l(y) and g(z,y) = m(z)n(y), then we have
Loo{(f % xg) (@, 9); (p,0)} = La{(k+m)(x); ptLa{ (I n)(y), ¢}
F(p,9)G(p.q) = K(p)M(p)L(a)N(0). (2.45)
Proof. Using the definitions of Los-integral transform (2.1) and Lo-integral

transform (1.6), we get

LooA(f *xg9)(z,9); (p,9)} = xye_pzz_qyzdmdy
/]
x Y
x / / enf((2® — €2)1/2 (4% — n?)V/2)g(€, n)dedn
0O 0

- / / wye P =0V’ / / enk((@® — €)1 2)1((W? — n%)H/2)m(€)n(n)dedndady,
0O 0

0 0
(2.46)
Changing the order of integration and using the following known relation [1]:
Loa{(f # #0)(x.9): (p.0)} = / re " da / k(2 — € )m(€)dg
oo y
X /ye“ﬁ’zdy/nl((y2 = 7)"?)n(n)dn
0 0

= Lo{(k s m)(x);ptLoA(lxn)(y)iq},  (2:47)
we obtain the relation (2.45). O

FEzxzample. We calculate the inverse Loo-transform of the functio p21q2 —ap—bq
using Theorem 2.13.

Proof. Using Theorem 2.13 and (2.45), we get

—1 1 —ap—>b
‘C22 <p2q26 Py (x t)
1 1
=Ly | ze Pz Lo e bt . 2.48

Then, we know the following well-known formulas from [6, p.146 Entry 28],

(1 (1
£21<p2;x> =2, £21<q2;t> =2, (2.49)

a2 b 2
Lo ez} = %x%e*m, Lo e ™t} = ﬁt{)’e*ﬁ. (2.50)
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Using the identities (2.49) and (2.50), we obtain
1 a a? b b2
571( —ap—bq. t>:2 — 73671 X 2%k —=t Se . 2.51
29 p2q26 i (z,1) *ﬁx e 1Z X *\/E e s (2.51)
Using (2.45) and (2.51), we get

1 2
£33 (ze M (w,0)) = 2 /g— 4£2d§><f/ 2oy, (2.52)

Then, applying the transformations &1 7u and !

¢ and n of (2.52), we get

oo o0
1 2 2
£;21( 5 2e_ap_bq;(yc,t)) =2 /e_"zdu X 2—/6_”2dv
p=q
b

= gv to the variables

Theorem 2.16. If we have the following identity,
Loa{®(@,y,t,2): (p, @)} = $(p, q)tze " H PO (2.54)

where ¢(p, q), k*(p) and m?(q) are analytic functions, then the following re-
lation holds true:

22{//f(t,Z)‘I)(x’y,tZ)dtdz; (p, q)} — 6(p, Q) F(k(p),m(q)). (2.55)

Proof. Using the definition of Los-integral transform (2.1) and changing the
order of integration, we find

22{ 7/Oof(t, 2)®(z,y,t, z)dtdz; (p, Q)}

0 0

://xye p*a*~a’y? [//ftz xyﬂfz)dtdz]dxdy
00 00
//ftzdtdzl//x _(pz+qy)¢(x,y,t,z)dxdy]. (2.56)
0 0

By the hypothesis relation (2.54), we obtain

522{O/O/f(t,z)é(x,y,t,z)dtdz; (p,q)}

oo 00
q)//tze*tzl€2 P)= 22m2(q)f(t,z)dtdz
00
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— 6(p, ) F (k(p), m(q))- (2.57)
O

Example. We can solve the following integral equation using Theorem 2.16,

%//f t, z) sin(xt) sin(yz)dtdz = erf<a>erf<z>. (2.58)

Proof. Applying the Los-transform to both sides of (2.58), we get

Loo{sin(xt) sin(yz); //xye*p2x27q2y2 sin(xt) sin(yz)dzdy.

(2.59)
Using the following relations and the known formula [6, Voll. p.153 Entry
32], we have

1 t
Lo{sin(zt); p} = 5L',~{sir1(a:1/27f);102} = \{fp?)e_tz/‘lpz (2.60)
and
. 1., . —
Lo{sin(yz);q} = ilf{sm(yl/2 2);¢*} = \4Fq “/aa” (2.61)
Substituting (2.60) and (2.61) into (2.59), we obtain
1 2 L2
Loo{sin(zt) sin(yz); (p,q)} = 1—6 5 stze w7 a4d? (2.62)
where with respect to Theorem 2.16, we can take
T 1
¢mhﬁ@. (2.63)

Also, from the right-hand side of (2.58), we have
£22{erf( )erf( i (p,q }—//xye et —a*y? erf( )erf(b)dzdy

= Eg{erf( ); p}ﬁg{erf( );q}- (2.64)

Making use of the following identities and formulas [6, Voll. p.176 Entry 6],
we obtain

T 1 o2, 11 1
/32{erf(g)ap} = §£{erf( a sipTh = %ﬁwv (2.65)
y, , 1 y'/2 50 11 1
ﬁﬁ“ﬂg)#]} = §£{erf(7),q b= %?W (2.66)

Now, applying Theorem 2.16 to the equation, we have

=1 1 s 1 1
Flosg-) = —pa 2.
(Zp’ Zq) abp (p + )1/2 (q + )1/2 ( 67)
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Substituting p = 2—11), q= 2—1(1 into (2.67), we get

/2

\/aQ + 4p? \/62 +4q?
Applying the inverse Loo-transform to both sides of (2.68) and using the
formula [6, Vol.1 p.144 Entry 3|, we have

Flx,y) = nLy {A@p)}L3 {B(a)}

2 2
4 _a2%é6_b2y7

s

F(p,q) = A(p)B(g). (2.68)

= —¢
x y

= 10 ety (2.69)
zy

O

Ezample. The following integral equation could be solved using Theorem
2.16:

4 (e ele ]
—2//]r (t, z) sin(xt) sin(yz)dtdz = 1. (2.70)
00

s

Proof. Applying the Loo-transform to the both sides of 2.70, we get
4 oo o0 ' .
Wﬁ{ [ [ 1.2 sinGat)sinfyz)aeds o q>} SO0 CRS)
00

Using Theorem 2.16, the identity (2.62) and the following identity,

1; = 2.72
522{ a(p7Q)} 4]92(]27 ( 7 )
we have
il 1 }%(i 1)_ 1
T2 16 p3¢>  \2p’2q/  4p*¢?’

=z T
F(p,q) = —. 2.73
0 = 1 (273)

Using the definition of the Lo-transform and the following identity [6, Voll.
p.137 Entry 1], we have

Loft™Lip} = ;Fif) = \2/;, (2.74)
Lo{z""5q} = \2/5 (2.75)

Applying the inverse Loo-transform to the both sides of (2.73),using the iden-
tities (2.74), (2.75) and the relation (2.12), we obtain

f(tvz):*

= (2.76)

O
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Example. We can solve the double Fresnel integral using Theorem 2.16:

//Sin(tQ) sin(z?)dtdz = g (2.77)
00

Proof. We consider the following integral:

//sm (xt?) sin(y2?)dtdz. (2.78)
00

Changing the variables of the integral (2.78) by the transformation > = u

2?2 = v, we have

,;;\)—l

oo o0 1
// msm zw) sin(yv)dudv. (2.79)
00

We could apply the Las-transform to both sides of (2.79). Thus, we need the
following calculations:

Loo{sin(zu) sin(yv); (p }: 16 ¢ 3 4;22_%, (2.80)
Lo { } ﬁz{u }5 {v™1?;q}
1
= (1) T (2.81)

According to Theorem 2.16, we can consider the following identities:

T 1 ; AR
0(0.0) = 75 55 ki) m(a) =20(3) » (2.82)
where k(p) = ﬁ, m(q) = ﬁ.
Then, we have
= T 3\2 1
I(p,q) = 3—2F(1) R (2.83)

Applying the inverse Log-transform to both sides of (2.83) and using the
identity [6, Voll p. 137 Entry 1], we have

I(z,y) = g\/ixiy (2.84)

We can see the solution of the double Fresnel integral from the following

relation:
[eolNe o)
//bln (t?) sin(2?)dtdz = g (2.85)
00

O
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Example. We calculate the following integral using the Theorem 2.16:

oo oo

cos(max) cos(ny) . . i
] oo

- sin(at) sin(yz)dzdy = ZH(t —m)H(z —n). (2.86)
0

Proof. Applying the Los-transform to the integral in the right-hand side of
the (2.86), we get

ER) Ezz{ / / cos(ma) cos(n y) Sin(It)SiH(yZ)dxdy;(p,Q)}-

(2.87)

According to the Theorem 2.16, we have

cos(ma) cos(ny)

flzy) = , ®(z,y,2,t) = sin(xt) sin(yz). (2.88)

m n

To apply the Theorem 2.16 to the (2.87), we need some following calculations.
Using the identities [6, Voll 153 Entry 32], [6, Voll p.158 Entry 67], we obtain

1 t2 22

s 2 s
Loo{®(z,y,2,t); (p,q)} = 1—6173—(137526 1p? 4% (2.89)

where ¢(p, q) = 75 p1q3 and

ﬁ“(p, q) = Lo f(z,y); (0, @)} = 52{%;]7}62{ cos(ny) ; q}

n

T m?2 _ n?
476 Tap? 42 | (290)
Pq

According to the Theorem 2.16, we get

z 1 1 71'2 1 —m2p2_n2g2
522{I($7y,2,t); (Pa Q)} = ¢(P7 Q)F(%» 27]) = Eﬁe mrmm (2-91)

Applying the inverse Log-transform to both sides of (2.91) and using the
following identity:

Loo{H(t —m)H(z —n); (p,q)} = /Jz{H(t - m)'p}ﬁz{H(Z —n)iq}

= -/te*75 p dt/ -2,
1 e o
= 4p2q2 (& p q B (292)
we obtain
2
I(z,y,z,t) = %H(t —m)H(z —n). (2.93)
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3. Some Properties of the L,2-Transform and Differential
Operator 6

Definition 3.1. The J-derivative operator is defined as in [13]

_1d

5y = (3.1)

2 dx

and
1 d? 1 d
e e (3.2)
x2dz?2  x3dx
The d-derivative operator can be successively applied in a similar fashion for
any positive integer power.

Theorem 3.2. If f, f'. ..., f"=V are all continuous functions with a piecewise
continuous derivative f() on the interval x > 0, and if all functions are of
exponential order exp(c?z?) as x — oo for some constant c, then

Lo{07 f(x); s} = 2"s™ Lo{ f(t); s} — 2" 1> D F(0T)
—2n 222 (5, £)(0T) — - — (5271 £)(0T), (3.3)
form=1,2,....

Theorem 3.3. If f is piecewise continuous on x > 0 and is of exponential
order exp(c?z?) as x — oo, then

(=1

L st s () (3.4)

Lo{x® f(x);s} =

form=1,2,....

The proofs of Theorems 3.2 and 3.3 could be found in [13].

) 87171 ) 671,71 . .
Theorem 3.4. If f, %, ey WL,JI, a—i, ceey Wj are all continuous functions
with piecewise continuous derivatives gﬂ{ , gyﬁ: in the intervals first quadrant

and if all functions are of exponential order exp(a®z? +b*y?) as x — oo,y —
oo for constants a,b then the following identities:

Lo {63 f(,9); (0,0)} = (20°) Loz f (2, 9): (0, @)} — (20°)" 7 F(0F,q)

—(2p") (0 (0T, q) — - = 2p* (852 ) (0T, )
—(57 1)) (0", ), (3.5)
Lao{68 f(2,9); (0, 0)} = (26*) Lo { f(2,9): (0. @)} — (26*)F 7 f(p,0T)
—(2¢°)F2(8, /) (p,07) — -+ = 2¢° (82 ) (p, 07)
— (65 f)(p,0™), (3.6)

hold true, where k € N.

Proof. Under the hypothesis of Theorem 3.4, if we use the definitions of the
Loo-transform (5), the Lo-transform (2) and the §,,d, derivatives (10), then
use integration by parts, we obtain
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L0 o))} = [ [V, p (o oy
0 0
/ye‘y2q2£2{5zf(m7y);p}dy =2p*f(p,q) — (0T, q). (3.7)
0
And we have
Loo{0yf(x.y); (0. q)} = 2¢°F(p,q) — f(p,0"), (3.8)
where f is of exponential order e a5 1 00, Y — 00.

Similarly, f and 9f 91 are continuous functions with a piecewise continuous
’ oz’ Oy

derivatives %, giyé on the first quadrant and if all functions are of expo-
nential order ¢ * %" as 1 — 0o, y — oo, we can use (102) and (103) to
obtain

Loo{82 f(z,y); (p,0)} = 4p4f(p7 q) —20°f(0%,q) — (6./)(07,q), (3.9)
Loo{0pf(x,y): (. q)} = 4¢* F(p.q) — 2¢°F(p,0%) — (6, f)(p.0), (3.10)

then using the known formula [13],
LoA07 f(2,9)ip} = 4p" Lo f (x,y); p} — 20" F(0T,y) — (6. 1)(0F,y)  (3.11)

and repeating applications of (106),(107),(108) and (109), we arrive at (104)
and (105) of Theorem 3.4. O

Remark 3.5. Under the hypothesis of Theorem 3.4, we have the following
relation:

L25{0.6,f(2,): (p, @)} = 4P F (p,q) — 22 (07, q)
—2p%f(p,07) + £(0F,07). (3.12)

Theorem 3.6. Under the hypothesis of Theorem 3.4, we have
_1 n+m
Lorla® " f (o, ): (.00} = G S Lo S 0): ()}, (3.13)

where n,m € N.

Proof. Using the definitions of the Loo-integral transform (7) and d-operator
(100) and taking the ¢,-derivative, then taking d,-derivative of (7) with
respect to p and with respect to g, respectively, we arrive at (112). (]

4. Illustrative Examples

Example. We solve partial differential equation with the following conditions:

2tUyy + 23 tuy — tPuy — zPup = 0, (4.1)
(i) uz(0,t) =0, u(x,0) =0, (4.2)

(i) u(0,¢) = e~*", u(x,0) =0, (4.3)

(iii) u(0,t) = t*, u(x,0%) = 0, (4.4)
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(iv) w(0,¢) = e, u(z,0) = 0. (4.5)
Proof. Dividing the Eq. (4.1) by 233 and using the definition (11), we obtain
62u + 07u = 0. (4.6)

Applying the Loo-transform to both sides of (4.2) and using Theorem 3.4, we
have

oo

Loo{2u(x,t); (p,q)} = /te“’%2 /x P 52 | dt

0

— /te*q2t2£2{52u(x,y);p}dt

/te_q ¢ 4p U pv ) 2p2u(07t) - <5Iu)(0’t))dt
0
4p

Ya(p, q) — 2p%(0,q) — (6,1)(0, q). (4.7)

Similarly, we have

Loo{67u(z,1); (p, )} = 4¢"u(p, q) — 2¢°a(p,0) — (5:)(p,0). (4.8)
and
Setting (4.7) and (4.8) into (4.6), we have
N 2> 2¢°
u(p,q) = m (0, q) + m“(}?» 0) (4.10)

and applying £5 L_transform to (4.10) with respect to ¢ and p, respectively,
we get

L1 27172; t ¢ = sin(p?t?), (4.11)
4p* +4q*
_ 2q°
1 . _ 2,2
£2 {4})44»4(]47t = COS(p t ) (412)

Substituting (4.11) and (4.12) into (4.10), we obtain
u(p,t) = sin(pt*) + u(0,1) + cos(p™t*)(p, 0)

- / £sin(p?€)u(0, (12 — £2)/2)de + cos(p*t)i(p, 0). (4.13)

0

Now, applying the £;'-transform (3) to (4.10) with respect to p, we shall
consider the following series representations:

: 2¢2 = - 2¢2\2n+1
7€) = 3 o 7 (1.14)
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(o]

cos(p t2 Z

p 212)? (4.15)

Using the following known formulas([?], Voll p.137 Entry 1),

2x74n74 2x74n72
—1 4An+2., — —1 4n , — 41
‘CQ {p 750} (—27’1—2)" ‘C2 {p ,I’} (—271—1)" ( 6)
. B (—1)" §4n+2
5 Hsin(p?€?); 2} = 2 Z B T DI 2n 3 (4.17)
—1 2,20 1 _ o\ (=1
Ly {cos(p?t?);z} = 2;::0 B —n ~ Ty (4.18)
and the following identities
2n+1I(—2n—-2)!=B@2n+2,-2n—1), (2n)!(—2n — 1)!
= B(2n+1,-2n), (4.19)
we obtain the formal solution of the problem (4.1),(4.2) as follows:
s dn—4 :
T
£ =9 1) 4n+3 2 — £2)d
e =23 G ) /f u(0, /7~ )
t4n 4 1
2 e 22 . (4.2
+Z e /5 2,006 (120)

If we consider the partial differential equation (4.1) and the condition (4.3),
then the solution of this problem is obtained as follows:

—4n—4

00 t
x 2 ¢2
t) =2 —1)" An+3 —t“+& d
) =23 g et
n= 0

t
> —4n—4
=2 N (=) i / k38 e, (4.21
e ZO( e e 1) KRR SRR
n= 0
where setting £2 = u, we get
t t?
/€4n+3e§2d§ _ 1/u2n+leudu
2
0 0

2n+1
2 1 1
= [etz Z( 1)k+lwt2k+(2n+1)! §e—t2. (422)

|
k=0 k!

Substituting (4.22) into (4.21), we obtain the solution of the problem (4.1)-
(4.3) as follows:

[ee) —dAn—4 [ 2n+1

T 5 2k
ul@t) = Y (D gy ¢ Z<—1>’““t,d]- (4.23)

n=0 k=0
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iii) Similarly, the solution of the problem (4.1)—(4.4) is obtained by the fol-
lowing series:

) 74n74t4"+6
u(z,t) = ;( " I'(2n + 2)I'(—2n — 2)(2n + 2)(2n + 3)

4n
1) & . 1 t
_6<x2> XO:(_D B(2n+4,—2n —2) (m) (424

where
t
/£4n+3( 5 )df _ 1 4n+6 1 (4 25)
3! (2n+2)(2n+3)° '
0
iv) If we consider the problem (4.1)-(4.5), we obtain
o0 dn—4 t
xrT T 20,2 42
=2 (=1)" dnt3en (=) ¢ 4.26
) =2 DN gy gy [ € 6 (426)
n= 0
where setting £? = u and using integration by part, we get
t t?
/54"+3e”2(t2_52)d£ = 1e’72t2 /u2"+1e_"2“du
2
0 0
5 [F(Qn + 2)( )2n+26772t2
2n+1 2k
n (t/n)
—(=?)" (20 +2) Y | (4.27)
k=0
Substituting (4.27) into (4.26), we obtain the following solution:
00 A 2n+1 k
A W P (t/n)
Z on — 1) (ﬁ) le" By ol N CED
o k=0
O
FEzample. We solve the following partial differential equation:
tu, + zup = xt (4.29)
with the conditions
22 12
= — = —. 4.
u(w,0) = =, u(0,1) = © (430)
Proof. Dividing the Eq. (4.29) by xt, we have
Opu + 0pu = 1. (4.31)

Applying the Las-transform to the both sides of (4.31) and using Theorem
3.2, we get
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ﬁgg{(sxu} + £22{5tu} = £22{1}7 (432)

oo (o]

/te_“’Zt2 /xe_k2’”26$udxdt

0

Loo{bzu(z,t); (s, k)}

:gkﬁk s) — (0T, s), (4.33
Loo{0su(x,t); (s,k)} = 2s%u(k, s) — a(k,07), 4.34)
and
Lon {1 (5, 1)} = 41; . (4.35)
Putting (4.33),(4.34) and (4.35) back at (4.32), we find
(2k% 4 25%)a(k, s) — @(0T, s) — a(k,07) = 4]; . (4.36)

Using (4.30) boundary conditions, we have @(07,s) = g7, a(k,07) = gz

thus,

~ 1 1 1
u(k, s) = 15 {k:?s‘l + I<;4s2]

Applying the inverse Loo-transform to the both sides of (4.37), we get

u(a,t) = o lﬁ—l{k;&; (Jc,t)} " a;;{ i (@ t)H (4.38)

We know the following identities [6, Vol.1 p.137 Entry 1],

1 1T(k+1
52{$2k;y} = §E{$k§y2} 9 y(Q(k+1))' (4.39)

(4.37)

Using (4.39),(2.12) and the definition of Ls-transform, we have

. 1 41 1)1

‘C 21{k254;(z7t)} 521{162,‘%},621{54,15} :4t2 (440)
_ 1 _ 1 _ 1

£ 1{k4 i (@ t)} :521{]&;0@}521{52%} = 4z”. (4.41)

Substituting the identities (4.40) and (4.41) to (4.38), we obtain

and

w(z, t) = i(aﬂ ). (4.42)
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