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Abstract. In this paper, the authors introduce the double Laplace-type
integral transform L22 and its properties. Several simple theorems
dealing with general properties of the L22-integral transform are proved.
The convolution, its properties and convolution theorem are given. The
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transform to solve problems in applied mathematics which involve par-
tial differential and integral equations.
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1. Introduction

J. Fourier provided the modern mathematical theory of heat conduction,
Fourier series and Fourier integrals with applications on La Théorie Ana-
lytique de la Chaleur. He discovered a double integral representation of a
non-periodic function f(x) for all real x which is universally known as the
Fourier Integral Theorem in the form

f(x) =
1
2π

∞∫

−∞
eikx

[ ∞∫

−∞
f(ξ)e−ikξdξ

]
dk. (1.1)

This theorem is regarded as one of the most fundamental representation
theorems of mathematical analysis. The Fourier integral theorem was used by
Fourier to introduce the Fourier transform and the inverse Fourier transform
as follows:

F{f(x)} = F (k) =
1√
2π

∞∫

−∞
e−ikxf(x)dx, (1.2)
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F−1{F (k)} =
1√
2π

∞∫

−∞
eikxF (k)dk. (1.3)

The Laplace transform is a special case of the Fourier transform. The Laplace
transform was introduced by the following formula:

L{f(x); y} =

∞∫

0

e−xyf(x)dx = F̄ (y), Re(y) > 0. (1.4)

O. Heaviside made the Laplace transform very popular by applying it to solve
ordinary differential equations and to develop modern operational method.

At present, there is a very extensive literature available for the Laplace
transform of a function f(x) of one variable and its applications [2,4,8,9].

But there is a very little work available for the double Laplace transform
of f(x, y) of two positive real variables x and y and their properties. The
double Laplace transform of f(x, y) is defined in [3] by the formula:

¯̄F (p, q) = L2{f(x, y); (p, q)} = L{F̄ (p, y); q}

=

∞∫

0

∞∫

0

f(x, y)e−px−qydxdy. (1.5)

Debnath [4] presented a study of interest by the double Laplace transform,
its properties with examples and applications to ordinary, partial differential
equations and integral equations.

The following Laplace-type integral transform, L2, was introduced by
Yürekli and Sadek [12] as follows:

L2{f(x); y} =

∞∫

0

xe−x2y2
f(x)dx = F̃ (y), Re(y) > 0. (1.6)

Yürekli and et al. gave a lot of properties of the L2-transform and they applied
this transform to solve some special differential equations [5,6,10,11,13].

The following inverse L2-transform was introduced by Aghili, Ansari
and Sedghi [1] as follows:

L−1
2 {F (y); t} = f(x) =

1
2πi

c+i∞∫

c−i∞
2F (

√
y)ex2ydy

=
m∑

k=1

[Res{2F (
√

y)ex2y, x = xk}]. (1.7)

In the present paper, the authors introduce the double L22-transform, its
properties with examples and applications. Several simple theorems dealing
with general properties of the double Laplace transform are proved. The
convolution of f(x, y) and g(x, y), its properties and convolution theorem
with proof are given. Also, the authors introduce the method of the double
Laplace-type L22-transform to solve problems in applied mathematics.
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2. The Main Definitions and Theorems

Definition 2.1. The double Laplace-type transform L22 of a function f(x, y)
of two variables defined in the first quadrant of the xy-plane is defined by
the following double integral form:

˜̃F (p, q) = L22{f(x, y); (p, q)} =

∞∫

0

∞∫

0

xye−x2p2−y2q2
f(x, y)dxdy, (2.1)

provided the integral exists.
The double L22-transform is related to the double Laplace transform L2-
transform (1.5) by means of the identity:

4L22{f(x, y); (p, q)} = L2{f(x1/2, y1/2); (p2, q2)} (2.2)

or equivalently

4 ˜̃F (p, q) = ¯̄F (p2, q2).

Definition 2.2. The inverse of the L22{f(x, y); (p, q)} = ˜̃F (p, q) function is
defined as follows:

L−1
22 { ˜̃F (p, q); (x, y)} = f(x, y) = − 1

π2

c+i∞∫

c−i∞

d+i∞∫

d−i∞
epx2+qy2 ˜̃F (p1/2q1/2)dpdq,

(2.3)
where ˜̃F (p, q) must be an analytic function for all p and q in the region defined
by the inequalities Re(p) ≥ c and Re(q) ≥ d which c and d are real constants
to be chosen suitably. We obtain the formula (2.3) from (2.2). Substituting
p2 = p and q2 = q into the relation (2.2), we have

L22{f(x1/2, y1/2); (p, q)} = 4 ˜̃F (p1/2, q1/2). (2.4)

Applying the L−1
22 -transform to both sides of the relation (2.4), we get

f(x1/2, y1/2) = − 1
π2

c+i∞∫

c−i∞
epxdp

d+i∞∫

d−i∞
eqy ˜̃F (p1/2, q1/2)dq, (2.5)

and then, we obtain (2.3).

Corollary 2.3. The double L22-integral transform and its inverse L−1
22 -integral

transform satisfy the linear property.

Proof. Using the definitions of the L22 and L−1
22 -integral transforms and lin-

earity of the integrals, we arrive at the linear properties for this transforma-
tions. �

Example.

L−1
22

{
k!n!

pk+1qn+1
; (x, y)

}
= x2ky2n. (2.6)
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Proof. We know from [3],

L22{x2ky2n; (p, q)} =
1
4
L2{xkyn; (p2, q2)} =

1
4

k!n!
p2k+2q2n+2

= ˜̃F (p, q) (2.7)

and from (2.7), we could write

4 ˜̃F (p1/2, q1/2) =
k!n!

pk+1qn+1
. (2.8)

Using the definition (2.3), we obtain

f(x, y) =
1

2πi

c+i∞∫

c−i∞
epx2

dp
1

2πi

d+i∞∫

d−i∞
4eqy2 ˜̃F (p1/2, q1/2)dq

=
1

2πi

c+i∞∫

c−i∞
epx2

dp
1

2πi

d+i∞∫

d−i∞
eqy2 k!n!

pk+1qn+1
dq, (2.9)

where for n = m and k = j, we know

Res

{
eqy2 k!n!

pk+1qn+1
; q = qm

}
= y2n k!

pk+1
(2.10)

and

Res

{
epx2 k!y2n

pk+1
; p = pm

}
= y2nx2k. (2.11)

Using (2.10) and (2.11), we arrive at the relation (2.6). �
Corollary 2.4. If the following relation,

L−1
22 { ˜̃F (p, q); (x, y)} = L−1

2 {A(p);x}L−1
2 {B(q); y}, (2.12)

holds true, we have

L−1
22 { ˜̃F (p, q); (x, y)}

=
∞∑

m=1

Res{epx2
A(

√
p); p = pm}

×
∞∑

j=1

Res{eqy2
B(

√
q); q = qj}. (2.13)

Definition 2.5. If a positive constant K exists, such that for all x > X and
y > Y

|f(x, y)| ≤ Keax+by (2.14)
then, f(x, y) is called exponential order as x → ∞, y → ∞.
And this property is considered as follows:

f(x, y) = O(eax+by) as x → ∞.y → ∞. (2.15)
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Or, equivalently, for α > a, β > b,

lim
x→∞, y→∞ e−α2x2−β2y2 |f(x, y)|

= K lim
x→∞, y→∞ e−(α2−a2)xe−(β2−b2)y = 0. (2.16)

Theorem 2.6. If a function f(x, y) is a continuous function in every finite
intervals (0,X), (0, Y ) and of exponential order eα2x2+b2y2

, then the double
Laplace-type transform of f(x, y) exists for all p and q, provided that Re(p2) >
a2 and Re(q2) > b2.

Proof. We have from the definition (2.1),

| ˜̃F (p, q)| =

∣∣∣∣∣
∞∫

0

∞∫

0

xye−p2x2−q2y2
f(x, y)dxdy

∣∣∣∣∣

≤ K

∞∫

0

xe−x2(p2−a2)dx

∞∫

0

ye−y2(q2−b2)dy

=
K

4

[
1

(p2 − a2)(q2 − b2)

]
, (2.17)

where Re(p2) > a2, Re(q2) > b2.
It follows from (2.17),

lim
p→∞, q→∞ | ˜̃F (p, q)| = 0 or lim

p→∞, q→∞
˜̃F (p, q) = 0. (2.18)

�

Corollary 2.7. The relation (2.18) can be regarded as the limit property of the
L22-transform. ˜̃F (p, q) = p2q2 or ˜̃F (p, q) = p2 + q2 are not the L22-transform
of any function f(x, y), because ˜̃F (p, q) does not tend to zero as p → ∞ and
q → ∞.

Theorem 2.8. The following properties hold true under suitable conditions on
f(x, y):

L22{e−a2x2−b2y2

f(x, y); (p, q)} = ˜̃F (
√
p2 + a2,

√
q2 + b2), (2.19)

L22{f(ax)g(by); (p, q)} =
1

a2b2
F̃

(p

a

)
F̃

(q

b

)
, a, b > 0, (2.20)

L22{f(x); (p, q)} =
1

2q2
F̃ (p),

L22{g(y); (p, q)} =
1

2p2
G̃(q), p, q �= 0, (2.21)

L22{f(x2 + y2); (p, q)} =
1

q2 − p2
[F̄ (p2) − F̄ (q2)], p �= q, (2.22)

L22{f(x2 − y2); (p, q)} =
1

4(p2 + q2)
[F̄ (p2) + F̄ (q2)], when f is even,

(2.23)
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=
1

4(p2 + q2)
[F̄ (p2) − F̄ (q2)], when f is odd,

(2.24)

L22{f(x)H(x − y); (p, q)} =
1

2q2
[F̃ (p) − F̃ (

√
p2 + q2)], x �= y, x > y,

(2.25)

L22{f(x)H(y − x); (p, q)} =
1

2q2
F̃ (

√
p2 + q2), x �= y, y > x, (2.26)

L22{f(x)H(x + y); (p, q)} =
1

2q2
F̃ (p), q �= 0, (2.27)

L22{H(x − y); (p, q)} =
1

4

1

p2(p2 + q2)
, p �= 0, (2.28)

where the integrals involved converge absolutely.

Proof. Using the definitions of the L22-integral transform, the L2-integral
transform and [4], we can prove the properties in Theorem 2.8. �

Theorem 2.9. We have the following relation between L22{f(x, y); (p, q)} and
L2{f(x, y); (p, q)}:

4L22{f(x2 − ξ2, y2 − η2)H(x2 − ξ2, y2 − η2); (p, q)}
= e−ξ2p2−η2q2L22{f(x, y); (p2, q2)}, (2.29)

where H(x2 − ξ2, y2 − η2) is the Heaviside function [4,7].

Proof. Using the definition of the L22-transform (2.1) and Heaviside function,
we get

L22{f(x2 − ξ2, y2 − η2)H(x2 − ξ2, y2 − η2); (p, q)}
∞∫

η2

∞∫

ξ2

xye−x2p2−y2q2
f(x2 − ξ2, y2 − η2)dxdy. (2.30)

Making the change variables x2 − ξ2 = u2 and y2 − η2 = v2, we find

L22{f(u2, v2); (p, q)} =

∞∫

0

∞∫

0

uve−(u2+ξ2)p2−(v2+η2)q2
f(u2, v2)dudv

= e−ξ2p2−η2q2

∞∫

0

∞∫

0

uve−u2p2−v2q2
f(u2, v2)dudv.

(2.31)

Now, by setting u2 = x and v2 = y into (2.31), we arrive at the relation
(2.29). �
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Theorem 2.10. If f(x, y) = f(
√

x2 + a2,
√

y2 + b2) for all x, y and a, b ∈ R
and if L22{f(x, y); (p, q)} exists, then

L22{f(x, y); (p, q)} = [1 − e−p2a2−q2b2 ]−1

a2∫

0

b2∫

0

xye−p2x2−q2y2
f(x, y)dxdy

(2.32)
holds true.

Proof. Using the definition of the L22-transform (2.1), we have

˜̃F (p, q) = L22{f(x, y); (p, q)} =

∞∫

0

∞∫

0

xye−p2x2−q2y2
f(x, y)dxdy

=

a2∫

0

b2∫

0

xye−p2x2−q2y2
f(x, y)dxdy

+

∞∫

a2

∞∫

b2

xye−p2x2−q2y2
f(x, y)dxdy. (2.33)

Changing the variables on the second double integral to x2 = u2 + a2 and
y2 = v2 + b2 and using the hypothesis, we obtain the relation (2.32):

˜̃F (p, q) =

a2∫

0

b2∫

0

xye−p2x2−q2y2
f(x, y)dxdy

+

∞∫

0

∞∫

0

uve−p2u2−q2v2
f(u, v)dudv. (2.34)

�

Definition 2.11. The convolution of f(x, y) and g(x, y) is denoted by

(f ∗ ∗g)(x, y) =

x∫

0

y∫

0

ξηf((x2 − ξ2)1/2, (y2 − η2)1/2)g(ξ, η)dξdη. (2.35)

Using the definition (2.35), it can easily be verified that the following prop-
erties of convolution hold true:

[f ∗ ∗(g ∗ ∗h)](x, y) = [(f ∗ ∗g) ∗ ∗h](x, y), (Associative) (2.36)
(f ∗ ∗g)(x, y) = (g ∗ ∗f)(x, y), (Commutative) (2.37)

[f ∗ ∗(ag + bh)](x, y) = a(f ∗ ∗g)(x, y) + b(f ∗ ∗h)(x, y), (Distributive)
(2.38)

(f ∗ ∗δ)(x, y) = f(x, y) = (δ ∗ ∗f)(x, y), (Identity) (2.39)

where δ(x, y) is the Dirac delta function of x and y.

Corollary 2.12. By virtue of these convolution properties, it is clear that the
set of all L22-transformable functions forms a commutative semigroup with
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respect to the convolution operation ∗∗. In general, this set does not form a
group, because f ∗ ∗g−1 does not have a L22-transform.

Theorem 2.13. (Convolution Theorem) If L22{f(x, y); (p, q)} = ˜̃F (p, q) and
L22{g(x, y); (p, q)} = ˜̃G(p, q), then

L22{[(f ∗ ∗g)(x, y)]; (p, q)} = L22{f(x, y); (p, q)}L22{g(x, y); (p, q)}
= ˜̃F (p, q) ˜̃G(p, q). (2.40)

Or equivalently,

L−1
22 { ˜̃F (p, q) ˜̃G(p, q); (x, y)} = (f ∗ ∗g)(x, y), (2.41)

where (f ∗ ∗g)(x, y) is defined by the double integral (2.35).

Proof. Using the definitions (2.35),(2.1), we have

L22{(f ∗ ∗g)(x, y); (p, q)} =

∞∫

0

∞∫

0

xye−p2x2−q2y2
(f ∗ ∗g)(x, y)dxdy

=

∞∫

0

∞∫

0

xye−p2x2−q2y2

×
⎡
⎣

x∫

0

y∫

0

ξηf((x2−ξ2)1/2, (y2−η2)1/2)g(ξ, η)dξdη

⎤
⎦ dxdy.

(2.42)

Using the Heaviside unit step function [see 1] and changing the order of
integration, we obtain for 0 < ξ < x, 0 < x < ∞ and 0 < η < y, 0 < y < ∞,

L22{(f ∗ ∗g)(x, y); (p, q)} =

∞∫

0

∞∫

0

xye−p2x2−q2y2
dxdy

×
∞∫

0

∞∫

0

ξηf((x2 − ξ2)1/2, (y2 − η2)1/2)g(ξ, η)H(x − ξ, y − η)dξdη

=

∞∫

0

∞∫

0

ξηg(ξ, η)dξdη

×
∞∫

0

∞∫

0

xye−p2x2−q2y2
f((x2 − ξ2)1/2, (y2 − η2)1/2)H(x − ξ, y − η)dxdy

=

∞∫

0

∞∫

0

ξηe−p2ξ2−q2η2
g(ξ, η) ˜̃F (p, q)dξdη = ˜̃F (p, q) ˜̃G(p, q). (2.43)

�

Remark 2.14. We have the following relation:

L22{f(x, y)H(x − a, y − b); (p, q)} = e−p2a2−q2b2L22{f(x, y); (p, q)}. (2.44)
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Using the definition of L22-transform (2.1) and changing the variables of
integration from x2 − a2 to x2 and from y2 − b2 to y2, we obtain the relation
(2.44).

Corollary 2.15. If f(x, y) = k(x)l(y) and g(x, y) = m(x)n(y), then we have

L22{(f ∗ ∗g)(x, y); (p, q)} = L2{(k ∗ m)(x); p}L2{(l ∗ n)(y), q}
˜̃F (p, q) ˜̃G(p, q) = K(p)M(p)L(q)N(q). (2.45)

Proof. Using the definitions of L22-integral transform (2.1) and L2-integral
transform (1.6), we get

L22{(f ∗ ∗g)(x, y); (p, q)} =

∞∫

0

∞∫

0

xye−px2−qy2
dxdy

×
x∫

0

y∫

0

ξηf((x2 − ξ2)1/2, (y2 − η2)1/2)g(ξ, η)dξdη

=

∞∫

0

∞∫

0

xye−p2x2−q2y2

x∫

0

y∫

0

ξηk((x2 − ξ2)1/2)l((y2 − η2)1/2)m(ξ)n(η)dξdηdxdy.

(2.46)

Changing the order of integration and using the following known relation [1]:

L22{(f ∗ ∗g)(x, y); (p, q)} =

∞∫

0

xe−p2x2
dx

x∫

0

ξk((x2 − ξ2)1/2)m(ξ)dξ

×
∞∫

0

ye−q2y2
dy

y∫

0

ηl((y2 − η2)1/2)n(η)dη

= L2{(k ∗ m)(x); p}L2{(l ∗ n)(y); q}, (2.47)

we obtain the relation (2.45). �

Example. We calculate the inverse L22-transform of the function 1
p2q2 e−ap−bq

using Theorem 2.13.

Proof. Using Theorem 2.13 and (2.45), we get

L−1
22

(
1

p2q2
e−ap−bq; (x, t)

)

= L−1
2

(
1
p2

e−ap;x

)
L−1
2

(
1
q2

e−bq; t

)
. (2.48)

Then, we know the following well-known formulas from [6, p.146 Entry 28],

L−1
2

(
1
p2

;x

)
= 2, L−1

2

(
1
q2

; t

)
= 2, (2.49)

L−1
2 {e−ap;x} =

a√
π

x−3e− a2

4x2 , L−1
2 {e−bq; t} =

b√
π

t−3e− b2

4t2 . (2.50)
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Using the identities (2.49) and (2.50), we obtain

L−1
22

( 1
p2q2

e−ap−bq; (x, t)
)

= 2 ∗ a√
π

x−3e− a2

4x2 × 2 ∗ b√
π

t−3e− b2

4t2 . (2.51)

Using (2.45) and (2.51), we get

L−1
22

( 1
p2q2

e−ap−bq; (x, t)
)

=
2a√
π

x∫

0

ξ−2e
− a2

4ξ2 dξ× 2b√
π

t∫

0

η−2e
− b2

4η2 dη. (2.52)

Then, applying the transformations ξ−1 = 2
au and η−1 = 2

b v to the variables
ξ and η of (2.52), we get

L−1
22

( 1
p2q2

e−ap−bq; (x, t)
)

= 2
2√
π

∞∫
a
2x

e−u2
du × 2

2√
π

∞∫
b
2t

e−v2
dv

= 4erfc
( a

2x

)
erfc

( b

2t

)
. (2.53)

�

Theorem 2.16. If we have the following identity,

L22{Φ(x, y, t, z); (p, q)} = φ(p, q)tze−t2k2(p)−z2m2(q), (2.54)

where φ(p, q), k2(p) and m2(q) are analytic functions, then the following re-
lation holds true:

L22

{ ∞∫

0

∞∫

0

f(t, z)Φ(x, y, t, z)dtdz; (p, q)

}
= φ(p, q) ˜̃F (k(p),m(q)). (2.55)

Proof. Using the definition of L22-integral transform (2.1) and changing the
order of integration, we find

L22

{ ∞∫

0

∞∫

0

f(t, z)Φ(x, y, t, z)dtdz; (p, q)

}

=

∞∫

0

∞∫

0

xye−p2x2−q2y2

[ ∞∫

0

∞∫

0

f(t, z)Φ(x, y, t, z)dtdz

]
dxdy

=

∞∫

0

∞∫

0

f(t, z)dtdz

[ ∞∫

0

∞∫

0

xye−(p2x2+q2y2)Φ(x, y, t, z)dxdy

]
. (2.56)

By the hypothesis relation (2.54), we obtain

L22

{ ∞∫

0

∞∫

0

f(t, z)Φ(x, y, t, z)dtdz; (p, q)

}

= φ(p, q)

∞∫

0

∞∫

0

tze−t2k2(p)−z2m2(q)f(t, z)dtdz
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= φ(p, q) ˜̃F (k(p),m(q)). (2.57)

�

Example. We can solve the following integral equation using Theorem 2.16,

4
π2

∞∫

0

∞∫

0

f(t, z) sin(xt) sin(yz)dtdz = erf

(
x

a

)
erf

(
y

b

)
. (2.58)

Proof. Applying the L22-transform to both sides of (2.58), we get

L22{sin(xt) sin(yz); (p, q)} =

∞∫

0

∞∫

0

xye−p2x2−q2y2
sin(xt) sin(yz)dxdy.

(2.59)
Using the following relations and the known formula [6, Vol1. p.153 Entry
32], we have

L2{sin(xt); p} =
1
2
L{sin(x1/2t); p2} =

√
π

4
t

p3
e−t2/4p2

(2.60)

and

L2{sin(yz); q} =
1
2
L{sin(y1/2z); q2} =

√
π

4
z

q3
e−z2/4q2

. (2.61)

Substituting (2.60) and (2.61) into (2.59), we obtain

L22{sin(xt) sin(yz); (p, q)} =
π

16
1

p3q3
tze

− t2

4p2 − z2

4q2 , (2.62)

where with respect to Theorem 2.16, we can take

φ(p, q) =
π

16
1

p3q3
. (2.63)

Also, from the right-hand side of (2.58), we have

L22{erf(
x

a
)erf(

y

b
); (p, q)} =

∞∫

0

∞∫

0

xye−p2x2−q2y2
erf(

x

a
)erf(

y

b
)dxdy

= L2{erf(
x

a
); p}L2{erf(

y

b
); q}. (2.64)

Making use of the following identities and formulas [6, Vol1. p.176 Entry 6],
we obtain

L2{erf(
x

a
); p} =

1
2
L{erf(

x1/2

a
); p2} =

1
2a

1
p2

1
(p2 + 1

a2 )1/2
, (2.65)

L2{erf(
y

b
); q} =

1
2
L{erf(

y1/2

b
); q2} =

1
2b

1
q2

1
(q2 + 1

b2 )1/2
. (2.66)

Now, applying Theorem 2.16 to the equation, we have

˜̃F
( 1

2p
,

1
2q

)
=

π

ab
pq

1
(p2 + 1

a2 )1/2

1
(q2 + 1

b2 )1/2
. (2.67)
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Substituting p = 1
2p , q = 1

2q into (2.67), we get

˜̃F (p, q) =
π1/2√

a2 + 4p2
π1/2√

b2 + 4q2
= πA(p)B(q). (2.68)

Applying the inverse L22-transform to both sides of (2.68) and using the
formula [6, Vol.1 p.144 Entry 3], we have

f(x, y) = πL−1
2 {Ã(p)}L−1

2 {B̃(q)}
=

4
x

e−a2 x2
4

4
y
e−b2 y2

4

=
16
xy

e−(a2x2+b2y2)/4. (2.69)

�

Example. The following integral equation could be solved using Theorem
2.16:

4
π2

∞∫

0

∞∫

0

f(t, z) sin(xt) sin(yz)dtdz = 1. (2.70)

Proof. Applying the L22-transform to the both sides of 2.70, we get

4
π2

L22

{ ∞∫

0

∞∫

0

f(t, z) sin(xt) sin(yz)dtdz; (p, q)

}
= L{1; (p, q)}. (2.71)

Using Theorem 2.16, the identity (2.62) and the following identity,

L22{1; (p, q)} =
1

4p2q2
, (2.72)

we have
4
π2

π

16
1

p3q3
˜̃F
( 1

2p
,

1
2q

)
=

1
4p2q2

,

˜̃F (p, q) =
π

4pq
. (2.73)

Using the definition of the L2-transform and the following identity [6, Vol1.
p.137 Entry 1], we have

L2{t−1; p} =
1
2

Γ( 12 )
p

=
√

π

2p
, (2.74)

L2{z−1; q} =
√

π

2q
. (2.75)

Applying the inverse L22-transform to the both sides of (2.73),using the iden-
tities (2.74), (2.75) and the relation (2.12), we obtain

f(t, z) =
1
tz

. (2.76)

�
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Example. We can solve the double Fresnel integral using Theorem 2.16:
∞∫

0

∞∫

0

sin(t2) sin(z2)dtdz =
π

8
. (2.77)

Proof. We consider the following integral:

I(x, y) =

∞∫

0

∞∫

0

sin(xt2) sin(yz2)dtdz. (2.78)

Changing the variables of the integral (2.78) by the transformation t2 = u,
z2 = v, we have

I(x, y) =
1
4

∞∫

0

∞∫

0

1√
uv

sin(xu) sin(yv)dudv. (2.79)

We could apply the L22-transform to both sides of (2.79). Thus, we need the
following calculations:

L22{sin(xu) sin(yv); (p, q)} =
π

16
1

p3q3
tze

− t2

4p2 − z2

4q2 , (2.80)

L22

{
1√
uv

; (p, q)

}
= L2

{
u−1/2; p

}
L2{v−1/2; q}

=
1
4
Γ
(3

4

)2 1
p3/2q3/2

. (2.81)

According to Theorem 2.16, we can consider the following identities:

φ(p, q) =
π

16
1

p3q3
, ˜̃F (k(p),m(q)) = 2Γ

(3
4

)2

p3/2q3/2, (2.82)

where k(p) = 1
2p , m(q) = 1

2q .
Then, we have

˜̃I(p, q) =
π

32
Γ
(3

4

)2 1
p3/2q3/2

. (2.83)

Applying the inverse L22-transform to both sides of (2.83) and using the
identity [6, Vol1 p. 137 Entry 1], we have

I(x, y) =
π

8
1√
xy

. (2.84)

We can see the solution of the double Fresnel integral from the following
relation:

I(1, 1) =

∞∫

0

∞∫

0

sin(t2) sin(z2)dtdz =
π

8
. (2.85)

�
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Example. We calculate the following integral using the Theorem 2.16:

∞∫

0

∞∫

0

cos(mx)
m

cos(ny)
n

sin(xt) sin(yz)dxdy =
π2

4
H(t − m)H(z − n). (2.86)

Proof. Applying the L22-transform to the integral in the right-hand side of
the (2.86), we get

˜̃I(x, y, p, q) = L22

{ ∞∫

0

∞∫

0

cos(mx)
m

cos(ny)
n

sin(xt) sin(yz)dxdy; (p, q)

}
.

(2.87)
According to the Theorem 2.16, we have

f(x, y) =
cos(mx)

m

cos(ny)
n

, Φ(x, y, z, t) = sin(xt) sin(yz). (2.88)

To apply the Theorem 2.16 to the (2.87), we need some following calculations.
Using the identities [6, Vol1 153 Entry 32], [6, Vol1 p.158 Entry 67], we obtain

L22{Φ(x, y, z, t); (p, q)} =
π

16
1

p3q3
tze

− t2

4p2 − z2

4q2 , (2.89)

where φ(p, q) = π
16

1
p3q3 and

˜̃F (p, q) = L22{f(x, y); (p, q)} = L2

{cos(mx)
m

; p
}

L2

{cos(ny)
n

; q
}

=
π

4pq
e

− m2

4p2 − n2

4q2 . (2.90)

According to the Theorem 2.16, we get

L22{I(x, y, z, t); (p, q)} = φ(p, q) ˜̃F (
1
2p

,
1
2q

) =
π2

16
1

p2q2
e−m2p2−n2q2

. (2.91)

Applying the inverse L22-transform to both sides of (2.91) and using the
following identity:

L22{H(t − m)H(z − n); (p, q)} = L2{H(t − m); p}L2{H(z − n); q}

=

∞∫

m

te−t2p2
dt

∞∫

n

ze−z2q2
dz

=
1

4p2q2
e−m2p2−n2q2

, (2.92)

we obtain

I(x, y, z, t) =
π2

4
H(t − m)H(z − n). (2.93)

�



MJOM Some Relations on the Double L22-Integral Page 15 of 21 37

3. Some Properties of the L22-Transform and Differential
Operator δ

Definition 3.1. The δ-derivative operator is defined as in [13]

δx =
1
x

d

dx
(3.1)

and

δ2x =
1
x2

d2

dx2
− 1

x3

d

dx
. (3.2)

The δ-derivative operator can be successively applied in a similar fashion for
any positive integer power.

Theorem 3.2. If f, f ′, . . . , f (n−1) are all continuous functions with a piecewise
continuous derivative f (n) on the interval x ≥ 0, and if all functions are of
exponential order exp(c2x2) as x → ∞ for some constant c, then

L2{δn
xf(x); s} = 2ns2nL2{f(t); s} − 2n−1s2(n−1)f(0+)

−2n−2s2(n−2)(δxf)(0+) − · · · − (δn−1
x f)(0+), (3.3)

for n = 1, 2, . . ..

Theorem 3.3. If f is piecewise continuous on x ≥ 0 and is of exponential
order exp(c2x2) as x → ∞, then

L2{x2nf(x); s} =
(−1)n

2n
δn
s L2{f(x); s}, (3.4)

for n = 1, 2, . . ..

The proofs of Theorems 3.2 and 3.3 could be found in [13].

Theorem 3.4. If f, ∂f
∂x , . . . , ∂n−1f

∂xn−1 , ∂f
∂y , . . . , ∂n−1f

∂yn−1 are all continuous functions

with piecewise continuous derivatives ∂nf
∂xn , ∂nf

∂yn in the intervals first quadrant
and if all functions are of exponential order exp(a2x2 + b2y2) as x → ∞, y →
∞ for constants a, b then the following identities:

L22{δk
xf(x, y); (p, q)} = (2p2)kL22{f(x, y); (p, q)} − (2p2)k−1f̃(0+, q)

−(2p2)k−2(δxf̃)(0+, q) − · · · − 2p2(δk−2
x f̃)(0+, q)

−(δk−1
x f̃)(0+, q), (3.5)

L22{δk
yf(x, y); (p, q)} = (2q2)kL22{f(x, y); (p, q)} − (2q2)k−1f̃(p, 0+)

−(2q2)k−2(δy f̃)(p, 0+) − · · · − 2q2(δk−2
y f̃)(p, 0+)

−(δk−1
y f̃)(p, 0+), (3.6)

hold true, where k ∈ N.

Proof. Under the hypothesis of Theorem 3.4, if we use the definitions of the
L22-transform (5), the L2-transform (2) and the δx,δy derivatives (10), then
use integration by parts, we obtain
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L22{δxf(x, y); (p, q)} =

∞∫

0

ye−y2q2

∞∫

0

xe−x2p2
δxf(x, y)dxdy

∞∫

0

ye−y2q2L2{δxf(x, y); p}dy = 2p2
˜̃
f(p, q) − f̃(0+, q). (3.7)

And we have

L22{δyf(x, y); (p, q)} = 2q2
˜̃
f(p, q) − f̃(p, 0+), (3.8)

where f is of exponential order ea2x2+b2y2
as x → ∞, y → ∞.

Similarly, f and ∂f
∂x , ∂f

∂y are continuous functions with a piecewise continuous

derivatives ∂2f
∂x2 , ∂2f

∂y2 on the first quadrant and if all functions are of expo-

nential order ea2x2+b2y2
as x → ∞, y → ∞, we can use (102) and (103) to

obtain

L22{δ2xf(x, y); (p, q)} = 4p4
˜̃
f(p, q) − 2p2f̃(0+, q) − (δxf̃)(0+, q), (3.9)

L22{δ2yf(x, y); (p, q)} = 4q4
˜̃
f(p, q) − 2q2f̃(p, 0+) − (δy f̃)(p, 0+), (3.10)

then using the known formula [13],

L2{δ2xf(x, y); p} = 4p4L2{f(x, y); p} − 2p2f(0+, y) − (δxf)(0+, y) (3.11)

and repeating applications of (106),(107),(108) and (109), we arrive at (104)
and (105) of Theorem 3.4. �

Remark 3.5. Under the hypothesis of Theorem 3.4, we have the following
relation:

L22{δxδyf(x, y); (p, q)} = 4p2q2
˜̃
f(p, q) − 2q2f̃(0+, q)

−2p2f̃(p, 0+) + f(0+, 0+). (3.12)

Theorem 3.6. Under the hypothesis of Theorem 3.4, we have

L22{x2ny2mf(x, y); (p, q)} =
(−1)n+m

2n+m
δn
p δm

q L22{f(x, y); (p, q)}, (3.13)

where n,m ∈ N.

Proof. Using the definitions of the L22-integral transform (7) and δ-operator
(100) and taking the δp-derivative, then taking δq-derivative of (7) with
respect to p and with respect to q, respectively, we arrive at (112). �

4. Illustrative Examples

Example. We solve partial differential equation with the following conditions:

xt3uxx + x3tutt − t3ux − x3ut = 0, (4.1)
(i) ux(0, t) = 0, ut(x, 0) = 0, (4.2)

(ii) u(0, t) = e−t2 , u(x, 0) = 0, (4.3)
(iii) u(0, t) = t2, u(x, 0+) = 0, (4.4)
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(iv) u(0, t) = eη2t2 , u(x, 0) = 0. (4.5)

Proof. Dividing the Eq. (4.1) by x3t3 and using the definition (11), we obtain

δ2xu + δ2t u = 0. (4.6)

Applying the L22-transform to both sides of (4.2) and using Theorem 3.4, we
have

L22{δ2xu(x, t); (p, q)} =

∞∫

0

te−q2t2
[ ∞∫

0

xe−p2x2
δ2xudx

]
dt

=

∞∫

0

te−q2t2L2{δ2xu(x, y); p}dt

=

∞∫

0

te−q2t2(4p4ũ(p, t) − 2p2u(0, t) − (δxu)(0, t))dt

= 4p4 ˜̃u(p, q) − 2p2ũ(0, q) − (δxũ)(0, q). (4.7)

Similarly, we have

L22{δ2t u(x, t); (p, q)} = 4q4 ˜̃u(p, q) − 2q2ũ(p, 0) − (δtũ)(p, 0). (4.8)

and
ũt(p, 0) = 0, ũx(0, q) = 0. (4.9)

Setting (4.7) and (4.8) into (4.6), we have

˜̃u(p, q) =
2p2

4p4 + 4q4
ũ(0, q) +

2q2

4p4 + 4q4
ũ(p, 0) (4.10)

and applying L−1
2 -transform to (4.10) with respect to q and p, respectively,

we get

L−1
2

{
2p2

4p4 + 4q4
; t

}
= sin(p2t2), (4.11)

L−1
2

{
2q2

4p4 + 4q4
; t

}
= cos(p2t2). (4.12)

Substituting (4.11) and (4.12) into (4.10), we obtain

ũ(p, t) = sin(p2t2) ∗ u(0, t) + cos(p2t2)ũ(p, 0)

=

t∫

0

ξ sin(p2ξ2)u(0, (t2 − ξ2)1/2)dξ + cos(p2t2)ũ(p, 0). (4.13)

Now, applying the L−1
2 -transform (3) to (4.10) with respect to p, we shall

consider the following series representations:

sin(p2ξ2) =
∞∑

n=0

(−1)n

(2n + 1)!
(p2ξ2)2n+1, (4.14)
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cos(p2t2) =
∞∑

n=0

(−1)n

(2n)!
(p2t2)2n. (4.15)

Using the following known formulas([7], Vol1 p.137 Entry 1),

L−1
2 {p4n+2;x} =

2x−4n−4

(−2n − 2)!
, L−1

2 {p4n;x} =
2x−4n−2

(−2n − 1)!
, (4.16)

L−1
2 {sin(p2ξ2);x} = 2

∞∑
n=0

(−1)nξ4n+2

(2n + 1)!(−2n − 2)!x4n+4
, (4.17)

L−1
2 {cos(p2t2);x} = 2

∞∑
n=0

(−1)nt4n

(2n)!(−2n − 1)!x4n+2
(4.18)

and the following identities

(2n + 1)!(−2n − 2)! = B(2n + 2,−2n − 1), (2n)!(−2n − 1)!
= B(2n + 1,−2n), (4.19)

we obtain the formal solution of the problem (4.1),(4.2) as follows:

u(x, t) = 2
∞∑

n=0

(−1)n x−4n−4

B(2n + 2,−2n − 1)

t∫

0

ξ4n+3u(0,
√

t2 − ξ2)dξ

+2
∞∑

n=0

(−1)n t4n

B(2n + 1,−2n)

x∫

0

ξ−4n−1u(
√

x2 − ξ2, 0)dξ. (4.20)

If we consider the partial differential equation (4.1) and the condition (4.3),
then the solution of this problem is obtained as follows:

u(x, t) = 2
∞∑

n=0

(−1)n x−4n−4

B(2n + 2,−2n − 1)

t∫

0

ξ4n+3e−t2+ξ2
dξ

= 2e−t2
∞∑

n=0

(−1)n x−4n−4

B(2n + 2,−2n − 1)

t∫

0

ξ4n+3eξ2
dξ, (4.21)

where setting ξ2 = u, we get

t∫

0

ξ4n+3eξ2
dξ =

1
2

t2∫

0

u2n+1eudu

=

[
et2

2n+1∑
k=0

(−1)k+1 (2n + 1)!
k!

t2k + (2n + 1)!

]
1
2
e−t2 . (4.22)

Substituting (4.22) into (4.21), we obtain the solution of the problem (4.1)-
(4.3) as follows:

u(x, t) =
∞∑

n=0

(−1)n x−4n−4

Γ(−2n − 2)

[
e−t2

2n+1∑
k=0

(−1)k+1 t2k

k!

]
. (4.23)
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iii) Similarly, the solution of the problem (4.1)–(4.4) is obtained by the fol-
lowing series:

u(x, t) =
∞∑

n=0

(−1)n x−4n−4t4n+6

Γ(2n + 2)Γ(−2n − 2)(2n + 2)(2n + 3)

=
1
6

(
t3

x2

)2 ∞∑
0

(−1)n 1
B(2n + 4,−2n − 2)

(
t

x

)4n

, (4.24)

where
t∫

0

ξ4n+3(t2 − ξ2)dξ =
1
2
t4n+6 1

(2n + 2)(2n + 3)
. (4.25)

iv) If we consider the problem (4.1)–(4.5), we obtain

u(x, t) = 2
∞∑

n=0

(−1)n x−4n−4

B(2n + 2,−2n − 1)

t∫

0

ξ4n+3eη2(t2−ξ2)dξ, (4.26)

where setting ξ2 = u and using integration by part, we get

t∫

0

ξ4n+3eη2(t2−ξ2)dξ =
1
2
eη2t2

t2∫

0

u2n+1e−η2udu

=
x

2

[
Γ(2n + 2)(−η2)2n+2eη2t2

−(−η2)2n+2Γ(2n + 2)
2n+1∑
k=0

(t/η)2k

k!

]
. (4.27)

Substituting (4.27) into (4.26), we obtain the following solution:

u(x, t) =
∞∑

n=0

(−1)n

Γ(−2n − 1)

(x

η

)−4n−4
[
eη2t2 −

2n+1∑
k=0

(t/η)2k

k!

]
. (4.28)

�

Example. We solve the following partial differential equation:

tux + xut = xt (4.29)

with the conditions

u(x, 0) =
x2

4
, u(0, t) =

t2

4
. (4.30)

Proof. Dividing the Eq. (4.29) by xt, we have

δxu + δtu = 1. (4.31)

Applying the L22-transform to the both sides of (4.31) and using Theorem
3.2, we get
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L22{δxu} + L22{δtu} = L22{1}, (4.32)

L22{δxu(x, t); (s, k)} =

∞∫

0

te−s2t2
∞∫

0

xe−k2x2
δxudxdt

=

∞∫

0

te−s2t2L2{δxu; k}dt

= 2k2 ˜̃u(k, s) − ũ(0+, s), (4.33)
L22{δtu(x, t); (s, k)} = 2s2 ¯̃u(k, s) − ũ(k, 0+), (4.34)

and

L22{1; (s, k)} =
1

4k2s2
. (4.35)

Putting (4.33),(4.34) and (4.35) back at (4.32), we find

(2k2 + 2s2)˜̃u(k, s) − ũ(0+, s) − ũ(k, 0+) =
1

4k2s2
. (4.36)

Using (4.30) boundary conditions, we have ū(0+, s) = 1
8s4 , ū(k, 0+) = 1

8k4

thus,

˜̃u(k, s) =
1
16

[ 1
k2s4

+
1

k4s2

]
. (4.37)

Applying the inverse L22-transform to the both sides of (4.37), we get

u(x, t) =
1
16

[
L−1
22

{
1

k2s4
; (x, t)

}
+ L−1

22

{
1

k4s2
; (x, t)

}]
. (4.38)

We know the following identities [6, Vol.1 p.137 Entry 1],

L2{x2k; y} =
1
2
L{xk; y2} =

1
2

Γ(k + 1)
y2(k+1)

. (4.39)

Using (4.39),(2.12) and the definition of L2-transform, we have

L−1
22

{
1

k2s4
; (x, t)

}
= L−1

2

{
1
k2

;x

}
L−1
2

{
1
s4

; t

}
= 4t2 (4.40)

and

L−1
22

{
1

k4s2
; (x, t)

}
= L−1

2

{
1
k4

;x

}
L−1
2

{
1
s2

; t

}
= 4x2. (4.41)

Substituting the identities (4.40) and (4.41) to (4.38), we obtain

u(x, t) =
1
4
(x2 + t2). (4.42)

�
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