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Abstract. In this paper, a Legendre wavelet collocation method for solv-
ing a class of time-fractional order telegraph equation defined by Caputo
sense is discussed. Fractional integral formula of a single Legendre
wavelet in the Riemann—Liouville sense is derived by means of shifted
Legendre polynomials. The main characteristic behind this approach
is that it reduces equations to those of solving a system of algebraic
equations which greatly simplifies the problem. The convergence analy-
sis and error analysis of the proposed method are investigated. Several
examples are presented to show the applicability and accuracy of the
proposed method.
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1. Introduction

Fractional order ordinary and partial differential equations, as generaliza-
tion of classical integer order differential equations, play an important role
in modelling various phenomena of physics, chemistry, engineering, aerody-
namics, etc. and have become the focus of many researchers in recent years.
Comparing with integer order differential equations, fractional order ordinary
and partial differential equations can describe natural physical process and
dynamic system more accurately. Telegraph equations belonging to hyper-
bolic partial differential equations are applicable in wave propagation ([1]),
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random walk theory ([2]), signal analysis ([3]), etc. (see [4] and the references
therein). The time-fractional order telegraph equations have recently been
considered by many authors.

It is noted that most fractional order differential equations do not have
closed form solutions. Many researchers have proposed various methods to
solve the telegraph equations. To mention a few, the analytical solution of the
time-fractional telegraph equation with three kinds of boundary conditions is
derived by using the method of separation of variables ([5]). Dehghan and his
group applied Radial basis function ([6]), Chebyshev cardinal functions ([7])
and Chebyshev tau method ([8]) to tackle the telegraph equation. In [9], Das
and Gupta used homotopy analysis method for solving fractional hyperbolic
partial differential equation. In [10], Mollahasani applied hybrid functions of
Legendre polynomials and Block pulse functions to obtain the solution of tele-
graph equation of fractional order. Differential transform method ([11]), Vari-
ational iteration method ([12]), Adomian decomposition method ([13]) and
He’s homotopy perturbation ([14]) are used to achieve closed form solutions
of the problem. In [15], fully discrete local discontinuous Galerkin method is
used to solve the fractional telegraph equation. In [16], Sweilam introduced
a numerical method based on Sinc-Legendre collocation method for solv-
ing the time-fractional telegraph equation. Heydari applied two-dimensional
Legendre wavelets and block pulse function to solve the problem ([17]).

This paper focuses on the time-fractional order telegraph equation of
order a (1 < a < 2) as

0% (. t) 0 pu(z,t) 0 p(z, t)

A A t) =M\ t
ata + 1 ata_l + 2/“L(‘T? ) 3 an + f(z7 )?

O<z<l 0<t<1, (1)
with the initial conditions

Ip(z,0)
w2,0) = fi(2), —5— = fo2), 0<a <1, (2)

and the Dirichlet boundary conditions
where f1(z), fa(2), go(t), g1 (t) are given functions with second-order continu-
ous derivatives, % represents the Caputo fractional derivative, and Ay, Ao,

A3 are constants.

Spectral methods are widely used in seeking numerical solutions of frac-
tional order differential equations, due to their excellent error properties and
exponential rates of convergence for smooth problems. There are three most
common spectral schemes, namely, the collocation method, Galerkin and Tau
methods. Collocation methods have been applied successfully to numerical
simulations of many problems in science and engineering, see [18-21].

Wavelets, as another basis set and very well-localized functions, are con-
siderably useful for solving differential and integral equations. Particularly,
orthogonal wavelets are widely used in dealing with various types of differen-
tial equations in the relevant literatures. Recently, the operational matrices
for Legendre wavelet, Chebyshev wavelet and Bernoulli wavelet have been
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extensively used to cope with different problems ([20-22]). It is observed that
most papers using orthogonal wavelets methods to solve fractional order dif-
ferential equations are based on the operational matrix of fractional integra-
tion or differentiation ([23-26]). The approximation error is inevitably gen-
erated during the construction of operational matrix. In [27], some descrip-
tions are given to show some disadvantages of using the operational matrix
of Legendre and Chebyshev wavelet.

Inspired by the work mentioned above, the main aim of this paper is
to extend the Legendre wavelets for solving the time-fractional order equa-
tions (1) with the initial condition (2) and Dirichlet boundary conditions (3).
To reduce the approximation error at most during the calculation process,
Riemann-Liouville fractional integral formula of a single Legendre wavelet
is derived. The proposed method is based on reducing the equations into a
linear system of algebraic equations. The proposed method is very convenient
for solving such problems, since the initial and boundary conditions are taken
into account automatically.

The organization of the rest part is as follows: Section 2 describes some
necessary definitions and preliminaries of calculus. Section 3 gives some prop-
erties of Legendre wavelets. And the convergence analysis and error analysis
of the proposed method are given. In Sect. 4, the fractional integral formula
for a sinlge Legendre wavelet is derived. The proposed method is described
for solving time-fractional order telegraph equations in Sect. 5. In Sect. 6, the
numerical results are presented. Finally, a brief conclusion is stated in Sect. 7.

2. Definitions and Preliminaries

In this section, we present some necessary definitions and preliminaries of the
fractional calculus theory which will be used later.

Definition 2.1. A real function u(z), > 0, is said to be in the space Cy,
o € R, if there is a real number p with p > ¢ such that u(zx) = x ue(z),
where ug(x) € C[0,00), and u(x) € C* if u™(z) € C,, n € N.

Definition 2.2. ([28]) The Riemann-Liouville fractional integral operator I
of order a (v > 0) for a function u(x) € Cy (0 > —1) is defined as

o — u(m)’ - “= 0’
I*u(x) = { e @ = Do hu(t)dt, o> .

Definition 2.3. ([28]) The Caputo fractional derivative operator D® of order
a (a > 0) for a function h(z) € C is defined as

u(™ (), a=necN,

Dau(x) = 1 z w(™ (1)
o) IN Gopartdt, n—l<a<n
The relations between the Riemann-Liouville fractional integral oper-
ator I¢ and the Caputo fractional derivative operator D% are given by the
following expressions:

DeIu(z) = u(x), DPI%u(z) = I* Pu(z), o>,
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[a]-1 k
(03 [e% x
I°D%u(z) = u(zx) — Z U(k)(0+)ﬁ, x>0, (4)
k=0
where the ceiling function [«] denotes the smallest integer than or equal to
a and Ny = {0,1,2,...}. The following properties of the operators I* and
D are needed in this paper:
I J2y(z) = [*1T2y(z) for g, ag > 0;
T*(Mu(x) + Aov(x)) = M IT%u(x) + Ao I%v(x) for constants Ay, Ag;
D¥(Mu(z) + Av(x)) = M DYu(z) + AaD%v(x) for constants Ap, Ao;
D*C = 0 for constant C;

o~

n € Ny with n < [a],

0,
5. Dt = {mmn_a, n € Ny with n > [a].

3. Legendre Wavelets and Their Properties

Legendre wavelets ¢y, () = ¥(k,n, m,z) have four arguments: k is any
arbitrary positive integer, n = 1,2,...,2¥71, 4 = 2n — 1, m is the order
of Legendre polynomial and z is normalized time. They are defined on the

interval [0,1] as ([29])

k . e 5
Unm(x) = { \/mbLm(ka — ), 2k1 <z < gp, (5)

0, otherwise,

wheren =1,2,...,m =0,1,.... The coefficient y/m + % is for orthonomality.

Here L,,(x) is Legendre polynomial of order m defined on the interval [—1, 1]
and can be determined from the following recurrence formulae:

2m+1
Lo(z) =1,L1(x) =z, L1 (z) = ( 1 > x Ly, (x)
m
—| ——= | Lym— =1,2,3,....
<m+1> m 1(33), m ’ 737
The shifted Legendre polynomials L, () are defined on [0,1] as:
L = )Tt 6
o) = S 0

By using the shifted Legendre polynomials, Legendre wavelets can be written
as follows:

kyy — n— n
wmAm:{Vm+5bLMﬁ]x_n+D’Qkﬁgxgﬂl’ (7)

0, otherwise,

A function f(z) € L?(R) defined on the interval [0, 1) may be expanded
by the Legendre wavelets as

flo)y=>"
n=1

(o]

Cn,md)n,m(l‘)v (8)
0

m=
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where ¢, m = (f(2), Ynm(z fo )Y, m(x)dz, in which (-, -) denotes
the inner product in L?[0, 1). If the infinite series in Eq. (8) is truncated, then
it can be written as

2k=1 pr—1

)2 chmtnm(x) = CTU(2), (9)

n=1 m=0

where C' and ¥(z) are 2°"1M x 1 matrices given by

T
C= (01,001,1 crC1,M—1€2,0€2,1 " " C2 M—1 " Cok—1 gCgk—1 1 " " 02’“*1,M71) )
U(r) = (1/11,01/11,1 1 Mo12,0%2,1 0 Y2, M1
T
"%k—l,o%k—l@ : "¢2k—1,M—1) . (10)

The two-dimensional Legendre wavelets are defined as ([30])

1+k2

¢m1+—¢my+2 Lo, (2512 — 20y + 1)

Lo, (22t — 20y + 1),

¢nlamlyn2sm2 (:L.7 t) = 1 (11)
= L<z< tas <t<

2k1 1’2k2 1 2k2 1

0, otherwise

where ny and ny are defined similarly to n, k1 and ko are any positive integers,
my and my are the orders of Legendre polynomials and tn, m; .ng.ms (2, 1)
forms a basis for L2([0,1) x[0,1)). A function u(z,t) defined over [0,1) x [0, 1)
can be expanded by Legendre wavelets as follows

t) - Z Z Z Z dnl,mhnz,mzwnhml(x)wnz,mz(t)v (12)

’I’L1:1 m1:0 n2:1 177,2:0
where ¥(x) and ¥(t) are 261710, x 1 and 2¥271 M, x 1 matrices and are
defined in Eq. (10). If the infinite series in Eq. (12) is truncated, then it can
be written as
2F1=1 A —12k271 Mp—1
Z Z Z Z dn1,7rl1,n2,m2wn1,m1 (z)qzbng,mz (t)
ni1=1 m1=0 ne=1 mo=0

= U(x)UT(t). (13)
Moreover, U is 281 =1 My x 2¥2=1 M, matrix and its elements can be calculated
from the formula

1 1
dn1,m1,n2,m2 = / / M(wvt)wnl,ml (x)¢n2,m2 (t)dxdt,
0 JO

where n; = 1,...,2M" L m; = 0,...,M; — 1,ny = 1,...,207 1 my =
0,..., M, — 1.

We investigate the convergence analysis and error analysis of the pro-
posed method in the following theorems:

1

p(z,t)

Theorem 1. Let (M o lt(”f t) (1<

Sia be the approximation of

>k17M17k2,M2
a < 2) and suppose that the mized fourth partial derivative of %(:,t) is
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‘u(a, t)| < B; then we have the following

bounded by a constant B, i.e. |W

upper bound error

‘ ‘ pu(x,t) (80‘u(x, t

)
ot™ ot™ k1,M1,ka, Mo

11 v -32\ "\ [ (T - 3/2)\”
< Big; 52k 12m, <(F(M113/2)> ) <<F(1\4223/2)> ) ’

where T'(z) /T (x) is digamma function.
Proof.

L2

N

92 ,U z, t [eS) [eS) ]
ote Z Z Z Z dn17m1,n27m2wn1,m1( )1/)n2,m2(t)a
ni=1mi=0n2=1mo=0
and
(ﬁau(x,t) )
ote k1,Mi,ko,M>
21—t —12k2 1 Ay -1
= Z Z Z Z dnl’mlan27m2¢nlaml (w)¢n2,m2(t>'
n1=1 m1=0 na=1 mao=0
Then we have
HB p(z, t) _ (ao‘u(a:,t)

| 2
ot ot )k],NI],kz,AIZ

L2

2
=/01 /01( SOy Yy dm,,m,wwm,m(x)wnE,,,,LE(t)) dadt

ny=2k1-141 my=M; n,=2k2-141 mo=M,

=S) oo o

[=S)
_ 2
D SR DD DD D -

ny=2k1-141 m=M,; n,=2k2-141 my=M,

1 xz,
where dn1 my,na,ma f() o° gta t) wn1,m1( )d)nQ,mQ (t)d:l?dt Let An17m1 (t) —
fol = gt(f t)wnl ml( )de Then

T 0%, t) (2my + 1\ 3
Apma(t) = [T CBED (2 LD S5 (00— a4 1)
Ski—1

Now by change of variable 2¥12 — 2n; +1 = s and dz = 2%1d5, we obtain

/1 O (T ) (2m1 +1

Anym, (t) =
1 1() . 8ta 2

LN 1

1 3 19> (MJ)
- <2k1+1(2m1+1)) / ea 4 (Lma(5) ~ Ly 1 (4))

1

1 3
_<?Eﬁ@aiﬁ)
1 anrl‘u(m’ t)
[1 88812521 (Lmy+1(8) = L, —1(s)) ds

- I 5/1W“M”$}Hﬂ
T\ BRFem ) ) dsote
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2m1+3 2m171

_ 1 é/l aa+2 (s+§n11 1 t)
PR 2m, + 1)) /., ds20te

Liny+2(8) — Lin, (5) _ L, (s) — Lmy,—2(s) ds
2my + 3 2mq — 1 ’

d (Lm1+2(5) — Ly (8) _ Ly () = Lm1—2(8)>

So

1 o s+2n;—1
dnsmarams = () ] St [ Ty
mi,mi,ne,ms 25k1+1(2m1—|—1) 0 n2,m2 1 882815“

(Lm1+2(5) — L, (s) Lo, (s) — Lm1‘2(s)>dsdt.

2m1 +3 2m1 —1
Now let Tpym,(s) = (2m1 — 1)Ly, 12(s) — 2(2my + 1)Ly, () + (2mq +
3) Ly, —2(s), then we have

p B ( 1 )% 1 / y )
momLne e A 95k A (2my + 1)/ (2my — 1)(2my +3) Sy

1 8a+2 (s+2n1 1 t)
2
/_1 852875; Tny.m, (8)dsdt.

Putting 2¥2t — 2ny + 1 = 7 and doing the same operations as above, it gives

dnl,ml,ng,mz
G s i)
SR 2my 1)) (2my — 1)(2my + 3) \25k2+1(2my + 1)

1

94 ( S+2”1 L ri2na—1y
’ 2F2
/ / 83267“044-2 Ty ;my (8)Tng,me (7)dsdr,

where T, m, (1) = (2ma — 1)Ly,42(r) — 2(2mg + 1)Ly, (1) + (2me +
3) L, —2(r). Due to the orthogonality of Legendre polynomial, we have ([29])

! 2 24(2my +3)?
([ ami(opas)” < ZEmEEE

—1

! 2 24(2my +3)?
ng,mso d s ——
(] mramalryar)” < 2202t

Thus
12 12
95k (2m1—3)% 95ks(2mz—3)1

2 2
d’ﬂl,mhnz,mz < B1
which implies
o0 o0

SID D SED SR

ni=2k1-141m1=M;1 no=2k2-141 ma=M>

12 12

< 2 2 X ) Bl pheer

ni=2k1-141mi1=M;1 no=2k2-141mo=M>
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> 1 11 & 6
<12312< > 55T D 74)
g —2F1-141 (2711) 6 2 —s (m1 - 3/2)
> 1 11 & 6
'12< > 55T D 74)
ny—2Fa—141 (2712) 6 2 — (mg — 3/2)
11 1 1 /(M —3/2)\"
<12B2 - ... ( (M, 3/))
2 6 24 (2M-141)4 \T'(M; —3/2)
pL Ll L (TO6o3y
25 6 24 (k14 1)4 \T'(My—3/2)

- Bf 1 (F’(M1 — 3/2))”’ <r’(M2 — 3/2)>”’
28 24(k1+k2) \ (M — 3/2) (M —3/2)
The proof is completed. O

Remark 1. In the calculation, we usually take k = k; = ko and M = M, =
Ms. Therefore, the inequality in the Theorem 1 can be rewritten as

Ha‘m(a;,t) B (aau(x,t))k’M‘ B 1 (F’(M—3/2))'”

ote ote Lz 24 24 \T(M — 3/2)
From this theorem, we can see clearly that ‘ ’ aagff’t) — (aagff’t)) ’ —
kM L2

0 when M is fixed and k — oo. Similarly we have the following lemmas:

Lemma 1. Let % be a continuous function defined on [0,1) x [0,1)

a—1 a—1
and (%‘_(f’t))kM be the approzimation of %ﬂ(‘f’t). Suppose that the

’ a—1
mixed fourth partial derivative of GGTW is bounded by a constant Bs,i.e.
a+3
%QET’M| < Bs; then we have the following bound of error:

’ By 1 (I”(M—3/2))’”
O u(z,t)

rz 24 29 \T(M — 3/2)
Lemma 2. Let =55 be a continuous function defined on [0,1) x [0,1) and

(azgiﬁ’t)>k " be the approximation of %. Suppose that the mized fourth

2 6
partial derivative of 8g73(£,t) is bounded by a constant Bs,i.e. |%£47(gt’§)’ < Bs;

then we have the following bound of error:

2 2
|55 - (55 )

a—1 a—1
S = ()l

Bs 1 (T/(M —3/2)\"
L2 ?ﬁ(F(M—s/Q))

Remark 2. Using the conditions of Theorem 1 and Lemmas 1-2, we can
conclude that f(z,t) has mixed fourth partial derivative and can be bounded

4 .
by a constant By, i.e. ‘ 8852%;3) ‘ < By. Let (f(x, t)) i be the approximation
M

)

of f(z,t); then we have the following bound of error:

ol
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3“u(r»t)) (8‘“1u(rvt)) (6211(16»75)) ( )
Theorem 2. Let( o ) ear’ a1 ) 32 )’ flx,t) Y

oY a—1 2
be the approxzimations of 9 gt(f’t), 9 atofﬂ(f’t), 9 giﬁ’t), flzt) 1 < a<2)
oY a—1
and assume that the mized fourth partial derivative of 9 gfff’t), 9 atf,(f’t)

are bounded by constants By,B2,Bs and By; then for Eq. (1), we have the
following upper bound error:

e e, < (52 325 ) (e (irar) )

where TV (z) /T (x) is digamma function, B = max{B;, By, B3, B4}.

Proof. The problem under consideration is as follows:

0% (. t) 0 tu(x,t) 0?u(z,t)
ot + A1 Sa1 + Xop(z,t) = )\BW + f(z,1), (14)
and approximation solution of Eq. (14) is as follows

(F5 ), (T, ),

)

- )\3(82/5(;27t)>k,M + (f(x,t))k M (15)

)

Let (e(x,t))k,m = p(x,t) — (u(z, t)) g, be the bounded error function, where
w(z,t) is the exact solution of Eq. (14). Subtracting Eq. (15) from Eq. (14),
we get the following error equation

2(z 2u(x
(o, t) = (pu(z, ) k,pr) = % <3 /;5627 = (a ggﬁ; t)>k M)

1 [ 0%u(z,t) 0% p(x,t)
Y < o < ot )k,M)
XM (aaw,t) B (aaw,t)) )
Ay ote—1 ote—1 kM
o ant) = (Fla ). (16)

Taking L2-norm on both sides of Eq. (16) and using the results of Theorem 1,
Lemmas 1-2 and Remark 2, we obtain

oo, Olar = |32 (f’gg, 0 (azgg, t>>kM>
(T (75),)

A (0 (s, t) (00 p(a,t)
)\2 ote—1 ote—1 kM

()~ ()|

2
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<l (Tt - (7550),))
el (Zaet - (Zae) N

i ﬁ 0 tpu(,t) _ 0 Lp(w,t) H
)\2 ota—1 ote—1 kM

+ || = |
2
Aa| (M| |2 B 1 (T'(M-3/2)\
< (el Bl 2 (B (armai) )
The proof is completed. O

4. The Fractional Integral of a Single Legendre Wavelet

In this section, we will derive the fractional integral formula of a single
Legendre wavelet in the Riemann—Liouville sense.

Theorem 3. The fractional integral of a single Legendre wavelet function
defined on the interval [0, 1] with compact support [2k Ts ohe 1] is given by

I m ()

0, x < 273;11,
m*%g%iiism"k( 1)]03 TJ(:E 1)J+a n-l ..o _n
T'(a) - ii—1r  jta rL Qk 1 2k—1 = = 2k—17
— r=01i=r j=0
- m+l Em om T E(—1)J X .
a2t £ £ 5 st o
r=0i1=r 3=
[(x = 1)J+C¥ (x— 2k"_1)1+a]’ T > ey,
m,n,k (k—1 (m+i)! _ !
where Sv Jga—-r T ( 1)m r2r )(TL - 1) (m 1)IZITI)1 ) HC ﬁ

Proof. According to the analytical form of the shifted Legendre polynomials,
we have

Ly (2" 'z —n+1) :i(,l)m_i( (m+ 0! s

i=0 m — 0)I(i!)? e-nt1)’

72(_ )m i m+7«) 22(k 1)207‘ i— 'r(_2k 11)7"

—)l(a!)2 =

— Z Z(71)'m—i+r2(i—'r')(k—l)(n7 l)r' (m+2)' 1 2T
=0 r=0

(m =)l rl(i —r)!

By interchanging the summation and substituting 7 — r with r, L%, (2¥ "1z —

n 4+ 1) can be written as

L;ﬁn(Qk—lx_n_i_l) — ZZ(_l)m—T2T(k§—1)(n_ 1)1—7‘ (m+7z) x’l‘.

(m —d)lilrl(i —r)!
(17)

r=0 i=r
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Let STk = (—1)ym=ror(k=1)(p — 1)i-r IOl __. ¢hep

iyi—r (m—i)lilrl (i—r)!
L (25 e — ZZS;@"T’“ v (18)
r=0 i=r
Therefore,
m + QQiiSm”k’” ":1<a:<2kL1

ql}n,m(x): r=01i=r b ' A= o (19)
0, otherwise.

Next, we calculate the integrals It = 5 )fcfb L (z — )7 rdt and I, =

F(a)fzk '(z—t)*"1trdt. Let u = x — t, then
k

1 xr
I = —/ (x —t)* 1 dt
D(a) Jazy

n—1

1 /_ “Ho—w)d
= — u r— U u
L(a) Jo

1 /f—fﬁcll .
-~ @=L\ 0 I (—u) du
() Jo Z

1 — o Tk
=— ) (=1)YClz" 7/ w T du
IN()) j;) 0
1 (=1 . n—1_
- CIgpr—I _ ]+&.
F(a) = ] +a P4 (-T 2k71 )

2k—1
1 (=17 . . n—1 n
— CIpr—i _ Jjta _ Jta
L(a) = j+a Tt ((x =) (@~ 55=1) )

Applying the Riemann—Liouville fractional integral of order a with respect
to © on ¥, m,(x), we obtain

1%Yn,m (z)
0, T < ;;}:

— ﬁfﬁfl (z_t)a_lwn,m(t)dtv 2k 1 <z< 2k [

ok—1 -

ray i (@ =) m (At 2> 5
=
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07 x < 2k ] )
\/ é [ m,n,k rx a—1yr 1
_ (o) Zzzsmrf—lx—t) trdt, 2k1<$<2k T
- r=0i=r
ymty e TN 2
T LTI DD DICHA T (@ -t rdt, @ > o,
r=0i=r PLE
0, z < B,
m+4+i p m m k T 1 g _1
F(a)2 22 1';0 lzrszmz nr ; (jJr(l ij ;Ltc—l )J+a7 k 1 < z < 2k 19
- m+% X m,n,k ( 1)7
(@ — 5=t )T ( )”a} T > 5ty
Thus, we have
—1
0, T < ;k—lv
MAE ok S XA N~ gmnk (—1)7
(@) 22 323> Si,i—r Jta
7=0i=r j=0
- SRy 1
I m () = Cla™ I (x — anfl)JJraa ;Lk—l <z< 21317
mt+3 ok Tn on e @mynk (—1) Gor—j
1"(@) 22 Z Z Z Sz,z—r Jjta Cr
r=01i=r j=0
—1\75 3 j 3
[((E - ;Lk—l )j+a — (v — QkTLI )]+a]7 T > 21:7’71
The proof is complete. O

For example, in the case of k = 2, M = 3,z = 0.55, « = 1.75, we obtain

0.304214828678896
—0.115630783697839
—0.00725854452471297
0.00464867728189508 ’
—0.00746616376821649
0.008247768307552

where ey (x) = (1,0 ¥1,1(2) Y1,2(2) P2,0(x) 21(2) Yo2(x) )T-

IQ\I’6X1($) =

5. Description of the proposed method

Consider the time-fractional order telegraph equation with the following
form ([31]):

0% p(z, t) 0 'z, t) )o@, )
ot A1 o1 + >‘2NJ($ t) W + f(xv t)a
0<z<l1l,0<t<], 1<a<?, (20)

with initial conditions
N(xao):fl(fﬂ)»ﬂt(%o):f2($) O§$§17 (21)
and boundary conditions

p(0,8) = go(t), u(1,1) = g1(t), 0 <t <1, (22)
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where f1(-), f2(+), 90(*), g1(+) are given functions with second-order continuous

derivatives in L2[0,1) and f(,-) is a given function in L%([0,1) x [0,1)). To
solve this problem, we suppose

O*p(xw,t) T

T I x U U - (¢ 23

e ) =T (@)U w), (23)

where U = (uiyj )Qk,lszk,lM is an unknown matrix which should be deter-

mined and ¥(-) is as in (10). By integrating two times with respect to ¢ on

both sides of (23) and together with (4), we have

PHED) o @) + 11 (@) 497 (@) - U - (P0(0)), (24)
Also by integrating Eq. (24) two times with respect to x, we obtain
e t) = u0.) + 2250 (@) 7100) 2 0)
+t(fa(@) — f2(0) — 2(0))
+ (IPU(x))T - U - (I?T(1)). (25)

Putting # = 1 in (25) and considering the boundary conditions (22), we
obtain

p(t) & p(0.0) + 28D () - £10) - £0)

+(f2(1) — £2(0) — £5(0))

+ (P ()T U - (I?0(t)). (26)
Thus, we have
D))~ 0a(t) — 90(8) — (10) — £10) ~ £1(0))
—t(f2(1) — f2(0) — f5(0))
—(Pe)" U - (IP0(t)). (27)
Write
H(t) = g1(t) = go(t) = (f1(1) = f1(0) = f1(0)) = t(f2(1) = f2(0) = £,(0))
—(Pe)" U (1Pu(t). (28)
So

(. t) = go(t) + xH(t) + (fi(z) — f1(0) — z.f,(0))
Ft(fa(x) — f2(0) — 2£5(0))
+(IPPU ()T - U - (I*0(1)). (29)

Now by fractional differentiation of order o and order (a — 1) of (29) with
respect to ¢, we get

% ~ D%p(t) + xD*H(t)
T

+ (IPU(x) -U- (I7*9(1)), (30)
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%@ ~ Da_lgo(t) + mD“‘lH(t) + (f2(z) — f2(0)
_ fé(o))r(l;(z)a) f2-a
+ (12\11(33))T U - (ISfa\I/(t)), (31)

where
D¥H(t) = D%gy(t) — D%go(t) — (P (1))" - U - (I>~°0(1)), (32)
DO H(t) = D gy (t) — DY 1go(t)

/ re -
— (fo(1) — - %) y2-a
(F2(1) = 2(0) = F50) 5
— (o))" U (PFeu()). (33)
Now by substituting (24), (29), (30) and (31) into Eq. (20), replacing ~ by =
and taking collocation points xz; = %,tj = %, i,j=1,2,--- 28 1M,

we obtain the following linear system of algebraic equations:
D%go(t;) + 2 DV H(t;) + (IPU(x;)) " - U - (I 0(t;))
+)\1(D°‘ ot;) + 2 DOV H ()
+(falws) = £200) = 2 fo(0) prg = 515~
U - (13704\1,@ ))) + Ao (go(tj) + l‘iH(tj)
+(fil@i) = £1(0) — @i £1(0
+ (PO )T - U - (IP0(t
< Xa (/) + 5 () + 0T (@) - U - PPU(L) ) = Foanty),

i,j = 1,2,...,2""1M. By solving this system to determine the unknown
matrix U, we can achieve an approximate solution for the problem by sub-
stituting U into (29).

6. Numerical examples

In this section, we give some numerical examples to demonstrate the efficiency
and reliability of the proposed method.

Ezample 1. Consider the time-fractional telegraph equations of order « (1 <
a < 2)
u(x,t) 0 tu(x,t)

ote ota—1
O<z<1,0<t<l,

_ 0?u(w,t)
02

+,U/("E,t) —|—f($,t)7

with the initial conditions

wx,0) =0, p(z,0) =xz(x—1), 0<z <1,
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Error

(b)

Figure 1. Approximate solution (a) and absolute error (b)
for Example 1 with « =1.95, k=2 and M =3

and the boundary conditions
w(0,t) = pu(l,t) =0, 0 <t <1,

where f(z,t) = (F(F?)(E)a)tz_a + t) (x? — x) — 2t. The exact solution of this

problem is yu(z,t) = (2% — 2)t ([16]). The problem is solved by the proposed
method for £k = 2, M = 3. Figure 1 shows the approximate solution and
the absolute error of the problem for o = 1.95. Table 1 gives the absolute
errors for different values of « at different points. To make a comparison,
the absolute error obtained by the present method has been compared with
Sinc-Legendre method ([16]) in the case of & = 1.95 and ¢ = 1 in Table 2. It
is apparent that the numerical solution is in good agreement with the exact
solution and the results obtained by the proposed method are more accurate
than the those given in [16].

Ezample 2. Consider the time-fractional telegraph equations of order « (1 <
a<2)
9 u(x,t) 0 'u(x,t)
ot ote—1
P p(a,t)

:ﬂ'w+‘f(l',t), 0<.13<1, O<t§1,

with the initial conditions
/1,(37,0) = Oa ut(x,()) = 07 0 <z< 17

and the boundary conditions

w(0,8) =0, u(1,t) = t3sin(1), 0 <t <1,

+ u(z, t)

where f(z,t) = (Fa(f)a)tg’_a + F(Fk,)(f)a)t‘l_“ + t3) sin?(z) — 27t% cos(2z). The

exact solution of this problem is given by pu(xz,t) = t3sin®z ([16,31]). The
problem is solved by the proposed method for k = 2, M = 6. Figure 2 shows
the approximate solution and the absolute error of this problem for o = 1.95.
Table 3 gives the absolute errors for different values of o at some different
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Figure 2. Approximate solution (a) and absolute error (b)
for Example 2 with a« = 1.75, k=2 and M =6

points with &k = 2, M = 6. In Table 4, we give the maximum absolute errors
obtained by the proposed method for different choices of M and « at the
points (z;,t;), where z; = i/40,t; = j/40,i,5 = 0,1,2,...,40. By observing
the graphs of the absolute errors given in Fig. 2b and graphs in [16,32], it is
obvious that the results provided by the proposed method are more accurate
than those given in [16,32].

Ezample 3. Consider the time-fractional telegraph equations of order « (1 <
a<2)

O p(x,t) 9 u(,t)
ote ote—1

with the initial conditions

02 t
+u(x,t):%+f(a:,t), O<a<l, 0<t<I,

/L(fﬁ,O) - »Te*ﬁa ,U't(lao) = 67‘%23 0<z <1,
and the boundary conditions

p(0,t) =t,u(1,t) = (t+1)e” !, 0<t <1,

where f(z,t) = (F(F?)(E)a)tz_“ +t+z+ 43 — 4t + o+ St)e_”z. The exact

solution of this problem is p(z,t) = (t + z)e™® ([12,27]). The problem is
solved by the proposed method for £k = 2 and M = 3. Figure 3 shows the
approximate solution and the absolute error of this problem in the case of a =
1.75,k = 2 and M = 3. Table 5 gives the absolute errors of the approximate
solutions for different values of « at different points with k = 2, M = 3. In
Table 6, there is a comparison between our method and the method in [16].
Table 6 and the graph for the absolute error given in Fig. 3 show that the
results obtained by the proposed method are more accurate than the results
achieved by Sinc-Legendre method in [16].
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Table 4. Maximum absolute error for Example 2 with vari-
ous choices of M and «

M «a=1.15 a=1.35 a=1.55 a=1.75 a=1.95
4.6439e—5  4.5474e—5  4.4293e—5  4.2909¢—5  4.1016e—5
7.5593e—6  7.3935e—6  7.1980e—6  6.9749¢—6  6.6688e—6
2.0881e—7  2.0391e—7  1.9830e—7 1.9191e—7  1.8310e—7
2.3589e—8  2.3039e—8  2.2413e—8  2.1700e—8  2.0719e¢—8
5.0824e—10 4.9575e—10 4.8283e¢—10 4.6684e—10 4.4514e—10
4.2920e—11 3.9333e—11 4.1304e—11 4.0374e—11 3.4691e—11

0~ O Ut = W

-1
11 x10 5

S
<
Error

u(x,t)

(b)

Figure 3. Approximate solution (a) and absolute error (b)
for Example 3 with o« = 1.75, k =2 and M =3

Ezample 4. Consider the time-fractional telegraph equations of order « (1 <
a<2)

O p(x,t) 9 u(x,t)
ote ote—1

with the initial conditions

0?p(x,t

+f($,t), 0<xr<l, 0<tL,

/L(l’,O) =0, “t(wao) =0,0<z<1,
and the boundary conditions

p(0,t) = 2%, u(1,t) = cos(T)t**, 0 < t < 1,

where f(z,t) = (2((251-11)) t* + 1;((2;;%21)) ol 4 50t2“) cos(7z). The exact solu-

tion of this problem is p(x,t) = cos(7z)t?**. The space-time graph of the
approximate solution and the absolute error for « = 1.85,k =2 and M =6
is presented in Fig. 4. The absolute errors for different values of « at different
points with k£ = 2 and M = 6 are tabulated in Table 7.
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(b)

Figure 4. Approximate solution (a) and absolute error (b)
for Example 4 with « = 1.85, k=2 and M =6

Ezample 5. Consider the time-fractional telegraph equations of order a (1 <
a < 2)

O p(x,t) 9 u(x,t)
ote ote—1

with the initial conditions
p(z,0) =0, pue(x,0) =€ 0< <1,
and the boundary conditions

p(0,8) =123 1t pu(1,t) = e(t*3 +1), 0 <t <1,

?u(x,t

+f(z,t), 0<z<1l, 0<t<1,

where f(x,t) = (F(lfl(z)‘l) 3+ F(Fa(;)‘l) th+ Fé(EL)tQ_“)e”. The exact solution of
this problem is p(x,t) = (t*T2 + t)e®. The space-time graph of the approx-
imate solution and the absolute error for a« = 2,k = 2 and M = 6 are
presented in Fig. 5. Table 8 gives the absolute errors for different values of
« at different points with & = 2, M = 6. In Table 9, we list the maximum
absolute errors obtained by the proposed method for different choices of M
and a.

FEzample 6. Consider the following time-fractional telegraph equations:

1.5 0.5 2
2 aﬁl(.ﬁ’t) + 2 aﬁo(.ﬁ’t) +2p(z,t) = Tula,) +f(z,t), 0<z <1, 0<t <,

0x?
with the initial conditions
w(x,0) = ex2, pe(2,0) = ex2, 0<z<1,
and the boundary conditions
w(0,t) =e', p(l,t)=e't 0<t <1,
where f(z,t) = (T\/Z)erf(\/i) - 43:2)6’72“ and erf is error function defined
as erf(x) = % Iy e~t*dt. The exact solution of this problem is p(z,t) =
e’ . We solved this problem with k = 2, M = 3 to 8 and compared our
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Figure 5. Approximate solution (a) and absolute error (b)
for Example 5 with a =2, k=2 and M =6

results with the exact solutions in Table 10. Figure 6 shows the approximate
solution and the absolute error of this problem in the case of £k = 2 and
M=T.

Ezxample 7. To further demonstrate the superiority of the proposed algo-
rithm, we consider the time-fractional telegraph equations of order a (1 <
a < 2), which is also studied by the author in [17] using two-dimensional
Legendre wavelets together with their operational matrix of fractional inte-
gration.

O pu(x,t) | 0% p(x,t)
ote ote—1

with the initial conditions

2
+u(m,t)=%+f(x,t), 0<z<1,0<t<l,

w(z,0) =22, p(z,1) =1+2% 0<x <1,
and the boundary conditions
w(0,8) =t pu(1,t) =1+t 0<t<1,

where f(x,t) = F(I;(EL) + 22 +t — 2. The exact solution of this problem is

w(x,t) = 22 +t. To compare our numerical solutions with the results obtained
in [17], the root mean square error Ly and maximum error Lo, for some (x,t)
in (0,1) in case o = 2 are presented in Table 11. The space—time graph of
the approximate solution and the absolute error for « =2,k =2 and M = 3
is shown in Fig. 7. Table 12 gives the absolute errors for different values of o
at different points with &k =2, M = 3.

From Figs. 1, 2, 3,4, 5, 6 and 7 and Tables 1, 2, 3,4, 5,6, 7, 8,9, 10, 11
and 12, it can be seen that the proposed method is very efficient and accurate
in solving this problem and the obtained approximate solutions are very close
to the exact ones for all chosen o with 1 < o < 2.
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AN
2 Tt OREN
= 4 & ‘::0:::;:::::::::::‘& 1
(b)
Figure 6. Approximate solution (a) and absolute error (b)
for Example 6 with k=2 and M =7
Table 11. Comparison of L., and Lgy errors for Example 7
for some different values of ¢ in case a = 2
Method  Present method Method in [17](k =3, M = 3)
(k=3,M =3)
t Loo L2 Loo L2
0.1 2.22044e—16  7.53756e—17  4.90e—3  8.64e—4
0.3 1.11022e—16  5.55111e—17 1.47e—3  8.06e—4
0.5 1.11022e—16  7.85046e—17  2.28e—3  1.38e—3
0.7 2.22044e—16  1.24126e—16  1.17e—3  7.50e—4
0.9 4.44089¢—16  2.00148¢e—16  6.45e—3  8.60e—H
1.0 2.22044e—16  2.02698¢—16  0.00 0.00
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S

(b)

Figure 7. Approximate solution (a) and absolute error (b)
for Example 7 with « =2, k=2 and M =3
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7. Conclusion

In this paper, the fractional integral formula of a single Legendre wavelet in
the Riemann-Liouville sense is derived. Legendre wavelet collocation method
has been successfully used to obtain the approximate solution of the time-
fractional order telegraph equations. The proposed method is very convenient
for solving the time-fractional order telegraph equations, since the initial and
boundary conditions are all considered during the process of constructing
the approximate solution. The numerical results obtained by the proposed
method are compared with those obtained by Sinc-Legendre method and
radial basis functions to illustrate validity and applicability of the proposed
technique. Moreover, the convergence analysis and error analysis of the pro-
posed method are studied. The illustrative examples show that the method
is an effective tool to solve time-fractional order telegraph equations and is
expected to solve other fractional order partial differential equations numer-
ically.
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