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Abstract. In this paper, we consider a higher order p-Laplacian boundary
value problem

(−1)n[φp(u(2n−2) + k2u(2n−4))]′′ = f(t, u), 0 ≤ t ≤ 1,

u(2i)(0) = 0 = u(2i)(1), 0 ≤ i ≤ n − 1,

where n ≥ 1 and k ∈ (0, π
2
) is a constant. By applying fixed point

index theory, we derive sufficient conditions for the existence of positive
solutions to the boundary value problem.
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1. Introduction

In many branches of applied mathematics and physics, the main objective of
studying the differential equations is to analyze the given situations of the real
world problems by formulating suitable mathematical models. The theory
of differential equations offers a broad mathematical basis to understand
the problems of modern society, which are complex and interdisciplinary by
nature. In this theory, one of the most applicable operator is the classical one
dimensional p-Laplacian operator and is given by φp(s) = |s|p−2s, where p >
1, φ−1

p = φq and 1
p + 1

q = 1. These type of problems appear in mathematical
modeling of viscoelastic flows, image processing, turbulent filtration in porous
media, biophysics, plasma physics, rheology, glaciology, radiation of heat,
plastic molding, etc. Some recent advances indicate that even the Brownian
motion has its counter part and a mathematical game ‘tug of war’ leads to
the case p = ∞. For more details on applications, we refer [9].

Due to wide mathematical and physical background, the existence of
positive solutions for nonlinear boundary value problems with p-Laplacian
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operators have received great attention in recent years. To mention a few
papers along these lines are Wang [30], Lian and Wong [21], Agarwal et al.
[2], Li and Ge [18], Liu and Ge [22], Avery and Henderson [3], Li and Shen
[20] and for further development in the topic, see [11,12,25,31,32,34,36,37].

Motivated by the papers mentioned above, in this paper, we establish
the existence of positive solutions for higher order p-Laplacian boundary value
problems of the form

(−1)n[φp(u(2n−2) + k2u(2n−4))]′′ = f(t, u), 0 ≤ t ≤ 1, (1.1)

u(2i)(0) = 0 = u(2i)(1), 0 ≤ i ≤ n − 1, (1.2)

where n ≥ 1, k ∈ (0, π
2 ) is a constant and f : [0, 1]×R

+ → R
+ is a continuous

function, by applying fixed point index theory. In the past few decades for
k = 0 and p = 2, a lot of works has been done on the existence of positive so-
lutions of the boundary value problems associated with differential equations
using various methods, see [4,6,7,10,17,29,33,35] and for k �= 0 and p = 2,
most of the authors focussed on the existence of positive solutions of second
order differential equations satisfying Neumann and Sturm–Liouville bound-
ary conditions, see [5,14,15,19,23,24,26–28]. However, as far as we know, this
work is path breaking on study of higher order p-Laplacian boundary value
problems with the parameter k.

The rest of the paper is organized as follows. In Sect. 2, we express the
solution of the boundary value problem (1.1) and (1.2) in to an equivalent
integral equation and estimate bounds for the Green functions. In Sect. 3,
we establish criteria for the existence of at least one positive solution for the
boundary value problem (1.1) and (1.2). Finally as an application, we give
an example to illustrate our results.

2. Green’s Function and Bounds

In this section, we express the solution of the boundary value problem (1.1)
and (1.2) into an equivalent integral equation involving Green functions and
estimate bounds for these Green functions.

First, we construct the Green’s function H(t, s) for the homogeneous
problem,

− (u′′ + k2u) = 0, 0 ≤ t ≤ 1, (2.1)
u(0) = 0 = u(1), (2.2)

and then we derive the Green’s function G1(t, s) for the homogeneous bound-
ary value problem,

− y′′ = 0, 0 ≤ t ≤ 1, (2.3)
y(0) = 0 = y(1), (2.4)
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by taking y(t) = (−1)n−2[φp(x)(2n−4)] and x(t) = −(u′′ + k2u). Using the
Green’s function G1(t, s), we derive Green’s function Gn−2(t, s), n ≥ 3, re-
cursively for the homogeneous boundary value problem,

(−1)n−2x(2n−4) = 0, 0 ≤ t ≤ 1, (2.5)

x(2i)(0) = 0 = x(2i)(1), 0 ≤ i ≤ n − 3. (2.6)

Lemma 2.1. The Green’s function H(t, s) for the homogeneous boundary value
problem (2.1), (2.2) is given by

H(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sin(kt) sin(k(1 − s))
k sin(k)

, t ≤ s,

sin(ks) sin(k(1 − t))
k sin(k)

, s ≤ t.

(2.7)

Proof. By algebraic calculations, we can establish the result. �

Lemma 2.2. [1] The Green’s function G1(t, s) for the homogeneous boundary
value problem (2.3), (2.4) is given by

G1(t, s) =

⎧
⎨

⎩

t(1 − s), t ≤ s,

s(1 − t), s ≤ t.
(2.8)

Lemma 2.3. [1,33] The Green’s function for the homogeneous boundary value
problem (2.5), (2.6) is Gn−2(t, s), where Gn−2(t, s) is defined recursively as

Gj(t, s) =
∫ 1

0

Gj−1(t, ξ)G1(ξ, s)dξ, for 2 ≤ j ≤ n − 2, (2.9)

and G1(t, s) is defined as in (2.8).

Now, the equivalent integral equation for the boundary value problem
(1.1), (1.2) is given by

u(t) =
∫ 1

0

G(t, s)φq

[∫ 1

0

G1(s, r)f(r, u(r))dr

]

ds, (2.10)

where

G(t, s) =
∫ 1

0

H(t, τ)Gn−2(τ, s)dτ. (2.11)

Lemma 2.4. The Green’s function H(t, s) in (2.7) satisfies the following in-
equalities:

(i) H(t, s) ≥ 0, for all t, s ∈ [0, 1],
(ii) H(t, s) ≤ H(s, s), for all t, s ∈ [0, 1],
(iii) H(t, s) ≥ ηH(s, s), for all t ∈ I and s ∈ [0, 1],

where η = sin( k
4 )

sin(k) and I =
[
1
4 , 3

4

]
.

Proof. By algebraic calculations, we can establish the result. �

Lemma 2.5. [33] The Green’s function G1(t, s) in (2.8) satisfies the following
inequalities:
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(i) G1(t, s) ≥ 0, for all t, s ∈ [0, 1],
(ii) G1(t, s) ≤ G1(s, s), for all t, s ∈ [0, 1],

(iii) G1(t, s) ≥ 1
4
G1(s, s), for all t ∈ I and s ∈ [0, 1],

where I =
[
1
4 , 3

4

]
.

Lemma 2.6. [33] The Green’s function Gn−2(t, s) in (2.9) satisfies the follow-
ing inequalities:

(i) Gn−2(t, s) ≥ 0, for all t, s ∈ [0, 1],

(ii) Gn−2(t, s) ≤ 1
6n−3

G1(s, s), for all t, s ∈ [0, 1],

(iii) Gn−2(t, s) ≥ 1
4n−2

(
11
96

)n−3

G1(s, s), for all t ∈ I and s ∈ [0, 1],

where I = [14 , 3
4 ].

Lemma 2.7. The Kernel G(t, s) in (2.10) satisfies the following inequalities:
(i) G(t, s) ≥ 0, for all t, s ∈ [0, 1],

(ii) G(t, s) ≤ K

6n−3
G1(s, s), for all t, s ∈ [0, 1],

(iii) G(t, s) ≥ ηL

4n−2

(
11
96

)n−3

G1(s, s), for all t ∈ I and s ∈ [0, 1],

where K =
∫ 1

0

H(τ, τ)dτ and L =
∫

τ∈I

H(τ, τ)dτ .

Proof. By algebraic calculations, we can establish the result. �

For the reader’s convenience, we present some necessary definitions and
theorems we may use through the entire paper.

Definition 2.8. Let X be a Banach space over R. A nonempty, closed set
P ⊂ X is a cone, provided

(i) αu + βv ∈ P for all u,v ∈ P and all α, β ≥ 0, and
(ii) u,−u ∈ P implies u = 0.

Definition 2.9. An operator, T , is completely continuous if T is continuous
and compact, i.e., T maps bounded sets into precompact sets.

Let X be a Banach Space and K be a cone in X. For r > 0, define

Kr = {x ∈ K : ‖x‖ < r} and ∂Kr = {x ∈ K : ‖x‖ = r}.

We use the following well-known fixed point index theorem will be the
fundamental tool to prove our main results.

Theorem 2.10. [8,13,16] Let X be a Banach Space and K be a cone in X.
Assume that F : Kr → K is a completely continuous such that Fx �= x for
x ∈ ∂Kr.

(i) If ‖x‖ < ‖Fx| for x ∈ ∂Kr, then i(F,Kr,K) = 0.
(ii) If ‖x‖ > ‖Fx‖ for x ∈ ∂Kr, then i(F,Kr,K) = 1.
Here i(F,Kr,K) is called the fixed point index of F on Kr with respect to K.
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3. Existence Positive Solutions

In this section, we establish the existence of at least one positive solution for
nonlinear p-Laplacian boundary value problem (1.1), (1.2) using fixed point
index theory.

Let X = {u|u ∈ C[0, 1]} be a Banach space with the norm ‖u‖ =
maxt∈[0,1] |u|, and let

P = {u ∈ X|u(t) > 0, t ∈ [0, 1] and min
t∈I

|u(t)| ≥ M‖u‖},

where M = (ηL
K )( 11n−3

26n−16 ). We note that P is a cone in X. Let the operator
F : P → X be defined as

Fu(t) =
∫ 1

0

G(t, s)φq

[∫ 1

0

G1(s, r)f(r, u(r))dr

]

ds. (3.1)

To obtain a positive solution of (1.1), (1.2), we shall seek a fixed point of the
operator F in the cone P.

We assume the following conditions hold throughout this paper:

(A1) 0 <
∫ 1

0
G1(t, s)ds < ∞,

(A2) f(t, x) is a nondecreasing function with respect to x.

Define the nonnegative extended real numbers f0, f0, f∞ and f∞ by

f0 = lim
u→0+

min
t∈[0,1]

f(t, u)
φp(u)

, f0 = lim
u→0+

max
t∈[0,1]

f(t, u)
φp(u)

,

f∞ = lim
u→∞ min

t∈[0,1]

f(t, u)
φp(u)

and f∞ = lim
u→∞ max

t∈[0,1]

f(t, u)
φp(u)

,

assuming that they will exist. When f0 = 0 and f∞ = ∞ is called super
linear case and f0 = ∞ and f∞ = 0 is called the sub linear case.

Lemma 3.1. The operator F : P → X defined by (3.1) is a self-map on P.

Proof. From (A1) and the positivity of the Green’s function G(t, s) in
Lemma 2.7 that for u ∈ P , Fu(t) ≥ 0 on t ∈ [0, 1]. Now, for u ∈ P and
by Lemma 2.7, we have

Fu(t) =
∫ 1

0

G(t, s)φq

(∫ 1

0

G1(s, r)f
(
r, u(r)

)
dr

)

ds

≤ K

6n−3

∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(s, r)f
(
r, u(r)

)
dr

)

ds.

So that

‖Fu‖ ≤ K

6n−3

∫ 1

0

G1(s, s)φq

( ∫ 1

0

G1(s, r)f
(
r, u(r)

)
dr

)

ds. (3.2)

Then, by Lemma 2.7, for u ∈ P that
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min
t∈I

Fu(t) = min
t∈I

∫ 1

0

G(t, s)φq

( ∫ 1

0

G1(s, r)f
(
r, u(r)

)
dr

)

ds.

≥
(

ηL

4n−2

)(
11

96

)n−3 ∫ 1

0

G1(s, s)φq

( ∫ 1

0

G1(s, r)f
(
r, u(r)

)
dr

)

ds

=

(
ηL

K

)(
11n−3

26n−16

)
K

6n−3

∫ 1

0

G1(s, s)φq

( ∫ 1

0

G1(s, r)f
(
r, u(r)

)
dr

)

ds

≥
(

ηL

K

)(
11n−3

26n−16

)

‖Fu‖
= M‖Fu‖.

Therefore, F : P → P , and hence the proof is complete. �

Furthermore, the operator F is completely continuous by an application
of the Arzela–Ascoli theorem.

Theorem 3.2. Assume that the conditions (A1), (A2) are satisfied. If f0 = 0
and f∞ = ∞, then the boundary value problem (1.1), (1.2) has at least one
positive solution that lies in P.

Proof. Let F be the cone preserving, completely continuous operator defined
by (3.1). Since f0 = 0, we may choose ξ1 > 0 and H1 > 0 such that

f(t, u) ≤ ξ1φp(u), for 0 < u < H1,

where ξ1 satisfies

(ξ1)q−1

(
K

6n−3

) ∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(r, r)dr

)

ds < 1. (3.3)

Now, let u ∈ P with ‖u‖ = H1. Then, by Lemma 2.7 and for t ∈ [0, 1], we
have

Fu(t) =
∫ 1

0

G(t, s)φq

(∫ 1

0

G1(s, r)f
(
r, u(r)

)
dr

)

ds

≤ K

6n−3

∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(r, r)ξ1φp(u)
)
dr

)

ds

≤ (ξ1)q−1

(
K

6n−3

)∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(r, r)dr

)

ds‖u‖
≤ ‖u‖.

Therefore, ‖Fu‖ ≤ ‖u‖. If we set Ω1 = {u ∈ X : ‖u‖ < H1}, then

‖Fu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1. (3.4)

Hence by Theorem 2.10, we have i(F, P ∩ Ω1, P ) = 1.
Furthermore, since f∞ = ∞, there exist ξ2 > 0 and H̄2 > 0 such that

f(t, u(t)) > ξ2φp(u), for u ≥ H̄2,

where ξ2 satisfies

(ξ2)q−1

(
ηLM
4n−2

)(
11
96

)n−3 ∫

s∈I

G1(s, s)φq

(
1
4

∫

r∈I

G1(r, r)dr

)

ds ≥ 1.

(3.5)
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Let H2 = max
{

2H1,
H̄2
M

}

. Choose u ∈ P and ‖u‖ = H2. Then,

min
t∈I

u(t) ≥ M‖u‖ ≥ H̄2.

From Lemmas 2.5, 2.7, and for t ∈ [0, 1], we have

Fu(t) =

∫ 1

0

G(t, s)φq

( ∫ 1

0

G1(s, r)f(r, u(r))dr

)

ds

≥ min
t∈I

∫ 1

0

G(t, s)φq

( ∫ 1

0

G1(s, r)f(r, u(r))dr

)

ds

≥
(

ηL

4n−2

)(
11

96

)n−3 ∫ 1

0

G1(s, s)φq

( ∫ 1

0

G1(s, r)f(r, u(r))dr

)

ds

≥
(

ηL

4n−2

)(
11

96

)n−3 ∫

s∈I

G1(s, s)φq

(
1

4

∫

r∈I

G1(r, r)ξ2φp(u)dr

)

ds

≥
(

ηL

4n−2

)(
11

96

)n−3

(ξ2)
q−1

∫

s∈I

G1(s, s)φq

(
1

4

∫

r∈I

G1(r, r)dr

)

M‖u‖ds

≥ ‖u‖.

Therefore, ‖Fu(t)‖ ≥ ‖u‖. So, if we set Ω2 = {u ∈ X : ‖u‖ < H2}, then

‖Fu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2. (3.6)

By Theorem 2.10, we have i(F, P ∩ Ω2, P ) = 0.
If H1 < H2, then i(F, P ∩(Ω2\Ω̄1), P ) = i(F, P ∩Ω2, P )−i(F, P ∩Ω1, P ) = 0−
1 = −1. It follows from Theorem 2.10 that F has a fixed point u ∈ P∩(Ω2\Ω̄1)
and that u is the positive solution of the boundary value problem (1.1) and
(1.2).
If H1 > H2, then i(F, P ∩(Ω1\Ω̄2), P ) = i(F, P ∩Ω1, P )−i(F, P ∩Ω2, P ) = 1−
0 = 1. It follows from Theorem 2.10 that F has a fixed point u ∈ P ∩(Ω1\Ω̄2)
and that u is the positive solution of the boundary value problem (1.1) and
(1.2). �

We now establish the existence of at least one positive solution of the
boundary value problem (1.1), (1.2) for sublinear case.

Theorem 3.3. Assume that the conditions (A1), (A2) are satisfied. If f0 = ∞
and f∞ = 0, then the boundary value problem (1.1),(1.2) has at least one
positive solution that lies in P.

Proof. Let F be the cone preserving, completely continuous operator defined
by (3.1). Since f0 = ∞, there exist ξ̄1 > 0 and J1 > 0 such that

f(t, u) ≥ ξ̄1φp(u), for 0 < u < J1,

where ξ̄1 ≥ ξ2 and ξ2 is given in (3.5). Then, for u ∈ P and ‖u‖ = J1, we
have
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Fu(t) =

∫ 1

0

G(t, s)φq

( ∫ 1

0

G1(s, r)f
(
r, u(r)

)
dr

)

ds.

≥ min
t∈I

∫ 1

0

G(t, s)φq

( ∫ 1

0

G1(s, r)f
(
r, u(r)

)
dr

)

ds

≥
(

ηL

4n−2

)(
11

96

)n−3 ∫ 1

0

G1(s, s)φq

( ∫ 1

0

G1(r, r)f(r, u(r))
)
dr

)

ds

≥
(

ηL

4n−2

)(
11

96

)n−3 ∫

s∈I

G1(s, s)φq

(
1

4

∫

r∈I

G1(r, r)ξ̄1φp(u)
)
dr

)

ds

≥
(

ηL

4n−2

)(
11

96

)n−3

(ξ̄1)
q−1

∫

s∈I

G1(s, s)φq

(
1

4

∫

r∈I

G1(r, r)
)
dr

)

M‖u‖ds

≥ ‖u‖.

Therefore, ‖Fu‖ ≥ ‖u‖. Now, if we set Ω3 = {u ∈ X : ‖u‖ < J1}, then,

‖Fu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω3. (3.7)

By Theorem 2.10, we have i(F, P ∩ Ω3, P ) = 0.
Furthermore, since f∞ = 0, then there exist ξ̄2 > 0 and J̄2 > 0 such

that

f(t, u(t)) ≤ ξ̄2φp(u), for u ≥ J̄2,

where ξ̄2 ≤ ξ1 and ξ1 is given in (3.3).
Now, we consider two cases: f is either bounded or unbounded.

Case (i): Suppose that f is bounded. Then, there exists N > 0 such that

f(t, u(t)) ≤ N, for 0 < u < ∞.

In this case, we may choose

J2 = max
{

2J1,
KNq−1

6n−3

∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(r, r)dr

)

ds

}

,

then for u ∈ P and ‖u‖ = J2, we have

Fu(t) =
∫ 1

0

G(t, s)φq

(∫ 1

0

G1(s, r)f(r, u(r))dr

)

ds

≤ K

6n−3

∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(s, r)f(r, u(r))dr

)

ds

≤ K

6n−3

∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(r, r)Ndr

)

ds

=
KNq−1

6n−3

∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(r, r)dr

)

ds

≤ J2 = ‖u‖.

Case (ii): Suppose that f is unbounded. Choose J2 > max{2J1, J̄2} such that

f(t, u) ≤ f(t, J2), for 0 < u < J2.
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Then, for u ∈ P and ‖u‖ = J2, we have

Fu(t) =
∫ 1

0

G(t, s)φq

( ∫ 1

0

G1(s, r)f(r, u(r))dr

)

ds

≤ K

6n−3

∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(s, r)f(r, J2)dr

)

ds

≤ K

6n−3

∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(s, r)η̄2φp(J2)dr

)

ds

≤ K(η̄2)q−1

6n−3

∫ 1

0

G1(s, s)φq

(∫ 1

0

G1(r, r)dr

)

dsJ2

≤ J2 = ‖u‖.

Therefore, in either case by setting Ω4 = {u ∈ P : ‖u‖ < J2}, we have

‖Fu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω4. (3.8)

Hence by Theorem 2.10, i(F, P ∩ Ω4, P ) = 1.
If J1 < J2, then i(F, P ∩(Ω4\Ω̄3), P ) = i(F, P ∩Ω4, P )−i(F, P ∩Ω3, P ) = 1−
0 = 1. It follows from Theorem 2.10 that F has a fixed point u ∈ P ∩(Ω4\Ω̄3)
and that u is the positive solution of the boundary value problem (1.1) and
(1.2).
If J1 > J2, then i(F, P ∩(Ω3\Ω̄4), P ) = i(F, P ∩Ω3, P )−i(F, P ∩Ω4, P ) = 0−
1 = −1. It follows from Theorem 2.10 that F has a fixed point u ∈ P∩(Ω3\Ω̄4)
and that u is the positive solution of the boundary value problem (1.1) and
(1.2). �

4. Example

Let us consider an example to illustrate our established results.

Example 4.1. Consider the boundary value problem

(−1)3[φp

(
u(4)(t) + k2u′′(t)

)
]′′ = f(t, u(t)), 0 ≤ t ≤ 1, (4.1)

u(0) = 0 = u(1),

u′′(0) = 0 = u′′(1, )

u(4)(0) = 0 = u(4)(1).

⎫
⎪⎬

⎪⎭
(4.2)

For simplicity, we take p = 2 and k = 1. By algebraic computations, we get
η = 0.2474, M = 0.05059, K = 0.1693 and L = 0.1268.

(a) If f(t, u(t)) = u2et(1−3t), then f0 = 0 and f∞ = ∞. So, all the as-
sumptions of Theorem 3.2 are satisfied and hence, the boundary value
problem (4.1), (4.2) has at least one positive solution.

(b) If f(t, u(t)) =
√

t2 + 1 3
√

u, then f0 = ∞ and f∞ = 0. So, all the as-
sumptions of Theorem 3.3 are satisfied and hence, the boundary value
problem (4.1) and (4.2) has at least one positive solution.
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