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Abstract. We obtain new convolutions for quadratic-phase Fourier inte-
gral operators (which include, as subcases, e.g., the fractional Fourier
transform and the linear canonical transform). The structure of these
convolutions is based on properties of the mentioned integral operators
and takes profit of weight-functions associated with some amplitude
and Gaussian functions. Therefore, the fundamental properties of that
quadratic-phase Fourier integral operators are also studied (including a
Riemann–Lebesgue type lemma, invertibility results, a Plancherel type
theorem and a Parseval type identity). As applications, we obtain new
Young type inequalities, the asymptotic behaviour of some oscillatory
integrals, and the solvability of convolution integral equations.
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1. Introduction

The interest in having new convolutions associated with integral operators
is wide and based on both theoretical and applied aspects. Outside math-
ematics, the use of different types of convolutions is very diverse, ranging,
e.g., from signal processing to neural networks. Within mathematics, it is
also very profitable to construct new convolutions that will facilitate the
identification of new factorization properties to decouple the convolutions
into a (weighted) product of integrals. Typically, this decoupling has strong
consequences and originates new results in different branches of mathematics
(e.g., in harmonic analysis and differential equations). This last aspect will
be exhibited in here, for a large class of integral operators, with consequences
that will be exemplified for three different topics: (1) Young type inequalities,
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(2) asymptotic behaviour of oscillatory integrals, and (3) the solvability of
classes of integral equations.

A diversity of convolutions which are suitable for other integral op-
erators can be found in several recent publications. For other convolutions
and integral operators, while not being exhaustive, we refer the reader to
[1–3,8,12–18,22,25,26,28]. In addition, it is relevant to have in mind that
the factorization property of convolutions is crucial in solving corresponding
convolution type equations [6,7,11,25]. It is also clear that convolution type
equations are very often used in the modelling of a broad range of different
problems (cf. [9,10]), and so additional knowledge on their solvability is very
welcome.

Throughout this paper, for parameters a, b, c, d, e ∈ R (with b �= 0), we
take

Q(a,b,c,d,e)(x, y) := ax2 + bxy + cy2 + dx + ey (1.1)

to be the quadratic-phase function within the kernel of our integral opera-
tor. In what follows, for shortening formulas, we will also use the notation
Q(a−e)(x, y) := Q(a,b,c,d,e)(x, y). Besides this, we shall also write Q(a−c)(x, y) :
= Q(a,b,c,0,0)(x, y). So, this allows us to introduce the integral operator Q de-
fined by

(Qf)(x) :=
1√
2π

∫
R

eiQ(a−e)(x,y)f(y)dy, (1.2)

where f ∈ L1(R) or f ∈ L2(R), and that we will denominate by quadratic-
phase Fourier integral operator.

Let us make a brief discussion on the integral operator Q by comparing
it with other well-known operators. In first place, we would like to notice that
when a = c = d = e = 0 and b = ±1, Q is simply the well-known Fourier and
inverse Fourier integral transforms, respectively. Secondly, when d = e = 0,
the kernel generated by Eq. (1.1) includes the kernel of the linear canonical
transform as well as of the one of the fractional Fourier transform. Typically,
it is clear that the constant factors incorporated in the integral operators are
considered in view of the final purposes and problems where the operators
are used. Still within in the last comparison, and as about the constant factor
appearing in Eq. (1.2), there is a difference between our concept of quadratic-
phase Fourier integral operator and the most frequent choices of constant fac-
tors for the linear canonical transform and fractional Fourier transform. In
our case, the factor 1/

√
2π is chosen intentionally since it ensures consequent

convenient computations involving the quadratic-phase Fourier integral op-
erator, as we shall see later on. The constant

√−i typically chosen in the
particular case of linear canonical transform, and

√
(1 − i cot(α))/2π for the

fractional Fourier transform, are more convenient in view of the particular
properties of those cases.

The paper is divided into four sections and organized as follows. Sec-
tion 2 presents some basic theorems for the integral operator Q such as the
Riemann–Lebesgue lemma, inversion formula, Plancherel’s extension, Parse-
val identity. Section 3 provides new convolution theorems which, in particular
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cases, turn out to be convolution theorems for the linear canonical transform,
fractional Fourier transform and Fourier transform. In Sect. 4, we apply the
obtained results to derive Young’s convolution inequalities for the proposed
convolutions, the asymptotic behaviour of a class of oscillatory integrals, and
the solvability of classes of convolution integral equations.

2. Basic Properties of the Integral Operator

In this section, as a preliminary step to the main content, we will study
some basic properties of the integral operator Q. This will include its map-
ping properties, as well as a corresponding inversion formula, a Plancherel’s
extension and a Parseval identity.

Let us denote by S the Schwartz space, and by C0(R) the Banach space
of all continuous functions on R that vanish at infinity, endowed with the
supremum norm ‖ · ‖∞. Moreover, in L1(R) we will be using the norm ‖ · ‖1

defined by

‖f‖1 :=
1√
2π

∫
R

|f(y)|dy,

where the factor 1/
√

2π is here considered just to obtain more direct compu-
tations later on. In the case of 1 < p < ∞, the space Lp(R) will be endowed
with the norm

‖f‖p :=
(∫

R

|f(y)|pdy

) 1
p

.

Lemma 2.1 (Riemann–Lebesgue lemma) If f ∈ L1(R) then Qf ∈ C0(R), and
‖Qf‖∞ ≤ ‖f‖1.

Proof. Since |eiQ(a−e)(x,y)| = 1, it is clear that

‖Qf‖∞ = sup
x∈R

|(Qf)(x)| = sup
x∈R

1√
2π

∣∣∣∣
∫
R

eiQ(a−e)(x,y)f(y)dy

∣∣∣∣
≤ sup

x∈R

1√
2π

∫
R

|eiQ(a−e)(x,y)| |f(y)|dy = ‖f‖1.

In addition, choosing g(y) := ei(cy2+ey)f(y) it is clear that g ∈ L1(R) if and
only if f ∈ L1(R). Therefore, using the classic Riemann–Lebesgue lemma, we
derive that

|(Qf)(x)| =
|ei(ax2+dx)|√

2π

∣∣∣∣
∫
R

eibxyg(y)dy

∣∣∣∣ =
1√
2π

∣∣∣∣
∫
R

eibxyg(y)dy

∣∣∣∣ → 0,

as x → ∞, and the proof of the lemma is complete. �

The next lemma is known as a version of the Nyquist–Shannon sampling
theorem, and will be useful for proving Theorem 2.3.
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Lemma 2.2 (cf., e.g., Theorem 12, [24]) The formula

1
2

[f(x + 0) + f(x − 0)] = limλ→∞
1
π

∫ +∞

−∞
f(t)

sin λ(x − t)
x − t

dt

holds true if
f(x)

1 + |x| belongs to L1(R).

Theorem 2.3 (Inversion theorem). If f ∈ L1(R) and Qf ∈ L1(R), then

f(x) =
b√
2π

∫
R

(Qf)(y)e−iQ(a−e)(y,x)dy, (2.1)

for almost every x ∈ R.

Proof. First, let us prove the inversion formula for f ∈ S. In this case, by
Lemma 2.2 and direct computations, we have

b√
2π

∫
R

(Qf)(y)e−iQ(a−e)(y,x)dy

=
b

2π
limλ→+∞

∫ λ

−λ

∫
R

e−iQ(a−e)(y,x)eiQ(a−e)(y,u)f(u)dudy

=
b

2π
e−i(cx2+ex)

∫
R

f(u)ei(cu2+eu)du limλ→+∞
∫ λ

−λ

e−iby(x−u)dy

=
1
π

e−i(cx2+ex) limλ→+∞
∫
R

f(u)ei(cu2+eu) sin bλ(x − u)
x − u

du

= e−i(cx2+ex)f(x)ei(cx2+ex) = f(x).

Thus, Q is a one-to-one, linear and continuous operator from S onto S (with
a continuous inverse).

We now assume that f ∈ L1(R), and let g ∈ S. A direct computation
gives us ∫

R

f(x)(Qg)(x)dx =
∫
R

g(y)(Qf)(y)dy.

Using this identity and Eq. (2.1), for g ∈ S, we have
∫
R

f(x)(Qg)(x)dx =
b√
2π

∫
R

(∫
R

e−iQ(a−e)(y,x)(Qg)(x)dx
)
(Qf)(y)dy

=
∫
R

(Qg)(x)
( b√

2π

∫
R

e−iQ(a−e)(y,x)(Qf)(y)dy
)
dx

=
∫
R

f0(x)(Qg)(x)dx,

where

f0(x) :=
b√
2π

∫
R

(Qf)(y)e−iQ(a−e)(y,x)dy.
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By Eq. (2.1) the function Qg covers all S when g runs in S. Therefore,∫
R
(f0(x) − f(x))Φ(x)dx = 0 for every Φ ∈ S. Since S is dense in L1(R), we

obtain that f0(x) − f(x) = 0 for almost every x ∈ R, as desired. �

The uniqueness property below is an immediate consequence of Theo-
rem 2.3.

Corollary 2.4 (Uniqueness) If f ∈ L1(R) and Qf = 0, then f = 0.

In what follows we will be denoting the inverse operator of Q by Q
−1:

(Q−1g)(x) :=
b√
2π

∫
R

(Qf)(y)e−iQ(a−e)(y,x)dy

Theorem 2.5 (Plancherel theorem) There is a linear isomorphic operator Q :
L2(R) → L2(R) which is uniquely determined by the requirement that Qf =
Qf for every f ∈ S. The inverse operator is also uniquely determined by
having Q

−1
f = Q

−1f for every f ∈ S.

Proof. Recall that S is dense in L2(R). Thus, as the map f 	→ Qf is con-
tinuous (relative to the L2−norm) from the dense subspace S of L2(R) onto
S, it has a unique continuous extension Q : L2(R) → L2(R). Theorem 2.5 is
proved. �

Thanks to the uniqueness of the extension operator, one can formulate
another theorem in a more detailed way by exhibiting the explicit form of
the operator in L2.

Theorem 2.6 (Plancherel theorem) Let f be a complex-valued function in
L2(R) and let

Q(x, k) :=
1√
2π

∫
|y|<k

f(y)eiQ(a−e)(x,y)dy.

Then, as k → ∞, Q(x, k) converges strongly (over R) to a function, say Qf ,
of L2(R); reciprocally,

f(x, k) :=
b√
2π

∫
|y|<k

Qf(y)e−iQ(a−e)(y,x)dy.

converges strongly to f .

Theorem 2.7 (Parseval type identity)
(i) For any f, g ∈ L2(R), the following identity holds

〈Qf,Qg〉 =
1
|b| 〈f, g〉,

where 〈·, ·〉 denotes the usual inner product in L2(R) given by 〈f, g〉 :=∫
R

f(x) g(x)dx. In the special case of f = g, we then have

‖Qf‖2
2 =

1
|b| ‖f‖2

2. (2.2)

(ii) If |b| = 1, then Q defines a unitary operator in L2(R).
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Proof. Consider b > 0. One can prove this theorem by different ways, directly
or indirectly. Directly, by Lemma 2.2 and simple computations, we have

〈Qf,Qg〉 =

∫
R

(Qf)(x) (Qg)(x)dx

=
1

2π

∫
R

∫
R

∫
R

eiQ(a−e)(x,y)e−iQ(a−e)(x,u)f(y)g(u)dydudx

=
1

2π

∫
R

∫
R

ei(cy2+ey) e−i(cu2+eu)f(y)g(u)dydu

∫
R

eibx(y−u)dx

=
1

2π

∫
R

∫
R

ei(cy2+ey) e−i(cu2+eu)f(y)g(u)dydu

(
lim

λ→∞

∫ λ

−λ

eibx(y−u)dx

)

=
1

b

∫
R

ei(cy2+ey)f(y)

(
limλ→∞

1

π

∫
R

[
e−i(cu2+eu)g(u)

] sin bλ(y − u)

y − u
du

)
dy

=
1

b

∫
R

ei(cy2+ey)f(y)e−i(cy2+ey)g(y)dy =
1

b

∫
R

f(y)g(y)dy =
1

b
〈f, g〉.

Similarly, if b < 0 then 〈Qf,Qg〉 = 1
−b 〈f, g〉. Thus, proposition (i) is proved.

Having now in mind that Q is surjective (cf. Theorem 2.5), and proposi-
tion (i), it follows that (ii) holds true. �

3. New Convolutions

We will introduce new convolutions somehow associated with the integral
operator Q which will exhibit very significant factorization identities. Later
on, in the next section, we will exemplify the use of such convolutions and
their factorizations.

In what follows, we will use the following well-known identity
1√
2π

∫
R

eixte−kt2dt =
1√
2k

e− 1
4k x2

(k > 0) (3.1)

for every x ∈ R (see [21,24]).

Theorem 3.1. If f, g ∈ L1(R) and Ω1(x) := e− 1
2 x2−aix2

, then the new element

f
Ω1
�
Q

g below introduced defines a convolution followed by the norm inequality

and its factorization identity:

(f
Ω1
�
Q

g)(x) :=
b

2π

∫
R

∫
R

f(u)g(v)ei(cu2+cv2−cx2+eu+ev−ex)− (bx−bu−bv−d)2

2 dudv,

‖f
Ω1
�
Q

g‖1 ≤ ‖f‖1‖g‖1, Q(f
Ω1
�
Q

g)(x) = Ω1(x) (Qf)(x) (Qg)(x).

(3.2)

Proof. First, we prove the norm inequality. Performing the change of variables
t := bx − bu − bv − d and using Eq. (3.1), we obtain

‖f
Ω1
�
Q

g‖1 ≤ |b|
(2π)3/2

∫
R

|f(u)|du

∫
R

|g(v)|dv

∫
R

e− (bx−bu−bv−d)2

2 dx

=
‖f‖1‖g‖1√

2π

∫
R

e− t2
2 dt = ‖f‖1‖g‖1,



MJOM New Convolutions for Quadratic-Phase Page 7 of 17 13

which proves the norm inequality. We shall now prove the factorization iden-
tity. Using Eq. (3.1), we have
Ω1(x)(Qf)(x)(Qg)(x)

= e− 1
2 x2−aix2 1√

2π

∫
R

eiQ(a−e)(x,u)f(u)du
1√
2π

∫
R

eiQ(a−e)(x,v)g(v)dv

= e−aix2 1√
2π

∫
R

e− 1
2 t2+ixtdt

1

2π

∫
R

∫
R

eiQ(a−e)(x,u)eiQ(a−e)(x,v)f(u)g(v)dudv

=
1

2π
√

2π

∫
R

∫
R

∫
R

ei(ax2+cu2+cv2+bx(u+v+ t
b
+ d

b
)+dx+eu+ev)e− 1

2 t2f(u)g(v)dudvdt.

Let u = u, v = v and s = u + v + t
b + d

b . We then have

Ω1(x)(Qf)(x)(Qg)(x) =
b

2π
√

2π

∫
R

∫
R

∫
R

eiQ(a−e)(x,s)

× ei(cu2+cv2−cs2+eu+ev−es)− (bs−bu−bv−d)2

2 f(u)g(v)dudvds

=
1√
2π

∫
R

eiQ(a−e)(x,s)

{
b

2π

∫
R

∫
R

f(u)g(v)

× ei(cu2+cv2−cs2+eu+ev−es)− (bs−bu−bv−d)2

2 dudv

}
ds

=
1√
2π

∫
R

eiQ(a−e)(x,s)(f
Ω1
�
Q

g)(s)ds = Q(f
Ω1
�
Q

g)(x).

The theorem is proved. �

Remark 3.2. (a) When a = c = d = e = 0, and b = ±1, Q is the well-
known Fourier transform and inverse Fourier transform, respectively,
and Ω1(x) = e− 1

2 x2
. Then, the convolution in (3.2) takes the form

(f
Ω1
�
Q

g)(x) =
±1√
2π

∫
R

∫
R

e− (x−u−v)2

2 f(u)g(v)dudv,

and so are convolutions associated with the Fourier transform.
(b) Let a = c = cot(α)/2, b = − sec(α). In such a particular case we see

that Q is simply the fractional Fourier transform, and (3.2) takes the
form

(f
Ω1
�
Q

g)(x) =
b

2π

∫
R

∫
R

eia(u2+v2−x2)− b2
2 (x−u−v)2f(u)g(v)dudv,

which is therefore a convolution associated with the fractional Fourier
transform.

(c) Let d = e = 0. Then, Q is the linear canonical transform and Eq. (3.2)
turns to be

(f
Ω1
�
Q

g)(x) =
b

2π

∫
R

∫
R

eic(u2+v2−x2)− b2
2 (x−u−v)2f(u)g(v)dudv,

being therefore a convolution associated with the linear canonical trans-
form.
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Theorem 3.3. If f, g ∈ L1(R) and Ω2(x) := e− 1
2 x2−aix2−dix, then the fol-

lowing element f
Ω2⊗
Q

g is a convolution followed by its norm inequality and

factorization identity:

(f
Ω2⊗
Q

g)(x) :=
b

2π

∫
R

∫
R

ei(cu2+cv2−cx2+eu+ev−ex)− (bx−bu−bv)2

2 f(u)g(v)dudv,

(3.3)

‖f
Ω2⊗
Q

g‖1 ≤ ‖f‖1‖g‖1, Q(f
Ω2⊗
Q

g)(x) = Ω2(x) (Qf)(x) (Qg)(x).

Proof. The proof of the norm inequality can be obtained in the same way
as in the case of convolution (3.2), and so it is here omitted. For proving
the factorization identity, we start by interpreting the right-hand side of the
factorization identity:

Ω2(x)(Qf)(x)(Qg)(x)

= e
− 1

2
x2−aix2−dix 1√

2π

∫
R

e
iQ(a−e)(x,u)

f(u)du
1√
2π

∫
R

e
iQ(a−e)(x,v)

g(v)dv

= e
−aix2−dix 1√

2π

∫
R

e
− 1

2
t2+ixt

dt
1√
2π

∫
R

e
iQ(a−e)(x,u)

f(u)du
1√
2π

∫
R

e
iQ(a−e)(x,v)

g(v)dv

=
1

2π
√

2π

∫
R

∫
R

∫
R

e
i(ax2+cu2+cv2+bx(u+v+ t

b
)+dx+eu+ev)

e
− 1

2
t2

f(u)g(v)dudvdt.

Then, taking u = u, v = v and s = u + v + t
b , we obtain

Ω2(x)(Qf)(x)(Qg)(x) =
b

2π
√

2π

∫
R

∫
R

∫
R

eiQ(a−e)(x,s)

× ei(cu2+cv2−cs2+eu+ev−es)− (bs−bu−bv)2

2 f(u)g(v)dudvds

=
1√
2π

∫
R

eiQ(a−e)(x,s)

{
b

2π

∫
R

∫
R

f(u)g(v)

× ei(cu2+cv2−cs2+eu+ev−es)− (bs−bu−bv)2

2 dudv

}
ds

=
1√
2π

∫
R

eiQ(a−e)(x,s)(f
Ω2⊗
Q

g)(s)ds = Q(f
Ω2⊗
Q

g)(x).

The theorem is proved. �

Theorem 3.4. If f, g ∈ L1(R) and Ω3(x) := e− 1
2 x2

, then the element f
Ω3

Q

g

below introduced defines a convolution followed by a norm inequality and its
factorization identity:
(

f
Ω3�
Q

g

)(
x√
2

)
:=

b√
2 π

∫
R

∫
R

e
i(cu2+cv2−c x2

2
+eu+ev− ex√

2
)− (bx−bu−bv−2d+d

√
2)2

2 f(u)g(v)dudv,

‖f
Ω3�
Q

g‖1 ≤ ‖f‖1‖g‖1, Q(f
Ω3�
Q

g)(
√

2x) = Ω3(x)(Qf)(x)(Qg)(x).

(3.4)
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Proof. The norm inequality can be deduced in the same way as above, and
so we omit its proof. Now, we realize that

Ω3(x)(Qf)(x)(Qg)(x)

= e− 1
2 x2 1√

2π

∫
R

eiQ(a−e)(x,u)f(u)du
1√
2π

∫
R

eiQ(a−e)(x,v)g(v)dv

=
1√
2π

∫
R

e− 1
2 t2+ixtdt

1
2π

∫
R

∫
R

eiQ(a−e)(x,u)eiQ(a−e)(x,v)f(u)g(v)dudv

=
1

2π
√

2π

∫
R

∫
R

∫
R

ei(2ax2+cu2+cv2+bx(u+v+ t
b+ 2d

b − d
√

2
b )+d

√
2x+eu+ev)

× e− 1
2 t2f(u)g(v)dudvdt.

Then, taking u = u, v = v and s = u + v + t
b + 2d

b − d
√

2
b , we obtain

Ω3(x)(Qf)(x)(Qg)(x) =
b

2π
√

2π

∫
R

∫
R

∫
R

e
iQ(a−e)(

√
2x, s√

2
)
f(u)g(v)

× e
i(cu2+cv2−c s2

2 +eu+ev− es√
2
)− (bs−bu−bv−2d+d

√
2)2

2 dudvds

=
1√
2π

∫
R

e
iQ(a−e)(

√
2x, s√

2
)

{
b√
2π

∫
R

∫
R

f(u)g(v)

× e
i(cu2+cv2−c s2

2 +eu+ev− es√
2
)− (bs−bu−bv−2d+d

√
2)2

2 dudv

}
d

(
s√
2

)

=
1√
2π

∫
R

e
iQ(a−e)(

√
2x, s√

2
)(f 


Q

g)
(

s√
2

)
d

(
s√
2

)
= Q(f 


Q

g)(
√

2x).

The theorem is proved. �

For shortness of notation, let us consider Ech(t) := e−i(at2+dt) and
Egd(t) := e− |b|

2 t2 , where Ech, Egd are the chirp and Gaussian functions, re-
spectively. Moreover, let us also define Ω4(t) := Ech(t) · Egd(t).

Theorem 3.5. Assume that a = −c and d = −e. If f, g ∈ L1(R), then the

element f
Ω4

�
Q

g below considered defines a convolution followed by its norm

inequality and factorization identity:

(
f

Ω4

�
Q

g

)
(x) :=

√|b|[Ech(x)]−1

2π

∫
R

∫
R

Egd(x − u − v)[Ech(u) f(u)][Ech(v) g(v)]dudv,

(3.5)∥∥∥∥f
Ω4

�
Q

g

∥∥∥∥
1

≤ ‖f‖1‖g‖1, Q

(
f

Ω4

�
Q

g

)
(x) = Ω4(x) (Qf)(x) (Qg)(x). (3.6)

Proof. The norm inequality can be obtained by proceeding similarly as in
the previous theorems, and so we ignore this step in here. A first direct
computation yields
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Ω4(x)(Qf)(x)(Qg)(x)

= e−i(ax2+dx)e− |b|
2 x2 1

2π

∫
R

∫
R

eiQ(a−e)(x,u)eiQ(a−e)(x,v)f(u)g(v)dudv

= e−i(ax2+dx)
√

|b| 1√
2π

∫
R

eibxt− |b|
2 t2dt

1

2π

∫
R

∫
R

eiQ(a−e)(x,u)eiQ(a−e)(x,v)f(u)g(v)dudv

=
1

2π
√

2π

√
|b|
∫
R

∫
R

∫
R

ei(ax2+bx(u+v+t)+cu2+cv2+dx+eu+ev)e− |b|
2 t2f(u)g(v)dudvdt.

Then, considering u = u, v = v and s = u + v + t, we obtain

Ω4(x)(Qf)(x)(Qg)(x) =
1

2π
√

2π

√
|b|
∫
R

∫
R

∫
R

eiQ(a−e)(x,s)

× ei(cu2+cv2−cs2+eu+ev−es)− |b|
2 (s−u−v)2f(u)g(v)dudvds

=
1√
2π

∫
R

eiQ(a−e)(x,s){
√|b| [Ech(s)]−1

2π

∫
R

∫
R

Egd(s − u − v)

× [Ech(u) f(u)][Ech(v) f(v)]dudv}ds

=
1√
2π

∫
R

eiQ(a−e)(x,s)

(
f

Ω4

�
Q

g

)
(s)ds = Q

(
f

Ω4

�
Q

g

)
(x).

The proof of the theorem is complete. �

Remark 3.6. Similarly to what was mentioned in Remark 3.2, we can see
that Eqs. (3.3)–(3.5) take the form of other convolutions associated with the
Fourier transform, fractional Fourier transform, and linear canonical trans-
form, in corresponding special cases, when Q assumes the form of the Fourier
transform, fractional Fourier transform, and linear canonical transform, re-
spectively.

4. Applications

In this final section, we exemplify some possibilities of application for the
convolutions and integral operators considered above. In fact, we will obtain
new Young type inequalities, norm decay rates of oscillatory integrals and
solutions of convolution integral equations.

4.1. Young Type Convolution Inequalities

In this subsection, we will obtain certain norm inequalities for the convolu-
tions (3.2)–(3.5) in a very general framework. For this purpose, we recall the
Minkowski’s integral inequality

[∫
Θ2

∣∣∣∣
∫

Θ1

F (x, y) dμ1(x)
∣∣∣∣
s

dμ2(y)
] 1

s

≤
∫

Θ1

(∫
Θ2

|F (x, y)|s dμ2(y)
) 1

s

dμ1(x),

(4.1)
where we have two measure spaces (Θ1, μ1) and (Θ2, μ2) and a measurable
function F (·, ·) : Θ1 × Θ2 −→ C. Let 1 ≤ p, q, r ≤ ∞ satisfy
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1
p

+
1
q

=
1
r

+ 1.

The Banach spaces involved here are Lp(R), Lq(R), Lr(R). For shortening
the notation below, let us use the common symbol � for the four notations
previously used: �,⊗,
,�. We shall prove that:

‖f�g‖r ≤ C1‖f‖p ‖g‖q, provided f ∈ Lp(R), g ∈ Lq(R); (4.2)

‖f�g‖s ≤ C2‖f‖1 ‖g‖1 for any s ≥ 1, provided f, g ∈ L1(R), (4.3)

where C1, C2 are some positive constants. In here we would like to emphasize
the power of the last inequality which is valid for any s, and so it is very
different from the classic cases.

Let us prove those inequalities only for the convolution (3.5), and omit
that ones for Eqs. (3.2), (3.3), (3.4) and (3.5), since the proofs are analogous.
A key point in all the proofs arises from the rapid decreasing behaviour of
the Gaussian function Egd.

Proof of inequality (4.2). By changing the variable t := u + v, we have

h(x) := (f
Ω4

�
Q

g)(x)

=

√|b| [Ech(x)]−1

2π

∫
R

∫
R

Egd(x − u − v)[Ech(u) f(u)] [Ech(v) f(v)](v)dudv

=

√|b| [Ech(x)]−1

2π

∫
R

Egd(x − t)dt

(∫
R

[Ech(t − v)f(t − v)
] [Ech(v)g(v)

]
dv

)

=

√|b| [Ech(x)]−1

2π

∫
R

Egd(s − t)F (t)dt, (4.4)

where

F (t) :=
∫
R

[Ech(t − v)f(t − v)
] [Ech(v)g(v)

]
dv.

Evidently, Ech f ∈ Lp(R), Ech g ∈ Lq(R). Applying the well-known Young’s
convolution inequality for the classic case [4,5] gives F ∈ Lr(R). Remind that
|E−1

ch (x)| = 1, and Egd ∈ L1(R). Again, applying Young’s inequality for the
case 1

r + 1
1 = 1

r + 1, we derive that the function defined by the right-hand
side of Eq. (4.4) belongs to Lr(R). This means that h ∈ Lr(R). �

Proof of inequality (4.3). Since Egd is a rapidly decreasing function, Egd ∈
Ls(R) for any s ≥ 1, and

∫
R

|Egd(±x ± u ± v)|sdx = ‖Egd‖s
s (u, v are fixed in R).
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Applying (4.1) gives
[∫

R

∣∣∣∣
∫
R2

Egd(x − v − u)f(u)g(v)dudv

∣∣∣∣
s

dx

]1/s

≤
∫
R2

(∫
R

∣∣Egd(x − v − u)
∣∣s ∣∣f(u)

∣∣s ∣∣g(v)
∣∣sdx

)1/s

dudv

=
∫
R2

(∫
R

∣∣Egd(x − v − u)
∣∣sdx

)1/s ∣∣f(u)
∣∣ ∣∣g(v)

∣∣dudv

= ‖Egd‖s

∫
R2

∣∣f(u)
∣∣ ∣∣g(v)

∣∣dudv = ‖Egd‖s 2π‖f‖1 ‖g‖1.

We thus obtain inequality (4.3). �

There is a notable difference on the image and domain spaces between
the here proposed convolutions and previously constructed convolutions, as-
sociated with the fractional Fourier transform and the linear canonical trans-
form, as indicated by the theorem below.

Theorem 4.1. The convolutions (3.2), (3.3), (3.4), and (3.5), possess their
Young’s convolution inequalities given by Eqs. (4.2) and (4.3).

In other words, if f ∈ Lp(R) and g ∈ Lq(R), then each one of the
proposed convolutions defines a new function in Lr(R), where 1/p + 1/q =
1/r + 1. Moreover, if f, g ∈ L1(R), then each one of those convolutions also
defines a function in Ls(R), for any s ≥ 1.

Remark 4.2. (a) Using a direct notation, we may write:

Lp(R)�Lq(R) ⊆ Lr(R), where
1
p

+
1
q

=
1
r

+ 1; (4.5)

L1(R) � L1(R) ⊆ Ls(R), for any s ≥ 1. (4.6)

Letting p = q = r = 1 in inclusion (4.5), or let s = 1 in inclusion (4.6),
we retrieve the norm inequalities proved by Theorems 3.1, 3.3, 3.4, and
3.5, with the explicit constant C1 = C2 = 1 (cf. inequalities (4.2)–(4.3)).

(b) Choosing s = 2 in (4.3), we see that if f, g ∈ L1(R), then the convo-
lution defines a function in the space L1(R) ∩ L2(R). This result is in
accordance with the known circumstance that a convolution f ∗g inher-
its the best properties of both f and g. In particular, since a convolution
can be seen as a filtering, averaging, inner product and as, somehow, a
smoothing action, a Young type convolution inequality (4.3) is a strik-
ing feature for new convolutions. Having in mind that in the literature
only the corresponding situation for the Fourier case is known, inequal-
ity (4.3) exhibits a remarkable property associated with the proposed
convolutions.

(c) Even in the case of the classical Fourier convolution, one has only the
Young’s convolution inequality (4.2), and (4.3) for s = 1. Therefore, the
Young’s inequality (4.3) is a specific characteristic of the convolutions
here introduced.
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The following corollary is an immediate consequence of the above the-
orem.

Corollary 4.3. The Banach space L1(R), equipped with each one of convolu-
tions (3.2), (3.3), (3.4), and (3.5), becomes a normed ring.

4.2. Norm Decay Rate of Oscillatory Integrals

The general oscillatory integral theory has its origins at the heart of Har-
monic Analysis, in which the Fourier’s case is the original and probably the
best example of an oscillatory integral, and leads us to consider more general
oscillatory integrals. In recent years, there have been many efforts for estimat-
ing norm decay rates of Fourier oscillatory integrals (see, e.g., [19,20,23,27]
and references therein).

The possible best norm decay rate of the quadratic-phase Fourier in-
tegral operator Q can be seen as an immediate consequence of the identity
(2.2). So, in a more global way, let us consider the quadratic-phase Fourier
oscillatory integral operator

(Tλφ)(x) :=
∫
R

eiλQ(a−e)(x,y)ψ(x, y)φ(y)dy, (4.7)

where Q(a−e)(x, y) defined by (1.1) is called the phase, and ψ(x, y) being a
smooth compactly supported function on R

2 is said to be amplitude (cf. [19,
20,23,27]). Recall that b �= 0. The idea is to understand the behaviour of the
norm of Tλ when λ is varying through R. The case of λ = 0 is obvious (as a
degenerated case) and so it is omitted (in fact, it is even enough to consider
λ > 0).

Theorem 4.4. Tλ can be extended to a bounded linear operator defined in
L2(R) with norm

‖Tλ‖2 ≤ C√|λ|
where C is independent on λ.

Proof. Let M ⊂ R
2 denote the compact support of ψ, and let χM (x) and

χM (y) stand for the characteristic functions with variable x and y, respec-
tively. It is easily seen that Tλφ ∈ L2(R), provided φ ∈ L2(R). Indeed, having
in mind that ψ(x, y) is uniformly bounded on M × M (there is a constant C
such that |ψ(x, y)| ≤ C < ∞), and using (4.1) and the Cauchy–Bunyakovsky–
Schwarz inequality, we have
∫
R

|(Tλφ(x))|2dx =
∫
R

dx

∣∣∣∣
∫
R

eiλQ(a−e)(x,y)χM (x)χM (y)ψ(x, y)φ(y)dy

∣∣∣∣
2

≤

⎡
⎢⎢⎢⎢⎣
∫
R

χM (y)|φ(y)|dy

⎛
⎜⎜⎜⎝
∫
R

χM (x)|ψ(x, y)|2dx

︸ ︷︷ ︸
bounded by C

⎞
⎟⎟⎟⎠

1/2
⎤
⎥⎥⎥⎥⎦

2
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≤ C

(∫
R

χM (y)|φ(y)|dy

)2

≤ C

(∫
M

χM (y)dy

)
.

(∫
M

|φ(y)|2dy

)
< ∞.

We shall prove the decay rate. By the assumption, ψ(x, y) can be seen as an
L2-integrable function with variable y ∈ R for x ∈ M fixed, by ψ(x, y) =
χM (y).ψ(x, y) for y ∈ R. Moreover, for any f ∈ L2(R), ψ(x, y) · f(y) is also
L2(R)-integrable in the variable y ∈ R, for x ∈ M fixed, as

∫
R

|χM (y)ψ(x, y)f(y)|2dy =

∫
R

|χM (y)ψ(x, y)|2 |f(y)|2dy ≤ C

∫
R

|f(y)|2dy < ∞.

Therefore, we can write (Tλf)(x) = (Qλ(a−e)ψf)(x) where Qλ(a−e) is defined
in the same way as Q(a−e) by Eq. (1.2), but with the phase λQ(a−e)(x, y).
We can use Eq. (2.2) and apply the Minkowski and Cauchy–Bunyakovsky–
Schwarz inequalities to have

‖(Tλf)(x)‖2
2 = ‖(Qλ(a−e)ψf)(x)‖2

2 =
1

|bλ| ‖〈(ψf)(y), (ψf)(y)〉‖2
2

=
1

|bλ|
∫
R

dx

∣∣∣∣
∫
R

χM (x)χM (y)ψ(x, y)f(y)ψ(x, y)f(y)dy

∣∣∣∣
2

≤ 1

|bλ|
∫
R

χM (y)|f(y)|2dy

(∫
R

χM (x)|ψ(x, y)|4dx

)1/2

≤ C

|λ| ‖f‖2
2.

Therefore, we have the desired decay rate. �

4.3. Solvability of Integral Equations

In view to exemplify other applicability of our previously presented convolu-
tions, we will now consider some classes of integral equations associated with
the convolutions proposed in Theorems 3.1–3.5. This will illustrate one of the
possible applications of the above-proved theorems. We recall that we are us-
ing � for denoting any of the previously introduced convolutions: �,⊗,
,�.
Consider the convolution equation

λϕ(x) + (k � ϕ)(x) = p(x), (4.8)

where λ ∈ C, k, p are given in L1(R), and ϕ is to be determined there. In Eq.
(4.8), when the convolution � is taken one of the possibilities (3.2), (3.3),
(3.4), or (3.5), then let us also use Ω∗ to be the corresponding function in

{
Ω1,Ω2,Ω3,Ω4

}
,

respectively. We now shall use the notation S(x) := λ + Ω∗(x) · (Qk)(x).

Theorem 4.5. Assume that S(x) �= 0 for every x ∈ R and Qk
S ∈ L1(R).

Equation (4.8) has a solution in L1(R) if and only if
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Q
−1

(
Qk

S

)
∈ L1(R). (4.9)

Moreover, if the condition (4.9) holds, then the solution of Eq. (4.8) is given
in explicit form by ϕ = Q

−1
(
Qk
S

) ∈ L1(R).

Proof. Necessity. Suppose that Eq. (4.8) has a solution ϕ ∈ L1(R). Applying
Q to both sides of Eq. (4.8), we obtain

λ(Qϕ)(x) + Ω∗(x)(Qϕ)(x)(Qk)(x) = (Qp)(x),

i.e., S(x)(Qϕ)(x) = (Qp)(x). Having in mind that S(x) �= 0 for all x ∈ R, we
get Qϕ = Qp

S . Taking profit that Qp
S ∈ L1(R), we receive

ϕ = Q
−1

(
Qp

S

)
∈ L1(R).

Sufficiency. Let ϕ = Q
−1(Qp

S ) ∈ L1(R). By ϕ ∈ L1(R) we get S(x)(Qϕ)(x)
= (Qp)(x). Using the factorization identity of the convolution, we obtain

Q

(
λϕ(x) + k � ϕ

)
= (Qp)(x).

Thanks to the uniqueness theorem of Q, we conclude that ϕ(x) fulfills Eq.
(4.8) for almost every x ∈ R. The theorem is proved. �
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