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Abstract. The aim of this paper is to establish the existence and unique-
ness results for implicit differential equations of Hilfer-type fractional
order via Schaefer’s fixed point theorem and Banach contraction princi-
ple. Next, we establish the equivalent mixed-type integral for nonlocal
condition. Further we prove the Ulam stability results. The Gronwall’s
lemma for singular kernels plays an important role to prove our results.
We verify our results by providing examples.
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1. Introduction

The topic of fractional calculus is as old as the differential calculus and it has
been developed up to nowadays (see Kilbas et al. [19], Hilfer [15]). Fractional
differential and integral equations have recently been applied in different
areas of engineering, mathematics, physics and bio-engineering and so on.
There has been considerable development in ordinary and partial fractional
differential and integral equations in recent years; see the monographs of
Kilbas et al. [19], Hilfer [15] and Podlubny [21]. There are several definitions
of fractional integrals and derivatives in the literature, but the most popular
definitions are in the sense of the Riemann–Liouville and Caputo. Recently,
Hilfer has introduced a generalized form of the Riemann–Liouville fractional
derivative. In short, Hilfer fractional derivative is an interpolation between the
Riemann–Liouville and Caputo fractional derivatives. This set of parameters
gives an extra degree of freedom on the initial conditions and produces more
types of stationary states. For some recent results and applications of Hilfer
fractional derivative, we refer the reader to a series of papers [1,2,12–16,28]
and the references cited therein.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-017-1061-0&domain=pdf
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The aim of this paper is to study the implicit differential equation with
nonlocal condition involving Hilfer fractional derivative of the form{

Dα,β
0+ x(t) = f(t, x(t),Dα,β

0+ x(t)), t ∈ J := [0, T ],
I1−γ
0+ x(0) =

∑m
i=1 cix(τi), α ≤ γ = α + β − αβ < 1, τi ∈ [0, T ],

(1)

where Dα,β
0+ is the Hilfer fractional derivative, 0 < α < 1, 0 ≤ β ≤ 1

and let R be a Banach space, f : J × R × R → R is a given continuous
function. I1−γ

0+ is the left-sided Riemann–Liouville fractional integral of order
1 − γ, ci are real numbers and τi = 1, 2, . . . ,m are prefixed points satisfying
0 < τ1 ≤ τ2 ≤ · · · ≤ τm < T .

In passing, we remark that the application of nonlocal condition I1−γ
0+

x(0) =
∑m

i=1 cix(τi) in physical problems yields better effect than the initial
condition I1−γ

0+ x(0) = x0. In recent research work, several researchers of math-
ematics community studied implicit differential equations with fractional or-
der due to their applications in different fields of science and engineering.
The papers [3,4,6,7,9,11,23,24] treated fractional implicit differential equa-
tions (FIDEs). Very recently, Tidke and Mahajan [24] studied an initial value
problem for nonlinear FIDE with Riemann–Liouville fractional derivative and
the uniqueness result is based on the application of Bihari and Medved in-
equalities. In [11], sufficient conditions for existence and stability of solutions
for system of nonlinear FIDE are established via method of successive ap-
proximations. Next, Sousa et al. [10] investigated the Ulam–Hyers–Rassias
stability for FIDEs using the ψ-Hilfer operator. Weak solutions for a class of
functional FIDEs of Hilfer–Hadamard type are studied by Abbas et al. [3].

Since 1940, Ulam-type stability problems [5,18,20,22] have been studied
by a large number of mathematicians. This stability analysis is very useful
in many applications, such as numerical analysis, optimization, etc., where
finding the exact solution is quite difficult. For detailed study of Ulam-type
stability with different approaches, we recommend papers such as [17,29,30].
Recently, Vivek et al. [25] investigated the existence and Ulam–Hyers stability
results for pantograph differential equations with Hilfer fractional derivative.
They also studied the dynamics and stability results for Hilfer-type thermistor
problem in [27]. Some existence and stability analysis of nonlinear neutral
pantograph equations are studied via Hilfer fractional derivative in [26].

This paper is presented as follows. Section 2 contains some fundamen-
tal concepts of Hilfer fractional derivative. In Sect. 3, we present our main
result by using Schaefer’s fixed point theorem. In Sect. 4, we discuss stability
analysis. Section 5 contains some examples.

2. Prerequisites

In this section, we gather some basic facts, definitions and lemmas regarding
fractional differential equations, which we utilized throughout this paper, to
obtain our main results. The following observations are taken from [12,13,
15,16,28].



MJOM Some Existence and Stability Results for Hilfer-fractional Page 3 of 21 15

Definition 2.1. (see [19]) The left-sided Riemann–Liouville fractional integral
of order α ∈ R

+ of function f(t) is defined by

(Iα
0+f)(t) =

1
Γ(α)

∫ t

0

(t − s)α−1f(s)ds, (t > 0),

where Γ(·) is the Gamma function.

Definition 2.2. (see [19]) The left-sided Riemann–Liouville fractional deriva-
tive of order α ∈ [n − 1, n), n ∈ Z

+ of function f(t) is defined by

(Dα
0+f)(t) =

1
Γ(n − α)

(
d
dt

)n ∫ t

0

(t − s)n−α−1f(s)ds, (t > 0).

Based on differentiating fractional integrals, a generalized definition
called Hilfer fractional derivative can be introduced.

Definition 2.3. (see [15]) The left-sided Hilfer fractional derivative of order
0 < α < 1 and 0 ≤ β ≤ 1 of function f(t) is defined by

Dα,β
0+ f(t) =

(
I

β(1−α)
0+ D

(
I
(1−β)(1−α)
0+ f

))
(t),

where D := d
dt .

The Hilfer fractional derivative is considered as an interpolator between
the Riemann–Liouville and Caputo derivative, then the following remarks
can be presented to show the relation with Caputo and Riemann–Liouville
operators.

Remark 2.4. (see [15])

1. The operator Dα,β
0+ also can be written as

Dα,β
0+ = I

β(1−α)
0+ DI

(1−β)(1−α)
0+ = I

β(1−α)
0+ Dγ

0+ , γ = α + β − αβ.

2. Let β = 0, the left-sided Riemann–Liouville fractional derivative can be
presented as Dα

0+ := Dα,0
0+ .

3. Let β = 1, the left-sided Caputo fractional derivative can be presented
as cDα

0+ := I1−α
0+ D.

Throughout this paper, let C[J,R] be the Banach space of all continuous
functions from J into R with the norm ‖x‖C = max {|x(t)| : t ∈ [0, T ]} and
L1(J) is the space of Lebesgue-integrable functions x : J → R with the norm

‖x‖1 =
∫ T

0

|x(s)| ds.

For 0 ≤ γ < 1, we denote the space Cγ [J,R] as

Cγ [J,R] := {f(t) : (0, T ] → R|tγf(t) ∈ C[J,R]} ,

where Cγ [J,R] is the weighted space of the continuous functions f on the
finite interval [0, T ].

Obviously, Cγ [J,R] is the Banach space with the norm

‖f‖Cγ
= ‖tγf(t)‖C .
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Meanwhile, Cn
γ [J,R] :=

{
f ∈ Cn−1[J,R] : f (n) ∈ Cγ [J,R]

}
is the Banach

space with the norm

‖f‖Cn
γ

=
n−1∑
i=0

∥∥∥f (k)
∥∥∥

C
+

∥∥∥f (n)
∥∥∥

Cγ

, n ∈ N.

Moreover, C0
γ [J,R] := Cγ [J,R].

Lemma 2.5. (see [19], p. 74, Property 2.1) If α > 0 and β > 0, there exist

[
Iα
0+sβ−1

]
(t) =

Γ(β)
Γ(β + α)

tβ+α−1,

and [
Dα

0+sα−1
]
(t) = 0, 0 < α < 1.

Lemma 2.6. (see [19], Lemmas 2.3, 2.4, 2.9) If α > 0, β > 0, and f ∈ L1(J),
for t ∈ [0, T ] there exist the following properties(

Iα
0+Iβ

0+f
)

(t) =
(
Iα+β
0+ f

)
(t)

and

(Dα
0+Iα

0+f) (t) = f(t).

In particular, if f ∈ Cγ [J,R] or f ∈ C[J,R], then these equalities hold at
each t ∈ (0, T ] or t ∈ [0, T ], respectively.

Lemma 2.7. (see [19], Lemmas 2.5, 2.9) Let 0 < α < 1, 0 ≤ γ < 1. If
f ∈ Cγ [J,R] and I1−α

0+ f ∈ C1
γ [J,R], then

Iα
0+Dα

0+f(t) = f(t) − (I1−α
0+ f)(0)
Γ(α)

tα−1, ∀ t ∈ J.

Lemma 2.8. (see [16], Lemma 13) For 0 ≤ γ < 1 and f ∈ Cγ [J,R], then

(Iα
0+f)(0) := lim

t→0+
Iα
0+f(t) = 0, 0 ≤ γ < α.

The following spaces will be used later:

Cα,β
1−γ =

{
f ∈ C1−γ [J,R],Dα,β

0+ f ∈ C1−γ [J,R]
}

and

Cγ
1−γ =

{
f ∈ C1−γ [J,R],Dγ

0+f ∈ C1−γ [J,R]
}

.

It is obvious that

Cγ
1−γ [J,R] ⊂ Cα,β

1−γ [J,R].

Lemma 2.9. (see [16], Lemma 20) Let α > 0, β > 0, and γ = α + β − αβ. If
f ∈ Cγ

1−γ [J,R], then

Iγ
0+Dγ

0+f = Iα
0+Dα,β

0+ f, Dγ
0+Iα

0+f = D
β(1−α)
0+ f(t).
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Lemma 2.10. (see [16], Lemma 21) Let f ∈ L1(J) and D
β(1−α)
0+ f ∈ L1(J)

existed, then

Dα,β
0+ Iα

0+f = I
β(1−α)
0+ D

β(1−α)
0+ f.

Lemma 2.11. (see [16], Theorem 23) Let f : J × R → R be a function such
that f ∈ C1−γ [J,R] for any x ∈ C1−γ [J,R]. A function x ∈ Cγ

1−γ [J,R] is a
solution of fractional initial value problem:{

Dα,β
0+ x(t) = f(t, x(t)), 0 < α < 1, 0 ≤ β ≤ 1,

I1−γ
0+ x(0) = x0, γ = α + β − αβ,

if and only if x satisfies the following Volterra integral equation:

x(t) =
x0t

γ−1

Γ(γ)
+

1
Γ(α)

∫ t

0

(t − s)α−1f(s, x(s))ds.

For complete study on initial value problem for Hilfer-type FIDEs, one
can refer to [1,3,11].

According to Lemma 2.11, a new and important equivalent mixed-type
integral equation for our problem (1) can be established. We adopt some ideas
from (see [28], Lemma 2.12) to establish an equivalent mixed-type integral
equation:

x(t) =
Ztγ−1

Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds +
1

Γ(α)

∫ t

0

(t − s)α−1Kx(s)ds,

(2)

where

Z :=
1

Γ(γ) − ∑m
i=1 ci(τi)γ−1

, if Γ(γ) �=
m∑

i=1

ci(τi)γ−1. (3)

For brevity, we shall take

Kx(t) := Dα,β
0+ x(t) = f(t, x(t),Kx(t)). (4)

Lemma 2.12. Let f : J × R × R → R be a function such that f ∈ C1−γ [J,R]
for any x ∈ C1−γ [J,R]. A function x ∈ Cγ

1−γ [J,R] is a solution of the problem
(1) if and only if x satisfies the mixed-type integral (2).

Proof. According to Lemma 2.11, a solution of problem (1) can be expressed
by

x(t) =
I1−γ
0+ x(0)
Γ(γ)

tγ−1 +
1

Γ(α)

∫ t

0

(t − s)α−1Kx(s)ds. (5)

Next, we substitute t = τi into the above equation,

x(τi) =
I1−γ
0+ x(0)
Γ(γ)

(τi)γ−1 +
1

Γ(α)

∫ τi

0

(τi − s)α−1Kx(s)ds, (6)

by multiplying ci to both sides of (6), we can write

cix(τi) =
I1−γ
0+ x(0)
Γ(γ)

ci(τi)γ−1 +
1

Γ(α)
ci

∫ τi

0

(τi − s)α−1Kx(s)ds.
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Thus, we have

I1−γ
0+ x(0) =

m∑
i=1

cix(τi)

=
I1−γ
0+ x(0)
Γ(γ)

m∑
i=1

ci(τi)γ−1 +
1

Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds

which implies

I1−γ
0+ x(0) =

Γ(γ)
Γ(α)

Z

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds. (7)

Submitting (7) to (5), we derive that (2). It is probative that x is also a
solution of the integral equation (2), when x is a solution of (1).

The necessity has been already proved. Next, we are ready to prove its
sufficiency. Applying I1−γ

0+ to both sides of (2), we have

I1−γ
0+ x(t) = I1−γ

0+ tγ−1 Z

Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds

+ I1−γ
0+ Iα

0+Kx(t),

using the Lemmas 2.5 and 2.6,

I1−γ
0+ x(t) =

Γ(γ)
Γ(α)

Z

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds + I
1−β(1−α)
0+ Kx(t).

Since 1 − γ < 1 − β(1 − α), Lemma 2.8 can be used when taking the limit as
t → 0,

I1−γ
0+ x(0) =

Γ(γ)
Γ(α)

Z
m∑

i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds. (8)

Substituting t = τi into (2), we have

x(τi) =
Z

Γ(α)
(τi)γ−1

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds

+
1

Γ(α)

∫ τi

0

(τi − s)α−1Kx(s)ds.

Then, we derive

m∑
i=1

cix(τi) =
Z

Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds

m∑
i=1

ci(τi)γ−1

+
1

Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds
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=
1

Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds

(
1 + Z

m∑
i=1

ci(τi)γ−1

)

=
Γ(γ)
Γ(α)

Z

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds,

that is
m∑

i=1

cix(τi) =
Γ(γ)
Γ(α)

Z
m∑

i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds. (9)

It follows (8) and (9) that

I1−γ
0+ x(0) =

m∑
i=1

cix(τi).

Now by applying Dγ
0+ to both sides of (2), it follows from Lemmas 2.5 and

2.9 that

Dγ
0+x(t) = D

β(1−α)
0+ Kx(t) = D

β(1−α)
0+ f(t, x(t),Dα,β

0+ x(t)). (10)

Since x ∈ Cγ
1−γ [J,R] and by the definition of Cγ

1−γ [J,R], we have Dγ
0+x ∈

C1−γ [J,R], then, D
β(1−α)
0+ f = DI

1−β(1−α)
0+ f ∈ C1−γ [J,R]. For f ∈ C1−γ [J,R],

it is obvious that I
1−β(1−α)
0+ f ∈ C1−γ [J,R], then I

1−β(1−α)
0+ f ∈ C1

1−γ [J,R].

Thus f and I
1−β(1−α)
0+ f satisfy the conditions of Lemma 2.7.

Next, by applying I
β(1−α)
0+ to both sides of (10) and using Lemma 2.7,

we can obtain

Dα,β
0+ x(t) = Kx(t) − (I1−β(1−α)

0+ Kx)(0)
Γ(β(1 − α))

(t)β(1−α)−1,

where I
β(1−α)
0+ Kx(0) = 0 is implied by Lemma 2.8.

Hence, it reduces to Dα,β
0+ x(t) = Kx(t) = f(t, x(t),Dα,β

0+ x(t)). The results are
proved completely. �

3. Existence Theory

In this section, we are concerned with the existence of solutions for the prob-
lem (1).

Theorem 3.1. Assume that

(H1) There exist l, p, q ∈ C1−γ [J,R]with l∗ = supt∈J l(t) < 1 such that

|f(t, u, v)| ≤ l(t) + p(t) |u| + q(t) |v|
for t ∈ J , u, v ∈ R.

Then, the problem (1) has at least one solution in Cγ
1−γ [J,R] ⊂ Cα,β

1−γ [J,R].
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Proof. The proof will be given in several steps.
Consider the operator N : C1−γ [J,R] → C1−γ [J,R].

(Nx)(t) =
Z

Γ(α)
tγ−1

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds

+
1

Γ(α)

∫ t

0

(t − s)α−1Kx(s)ds. (11)

It is obvious that the operator N is well defined.

Claim 1 The operator N is continuous.
Let xn be a sequence such that xn → x in C1−γ [J,R]. Then for each

t ∈ J, ∣∣((Nxn)(t) − (Nx)(t))t1−γ
∣∣

≤ |Z|
Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1 |Kxn
(s) − Kx(s)| ds

+
t1−γ

Γ(α)

∫ t

0

(t − s)α−1 |Kxn
(s) − Kx(s)| ds

≤ |Z| B(γ, α)
∑m

i=1 ci(τi)α+γ−1

Γ(α)
‖Kxn

(·) − Kxn
(·)‖C1−γ

+
TαB(γ, α)

Γ(α)
‖Kxn

(·) − Kx(·)‖C1−γ

≤ B(γ, α)
Γ(α)

(
|Z|

m∑
i=1

ci(τi)α+γ−1 + Tα

)
‖Kxn

(·) − Kx(·)‖C1−γ
,

where we use the formula∫ t

a

(t − s)α−1 |x(s)| ds ≤
(∫ t

a

(t − s)α−1(s − a)γ−1ds

)
‖x‖C1−γ

= (t − a)α+γ−1B(γ, α) ‖x‖C1−γ
.

Since Kx is continuous (i.e., f is continuous), then we have

‖Nxn − Nx‖C1−γ
→ 0 as n → ∞.

Claim 2 N maps bounded sets into bounded sets in C1−γ [J,R].
Indeed, it is enough to show that for η > 0, there exists a positive con-

stant l such that x ∈ Bη = {x ∈ C1−γ [J,R] : ‖x‖ ≤ η}, we have ‖N(x)‖C1−γ

≤ l.∣∣(Nx)(t)t1−γ
∣∣

≤ |Z|
Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1 |Kx(s)| ds +
t1−γ

Γ(α)

∫ t

0

(t − s)α−1 |Kx(s)| ds

:= A1 + A2. (12)
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For computation work, we set

A1 =
|Z|

Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1 |Kx(s)| ds,

A2 =
t1−γ

Γ(α)

∫ t

0

(t − s)α−1 |Kx(s)| ds,

and by (H1)

|Kx(t)| = |f(t, x(t),Kx(t))|
≤ l(t) + p(t) |x(t)| + q(t) |Kx(t)|
≤ l∗ + p∗ |x(t)| + q∗ |Kx(t)|
≤ l∗ + p∗ |x(t)|

1 − q∗ . (13)

We estimate A1,A2 terms separately, we have

A1 =
|Z|

(1 − q∗)

m∑
i=1

ci

(
l∗(τi)α

Γ(α + 1)
+ p∗ (τi)α+γ−1

Γ(α)
B(γ, α) ‖x‖C1−γ

)
, (14)

A2 =
1

1 − q∗

(
l∗Tα−γ+1

Γ(α + 1)
+ p∗ Tα

Γ(α)
B(γ, α) ‖x‖C1−γ

)
. (15)

Bringing inequalities (14) and (15) into (12), we get

∣∣(Nx)(t)t1−γ
∣∣ ≤ l∗

(1 − q∗)Γ(α + 1)

(
|Z|

m∑
i=1

ci(τi)α + Tα+γ−1

)

+
p∗

(1 − q∗)Γ(α)

(
|Z|

m∑
i=1

ci(τi)α+γ−1+Tα

)
B(γ, α) ‖x‖C1−γ

:= l.

Claim 3 N maps bounded sets into equicontinuous set of C1−γ [J,R].
Let t1, t2 ∈ J, t2 ≤ t1, Bη be a bounded set of C1−γ [J,R] as in Claim 2,

and let x ∈ Bη. Then∣∣∣t1−γ
1 (Nx)(t1) − t1−γ

2 (Nx)(t2)
∣∣∣

≤
∣∣∣∣∣ t1−γ

1

Γ(α)

∫ t1

0

(t1 − s)α−1Kx(s)ds − t1−γ
2

Γ(α)

∫ t2

0

(t2 − s)α−1Kx(s)ds

∣∣∣∣∣
≤

∣∣∣∣ 1
Γ(α)

∫ t1

0

[
t1−γ
1 (t1 − s)α−1 − t1−γ

2 (t2 − s)α−1
]
Kx(s)ds

∣∣∣∣
+

∣∣∣∣∣ t1−γ
2

Γ(α)

∫ t2

t1

(t2 − s)α−1Kx(s)ds

∣∣∣∣∣ .

As t1 → t2, the right-hand side of the above inequality tends to zero.
As a consequence of Claim 1–3, together with Arzela–Ascoli theorem, we can
conclude that N : C1−γ [J,R] → C1−γ [J,R] is completely continuous.

Claim 4 A priori bounds.
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Now it remains to show that the set

ω = {x ∈ C1−γ [J,R] : x = δ(Nx), 0 < δ < 1}
is bounded set.

Let x ∈ ω, x = δ(Nx) for some 0 < δ < 1. Thus for each t ∈ J , we have

x(t) = δ

[
|Z|

Γ(α)
tγ−1

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)

+
1

Γ(α)

∫ t

0

(t − s)α−1Kx(s)ds

]
.

This implies by (H2)that for each t ∈ J , we have∣∣x(t)t1−γ
∣∣ ≤ ∣∣(Nx)(t)t1−γ

∣∣
≤ l∗

(1 − q∗)Γ(α + 1)

(
|Z|

m∑
i=1

ci(τi)α + Tα+γ−1

)

+
p∗

(1 − q∗)Γ(α)

(
|Z|

m∑
i=1

ci(τi)α+γ−1 + Tα

)
B(γ, α) ‖x‖C1−γ

:= R.

This shows that the set ω is bounded. As a consequence of Schaefer’s
fixed point theorem, we deduce that N has a fixed point which is a solution
of problem (1). The proof is completed. �

The following arguments are based on the Banach contraction principle.

Theorem 3.2. Assume that hypothesis

(H2) Let f : J × R × R → R be a function such that f ∈ C
β(1−α)
1−γ [J,R] for

any x in Cγ
1−γ [J,R] and there exist positive constants K > 0 and L > 0

such that

|f(t, u, v) − f(t, u, v)| ≤ K |u − u| + L |v − v|
for any u, v, u, v ∈ R and t ∈ J .

If (
K

1 − L

)
B(γ, α)
Γ(α)

(
|Z|

m∑
i=1

ci(τi)α+γ−1 + Tα

)
< 1, (16)

then the system (1) has a unique solution.

Proof. Let the operator N : C1−γ [J,R] → C1−γ [J,R].

(Nx)(t) =
|Z|

Γ(α)
tγ−1

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds

+
1

Γ(α)

∫ t

0

(t − s)α−1Kx(s)ds.
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By Lemma 2.12, it is clear that the fixed points of N are solutions of system
(1).
Let x1, x2 ∈ C1−γ [J,R] and t ∈ J , then we have∣∣((Nx1)(t) − (Nx2)(t)) t1−γ

∣∣
≤ |Z|

Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1 |Kx1(s) − Kx2(s)| ds

+
t1−γ

Γ(α)

∫ t

0

(t − s)α−1 |Kx1(s) − Kx2(s)| ds, (17)

and

|Kx1(t) − Kx2(t)| = |f(t, x1(t),Kx1(t)) − f(t, x2(t),Kx2(t))|
≤ K |x1(t) − x2(t)| + L |Kx1(t) − Kx2(t)|
≤ K

1 − L
|x1(t) − x2(t)| . (18)

By replacing (18) in the inequality (17), we get∣∣((Nx1)(t) − (Nx2)(t)) t1−γ
∣∣

≤ |Z|
Γ(α)

m∑
i=1

ci

(
K

(1 − L)
B(γ, α)(τ)α+γ−1 ‖x1 − x2‖C1−γ

)

+
t1−γ

Γ(α)
tα+γ−1

(
K

1 − L

)
B(γ, α) ‖x1 − x2‖C1−γ

≤
(

K

1 − L

)
1

Γ(α)
B(γ, α)

(
|Z|

m∑
i=1

ci(τi)α+γ−1 + Tα

)
‖x1 − x2‖C1−γ

.

Hence,

‖(Nx1) − (Nx2)‖C1−γ

≤
(

K

1 − L

)
1

Γ(α)
B(γ, α)

(
|Z|

m∑
i=1

ci(τi)α+γ−1 + Tα

)
‖x1 − x2‖C1−γ

.

From (16), it follows that N has a unique fixed point which is solution of
problem (1). �

4. Stability Analysis

In this section, we prove four different types of Ulam stability results for
problem (1).

Now we consider the Ulam–Hyers stability for the problem

Dα,β
0+ x(t) = f(t, x(t),Dα,β

0+ x(t)), t ∈ J := [0, T ]. (19)

Let ε > 0 and ϕ : J → [0,∞) be a continuous function. Akbar Zada et al.
[31] used the Ulam stability concepts for the problem (19) that will be used
in Section 4. We consider the following inequalities
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∣∣∣Dα,β
0+ z(t) − f(t, z(t),Dα,β

0+ z(t))
∣∣∣ ≤ ε, t ∈ J, (20)∣∣∣Dα,β

0+ z(t) − f(t, z(t),Dα,β
0+ z(t))

∣∣∣ ≤ εϕ(t), t ∈ J, (21)∣∣∣Dα,β
0+ z(t) − f(t, z(t),Dα,β

0+ z(t))
∣∣∣ ≤ ϕ(t), t ∈ J. (22)

Definition 4.1. Equation (1) is Ulam–Hyers stable if there exists a real num-
ber Cf > 0 such that for each ε > 0 and for each solution z ∈ Cγ

1−γ [J,R] of
the inequality (20) there exists a solution x ∈ Cγ

1−γ [J,R] of Eq. (1) with

|z(t) − x(t)| ≤ Cf ε, t ∈ J.

Definition 4.2. Equation (1) is generalized Ulam–Hyers stable if there exists
ψf ∈ C ([0,∞), [0,∞)), ψf (0) = 0 such that for each solution z ∈ Cγ

1−γ [J,R]
of the inequality (20) there exists a solution x ∈ Cγ

1−γ [J,R] of Eq. (1) with

|z(t) − x(t)| ≤ ψf ε, t ∈ J.

Definition 4.3. Equation (1) is Ulam–Hyers–Rassias stable with respect to
ϕ ∈ C1−γ [J,R] if there exists a real number Cf > 0 such that for each ε > 0
and for each solution z ∈ Cγ

1−γ [J,R] of the inequality (21) there exists a
solution x ∈ Cγ

1−γ [J,R] of Eq. (1) with

|z(t) − x(t)| ≤ Cf εϕ(t), t ∈ J.

Definition 4.4. Equation (1) is generalized Ulam–Hyers–Rassias stable with
respect to ϕ ∈ C1−γ [J,R] if there exists a real number Cf,ϕ > 0 such that
for each solution z ∈ Cγ

1−γ [J,R] of the inequality (22) there exists a solution
x ∈ Cγ

1−γ [J,R] of Eq. (1) with

|z(t) − x(t)| ≤ Cf,ϕϕ(t), t ∈ J.

Remark 4.5. It is clear that
1. Definition 4.1⇒ Definition 4.2.
2. Definition 4.3⇒ Definition 4.4.
3. Definition 4.3 for ϕ(t) = 1 ⇒ Definition 4.1.

Remark 4.6. A function z ∈ Cγ
1−γ [J,R] is a solution of the inequality∣∣∣Dα,β

0+ z(t) − f(t, z(t),Dα,β
0+ z(t))

∣∣∣ ≤ ε, t ∈ J,

if and only if there exist a function g ∈ Cγ
1−γ [J,R] such that

(i) | g(t) |≤ ε, t ∈ J,

(ii) Dα,β
0+ z(t) = f(t, z(t),Dα,β

0+ z(t)) + g(t), t ∈ J .

Lemma 4.7. Let 0 < α < 1, 0 ≤ β ≤ 1, if a function z ∈ Cγ
1−γ [J,R] is a

solution of the inequality (20), then z is a solution of the following integral
inequality∣∣∣∣z(t)−Az − 1

Γ(α)

∫ t

0

(t−s)α−1Kz(s)ds

∣∣∣∣≤
( |Z| (mc)T γ+α−1

Γ(α+1)
+

Tα

Γ(α+1)

)
ε,

(23)
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where

Az =
Ztγ−1

Γ(α)

m∑
i=1

ci

∫ τi

1

(τi − α)α−1Kz(s)ds.

Proof. Indeed by Remark 4.6, we have that

Dα,β
0+ z(t) = f(t, x(t),Dα,β

0+ z(t)) + g(t)
= Kz(t) + g(t).

Then

z(t) =
Ztγ−1

Γ(α)

m∑
i=1

ci

(∫ τi

0

(τi − s)α−1Kz(s)ds +
∫ τi

0

(τi − s)α−1g(s)ds

)

+
1

Γ(α)

∫ t

0

(t − s)α−1Kz(s)ds +
1

Γ(α)

∫ t

0

(t − s)α−1g(s)ds.

From this it follows that∣∣∣∣z(t) − Az − 1
Γ(α)

∫ t

0

(t − s)α−1Kz(s)ds

∣∣∣∣
=

∣∣∣∣∣Ztγ−1

Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1g(s)ds +
1

Γ(α)

∫ t

0

(t − s)α−1g(s)ds

∣∣∣∣∣
≤ |Z| tγ−1

Γ(α)

m∑
i=1

ci

∫ τi

0

(τi − s)α−1 |g(s)| ds +
1

Γ(α)

∫ t

0

(t − s)α−1 |g(s)| ds

≤
( |Z| (mc)T γ+α−1

Γ(α + 1)
+

Tα

Γ(α + 1)

)
ε.

Lemma 4.8. Let 0 < α < 1, 0 ≤ β ≤ 1, if a function z ∈ Cγ
1−γ [J,R] is a

solution of the inequality (20), then z is a solution of the following integral
inequality∣∣∣∣z(t) − Az − 1

Γ(α)

∫ t

0

(t − s)α−1Kz(s)ds

∣∣∣∣ ≤ (
Ztγ−1(mc) + 1

)
ελϕϕ(t),

(24)

where

Az =
Ztγ−1

Γ(α)

m∑
i=1

ci

∫ τi

1

(τi − α)α−1Kz(s)ds.

Proof. The proof of the theorem directly follows from Remark 4.6 and Lemma
4.7. �

We have similar remark for the solution of inequalities (22).
We state the following generalization of Gronwall’s lemma for singular

kernels.
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Lemma 4.9. [see [8], Lemma 3.4] Let v : [0, T ] → [0,∞) be a real function
and w(·) is a nonnegative, locally integrable function on [0, T ] and there are
constants a > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + a

∫ t

0

v(s)
(t − s)α

ds.

Then there exists a constant K = K(α) such that

v(t) ≤ w(t) + Ka

∫ t

0

w(s)
(t − s)α

ds,

for every t ∈ [0, T ].

Now, we are ready to prove our stability results for problem (1).

Theorem 4.10. If the hypothesis (H2) and (16) are satisfied, then the problem
(1) is Ulam–Hyers stable.

Proof. Let ε > 0 and let z ∈ Cγ
1−γ [J,R] be a function which satisfies the

inequality: ∣∣∣Dα,β
0+ z(t) − f(t, z(t),Dα,β

0+ z(t))
∣∣∣ ≤ ε for any t ∈ J, (25)

and let x ∈ Cγ
1−γ [J,R] the unique solution of the following implicit differential

equation

Dα,β
0+ x(t) = f(t, x(t),Dα,β

0+ x(t)), t ∈ J := [0, T ],

I1−γ
0+ x(0) = I1−γ

0+ z(0) =
m∑

i=1

cix(τi), τi ∈ [0, T ], γ = α + β − αβ,

where 0 < α < 1, 0 ≤ β ≤ 1.
Using Lemma 2.12, we obtain

x(t) = Ax +
1

Γ(α)

∫ t

0

(t − s)α−1Kx(s)ds,

where

Ax =
|Z|

Γ(α)
tγ−1

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kx(s)ds.

On the other hand, if x(τi) = z(τi), and I1−γ
0+ x(0) = I1−γ

0+ z(0), then Ax = Az.
Indeed,

|Ax − Az| ≤ |Z|
Γ(α)

tγ−1
m∑

i=1

ci

∫ τi

0

(τi − s)α−1 |Kx(s) − Kz(s))| ds

≤ |Z|
Γ(α)

tγ−1
m∑

i=1

ci

∫ τi

0

(τi − s)α−1

(
K

1 − L

)
|x(s) − z(s)| ds

≤
(

K

1 − L

) |Z|
Γ(α)

tγ−1
m∑

i=1

ciI
α
0+ |x(τi) − z(τi)|

= 0.
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Thus,

Ax = Az.

Then, we have

x(t) = Az +
1

Γ(α)

∫ t

0

(t − s)α−1Kx(s)ds.

By integration of the inequality (25) and applying Lemma 4.7, we obtain∣∣∣∣z(t)−Az− 1
Γ(α)

∫ t

0

(t − s)α−1Kz(s)ds

∣∣∣∣≤
( |Z| (mc)T γ+α−1

Γ(α+1)
+

Tα

Γ(α + 1)

)
ε.

(26)

We have for any t ∈ J

|z(t) − x(t)| ≤
∣∣∣∣z(t) − Az − 1

Γ(α)

∫ t

0

(t − s)α−1Kz(s)ds

∣∣∣∣
+

1
Γ(α)

∫ t

0

(t − s)α−1 |Kz(s) − Kx(s)| ds

≤
∣∣∣∣z(t) − Az − 1

Γ(α)

∫ t

0

(t − s)α−1Kz(s)ds

∣∣∣∣
+

(
K

1 − L

)
1

Γ(α)

∫ t

0

(t − s)α−1 |z(s) − x(s)| ds.

By using (26), we have

|z(t) − x(t)| ≤
( |Z| (mc)T γ+α−1

Γ(α + 1)
+

Tα

Γ(α + 1)

)
ε

+
(

K

1 − L

)
1

Γ(α)

∫ t

0

(t − s)α−1 |z(s) − x(s)| ds

and to apply Lemma 4.9, we obtain

|z(t) − x(t)| ≤
( |Z| (mc)T γ+α−1

Γ(α + 1)
+

Tα

Γ(α + 1)

) [
1 +

νK

(1 − L)Γ(α + 1)
Tα

]
ε

:= Cf ε,

where ν = ν(α) is a constant, which completes the proof of the theorem.
Moreover, if we set ψ(ε) = Cf ε;ψ(0) = 0, then the problem (1) is generalized
Ulam–Hyers stable. �

First we introduce the following assumption:

(H3) There exists an increasing function ϕ ∈ C1−γ [J,R] and there exists
λϕ > 0 such that for any t ∈ J

Iα
0+ϕ(t) ≤ λϕϕ(t).

Theorem 4.11. Assume that (H2), (H3) and (16) are satisfied, then the prob-
lem (1) is Ulam–Hyers–Rassias stable.
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Proof. Let ε > 0 and let z ∈ Cγ
1−γ [J,R] be a function which satisfies the

inequality:∣∣∣Dα,β
0+ z(t) − f(t, z(t),Dα,β

0+ z(t))
∣∣∣ ≤ εϕ(t) for any t ∈ J, (27)

and let x ∈ Cγ
1−γ [J,R] the unique solution of the following implicit differential

equation

Dα,β
0+ x(t) = f(t, x(t),Dα,β

0+ x(t)), t ∈ J := [0, T ],

I1−γ
0+ x(0) = I1−γ

0+ z(0) =
m∑

i=1

cix(τi), τi ∈ [0, T ], γ = α + β − αβ

where 0 < α < 1, 0 ≤ β ≤ 1.
Using Lemma 2.12, we obtain

x(t) = Az +
1

Γ(α)

∫ t

0

(t − s)α−1Kx(s)ds,

where

Az =
|Z|

Γ(α)
tγ−1

m∑
i=1

ci

∫ τi

0

(τi − s)α−1Kz(s)ds.

By integration of (27) and applying Lemma 4.8, we obtain∣∣∣∣z(t) − Az − 1
Γ(α)

∫ t

0

(t − s)α−1Kz(s)ds

∣∣∣∣ ≤ (|Z| tγ−1(mc) + 1
)
ελϕϕ(t).

On the other hand, we have

|z(t) − x(t)| ≤
∣∣∣∣z(t) − Az − 1

Γ(α)

∫ t

0

(t − s)α−1Kz(s)ds

∣∣∣∣
+

(
K

1 − L

)
1

Γ(α)

∫ t

0

(t − s)α−1 |z(s) − x(s)| ds.

By using (26), we have

|z(t) − x(t)| ≤ (|Z| tγ−1(mc) + 1
)
ελϕϕ(t)

+
(

K

1 − L

)
1

Γ(α)

∫ t

0

(t − s)α−1 |z(s) − x(s)| ds

and to apply Lemma 4.9, we obtain

|z(t) − x(t)| ≤
[(|Z| tγ−1(mc) + 1

) (
1 +

Kν1λϕ

1 − L

)
λϕ

]
εϕ(t),

where ν1 = ν1(α) is a constant, then for any t ∈ J :

|z(t) − x(t)| ≤ Cf εϕ(t),

which completes the proof of the theorem. �

In next section, we give some examples to illustrate the usefulness of
our main results.
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5. Examples

Example 5.1. Consider FIDE with Hilfer fractional derivative

Dα,β
1+ x(t) =

1

5et+2
(
1 + |x(t)| +

∣∣∣Dα,β
1+ x(t)

∣∣∣) , for, t ∈ J := (1, 2], (28)

I1−γ
1+ x(1) = 2x

(
2
3

)
, γ = α + β − αβ. (29)

Now

f(t, u, v) =
1

5et+2 (1 + |u| + |v|) , t ∈ J, u, v ∈ [0,∞),

and we see that α = 1
2 , β = 1

2 and γ = 3
4 . Clearly, the function f is continuous,

and for u, v, u, v ∈ [0,∞) and t ∈ J ,

|f(t, u, v) − f(t, u, v)| ≤ 1
5e3

(|u − u| + |v − v|) .

Hence, the condition (H2) is satisfied with K = L = 1
5e3 .

Thus, (
K

1 − L

)
B(γ, α)
Γ(α)

(
|Z|

m∑
i=1

ci(τi)α+γ−1 + Tα

)
< 1.

It follows from Theorem 3.2 that the problem (28) and (29) has a unique
solution on J . For t ∈ J , let ϕ(t) = t. Since

I
1
2
1+ϕ(t)

1
Γ

(
1
2

) ∫ t

1

(t − s)
1
2−1(s)ds

≤ t

Γ
(
1
2

) ∫ t

1

(t − s)
1
2−1ds

≤ 2ϕ(t)√
π

,

condition (H3) is satisfied with λϕ = 2√
π
. It follows from Theorem 4.11 that

the problem (28), (29) is Ulam–Hyers–Rassias stable.

Example 5.2. Consider the FIDE with Hilfer fractional derivative

Dα,β
1+ x(t) =

2 + |x(t)| +
∣∣∣Dα,β

1+ x(t)
∣∣∣

108et+3
(
1 + |x(t)| +

∣∣∣Dα,β
1+ x(t)

∣∣∣) , for t ∈ J := (1, 2], (30)

I1−γ
1+ x(1) = 3x

(
6
5

)
+ 2x

(
3
2

)
. (31)

Here

f(t, u, v) =
2 + |u| + |v|

108et+3 (1 + |u| + |v|) , t ∈ J, u, v ∈ [0,∞),
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and α = 1
2 , β = 2

3 and γ = 5
6 . Clearly, f is continuous, and for u, v, u, v ∈

[0,∞) and t ∈ J ,

|f(t, u, v) − f(t, u, v)| ≤ 1
108e4

(|u − u| + |v − v|) .

Hence, condition (H2) is satisfied with K = L = 1
108e4 . In addition, for t ∈ J ,

|f(t, u, v)| ≤ 1
108et+3

(2 + |u| + |v|) ,

so condition (H1) is satisfied with p(t) = 1
54et+3 , q(t) = r(t) = 1

108et+3 , and
q∗(t) = r∗(t) = 1

108e4 . Thus, condition (H2) is satisfied with K = L = 1
108e4 .

We see that (16) holds with |Z| ≈ 0.19844. So it follows from Theorem 3.2
that the problem (30), (31) has at least one solution on J .

Example 5.3. Consider the FIDE with Hilfer fractional derivative

Dα,β
1+ x(t) =

1
10

⎡
⎣ |x(t)|

1 + |x(t)| +

∣∣∣Dα,β
1+ x(t)

∣∣∣
1 +

∣∣∣Dα,β
1+ x(t)

∣∣∣
⎤
⎦ , t ∈ J := (1, 2],

I1−γ
1+ x(1) = 2x

(
3
2

)
, γ = α + β − αβ. (32)

Notice that this problem is a particular case of (1), where α = 2
3 , β = 1

2

and choose γ = 5
6 .

Set

f(t, u, v) =
1
10

[
u

1 + u
+

v

1 + v

]
, for any u, v ∈ [0,∞).

Clearly, the function f satisfies the conditions of Theorem 3.1.
For any u, v, u, v ∈ [0,∞) and t ∈ J ,

|f(t, u, v) − f(t, u, v)| ≤ 1
10

|u − u| +
1
10

|v − v| .

Hence the condition (H2) is satisfied with K = L = 1
10 .

Thus condition from (16)

K

(1 − L)
B(γ, α)
Γ(α)

(
|Z|

m∑
i=1

ci(τi)α+γ−1 + Tα

)
= 0.2295 < 1,

where |Z| = 0.8959.
It follows from Theorem 3.2 that the problem (32) has a unique solution.

Moreover, Theorem 4.11 implies that the problem (32) is Ulam–Hyers stable.
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