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Abstract. This paper is aimed to extend the scheme of self scaling, appro-
priate for the quasi-Newton methods, to the two-step quasi-Newton
methods. The scaling scheme has been performed during the main
approach of updating the current Hessian approximation and prior to
the computation of the next quasi-Newton direction whenever neces-
sary. Global convergence property of the new method is explored on
uniformly convex functions with the standard Wolfe line search. Prelim-
inary numerical testing has been performed showing that this technique
improves the performance of the two-step method substantially.
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1. Introduction

This paper is concerned with the minimization of an objective function
f : Rn → R

minf(x)

where x ∈ R
n is a real vector and f is a nonlinear and twice continuously

differentiable objective function. If we denote the gradient of f at iterative
point xk by gk and the Hessian approximation of f at xk by Bk, then quasi-
Newton algorithms proceed with the basic iteration

xk+1 = xk − αkB−1
k gk,

where αk is the steplength. In the BFGS method, the updated Hessian
approximation is given by

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

, (1.1)
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where sk and yk are given by the expressions sk = xk+1 − xk and yk =
gk+1 − gk, respectively, and the secant equation

Bk+1sk = yk (1.2)

is satisfied. Furthermore, pk = −B−1
k gk is the quasi-Newton search direction,

see [20]. The BFGS method preserves the positive definiteness of the updated
matrices Bk if the curvature condition sT

k yk > 0 holds. This condition is
guaranteed if αk is chosen such that the following strong Wolfe conditions
hold

f(xk + αkpk) ≤ f(xk) + σ0αkgT
k pk, (1.3)

|gT
k+1pk| ≤ σ1|gT

k pk|, (1.4)

where pk = −B−1
k gk and 0 < σ0 < 1

2 < σ1 < 1, and σ0 and σ1 are con-
stants. Moreover, the BFGS update is scale-invariant if the initial Hessian
approximations B0 are chosen appropriately, see [20].

Constant scaling of the quasi-Newton methods, known as self-scaling
methods, has been received much attention by several authors. For example,
see Oren [21], Oren and Luenberger [22], Oren and Spedicato [23], Spedicato
[29], Dennis and Wolkowicz [11], Shanno [26], Shanno and Phua [28], Al-Baali
[2,3,5,7] and references there in. The scheme of constant scaling is intended
to improve the eigenvalue distribution or to reduce the condition number of
the Bk +1 matrix. In this way the performance of the method is accelerated.
General formulation of scaling the single step Hessian updates given by (1.1),
is as follows.

Bk+1 = λk

(
Bk − BksksT

k Bk

sT
k Bksk

)
+

ykyT
k

yT
k sk

,

where λk is the scaling parameter. If λk = 1, this family reduces to
the unscaled BFGS update. Several expressions have been formulated for
the parameter λk in the mentioned literatures above, and the convergence
behaviour of the corresponding methods have been analyzed. Numerical
experiments exposing substantial improvement of some of these approaches
with respect to the standard Broyden families were also reported, see [2].
Al-Baali [1] considered the following relation for the direct BFGS updates

det(Bk+1) =
1
bk

det(Bk),

where

bk =
sT

k Bksk

sT
k yk

,

proposed by Spedicato [30], and suggest some estimates for the size of the
eigenvalues of Bk at each iteration to recognize the case of large eigenvalues.
He argued that when bk is small, the determinant increases, implying that,
some of the eigenvalues of Bk increase, though some may also decrease. Thus,
in this case, the BFGS updating formula has a strong self-correcting property
with respect to the determinant, see [9,25]. But, when bk is sufficiently large,
the BFGS formula has slight corrections to Bk, although the determinant
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decreases. This fact provided a motivation for Al-Baali’s choice for the scaling
parameter as min(1/bk, 1) to cope with the case where bk > 1. In the case
of dealing with the inverse Hessian approximations, inequality bk > 1 is
equivalent to the following inequality:

hk =
yT

k Hkyk

sT
k yk

< 1,

see [4]. Therefore, the scaling parameter is selected as follows:

λk = max
(

1
hk

, 1
)

, (1.5)

which satisfies condition λk ≥ 1. In this way, the constant scaling of the
inverse Hessian update is given by

Hk+1 = λk

(
Hk − HkyksT

k + skyT
k Hk

sT
k yk

+
(

1
λk

+
yT

k Hkyk

sT
k yk

)
sksT

k

sT
k yk

)
.

In the following section, we recall the two-step BFGS method and describe the
generalization of the scaling technique for such methods. The global and local
convergence result of the self-scaling two-step BFGS method is presented in
Sect. 3. In Sect. 4, we will describe the detailed algorithm of scaled two-step
BFGS, Algorithm 4.1, and we compare the Dolan and Moré [12] performance
profile of the new algorithm with ordinary BFGS method, DBFGS by Al-baali
and Grandinetti [6] and F21 by Ford and Moghrabi [15]. The conclusion is
finally outlined in Sect. 5.

2. Generalized Self Scaling Technique for the Two-Step BFGS
Method

In this section, the technique of self-scaling proposed for quasi-Newton meth-
ods is generalized to the two-step BFGS method. We aim to improve the per-
formance of the method by altering the eigenvalue distribution of the updated
matrices. We begin our description of this approach by briefly reviewing the
multi-step BFGS method. Multi-step quasi-Newton methods proposed by
Ford and Moghrabi [14–18], are characterized by updating the existing Hes-
sian approximation (or its inverse) by means of data deriving from the m
most recent iterations. In these methods, the iteration points are interpo-
lated by a curve X ≡ {x(t)} in its Lagrangian form, where t ∈ R and x(t) is
an interpolating polynomial of degree m satisfying

x(ti) = xk−m+i+1, for i = 0, 1, . . . ,m,

for given values {ti}m
i=0. The basic idea behind these methods is that by

means of the chain rule to the vector function g(x(t)) it is obtained

G(x(t))
dx(t)

dt
=

dg(x(t))
dt

, (2.1)

where G(x) = ∇2f(x). The Eq. (2.1) can be used in the construction of
the required approximation Bk+1 of the Hessian G(xk+1), by requiring such



11 Page 4 of 13 F. Biglari et al. MJOM

approximation to satisfy a relation of the form

Bk+1rk = wk. (2.2)

Here, the vectors rk and wk are given by

rk =
m−1∑
j=0

sk−j

⎧⎨
⎩

m∑
i=m−j

L′
k(tm)

⎫⎬
⎭ , wk =

m−1∑
j=0

yk−j

⎧⎨
⎩

m∑
i=m−j

L′
k(tm)

⎫⎬
⎭ ,

where Lj(t) is the jth Lagrange polynomial of degree m associated with
{ti}m

i=0. We note that the standard quasi-Newton methods correspond to
m = 1, deriving from the step just completed. For this case, the path X is
taken to be the straight line which interpolates the two most recent iterates.

Typical value of the memory parameter m, considered in the literature,
is m = 2. Such methods are called two-step methods. In this case, the matrix
Bk+1 is required to satisfy a simple adaptation of the secant Eq. (2.2).

Bk+1(sk − γksk−1) = yk − γkyk−1,

where γk is a scalar that is determined by the parameters defining the curve
X, and different choices of this parameter lead to different two-step methods.

One of the most effective two-step quasi-Newton methods for updating
Bk is given by

Bk+1 = Bk − BkrkrT
k Bk

rT
k Bkrk

+
wkwT

k

rT
k wk

. (2.3)

In (2.3),

rk = sk − δ2k
1 + 2δk

sk−1, (2.4)

wk = yk − δ2k
1 + 2δk

yk−1, (2.5)

where the quantity δk is defined by the ratio

δk =
t2 − t1
t1 − t0

. (2.6)

In which

t2 = 0, (2.7)

t1 = −{sT
k Bksk} 1

2 = −{−αksT
k gk} 1

2 , (2.8)

t0 = −{(sk + sk−1)T Bk(sk + sk−1)} 1
2

≈ −{−αksT
k gk + 2sT

k yk−1 + sT
k−1yk−1} 1

2 . (2.9)

The Eq. (2.9) is satisfied exactly if two-step method is alternated with
the standard single-step approach on successive iterations. In addition, to
ensure the generation of positive-definite updates, the following requirement
is imposed

rT
k wk > 10−4‖rk‖‖wk‖. (2.10)

If this condition on rT
k wk is not satisfied, the use of the unit-spaced approach

(δk = 1) or single-step iteration are possible, for more details see [15].
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Assuming that Hk = B−1
k is the inverse Hessian approximation, the

inverse update of (2.3) is given by

Hk+1 = Hk − HkwkrT
k + rkwT

k Hk

rT
k wk

+
(

1 +
wT

k Hkwk

rT
k wk

)
rkrT

k

rT
k wk

, (2.11)

and the condition

Hk+1wk = rk,

on the new inverse Hessian approximation Hk+1 is as a replacement for the
condition imposed by the secant equation.

Now, we apply the technique of scaling in the framework of the two-
step method, and we compare the performance of the resulting algorithm in
Sect. 4. In light of the similar arguments led to (1.5), scaling of the modified
two-step method is required whenever

hk =
wT

k Hkwk

rT
k wk

< 1. (2.12)

Assuming that λk = 1/min(hk, 1), the scaled modified two-step update is
given by:

Hk+1 = λk

(
Hk − HkwkrT

k + rkwT
k Hk

rT
k wk

+
(

1
λk

+
wT

k Hkwk

rT
k wk

)
rkrT

k

rT
k wk

)
.

(2.13)

Finally, we let the scaled two-step method be alternated with the standard
single-step approach on successive iterations so that the Eq. (2.9) to be sat-
isfied exactly. In more detail, the first and the second iteration will perform
as the single-step BFGS method. From the third iteration, two-step method
will be performed if the condition (2.10) is satisfied. In this case, the next
iteration will be the single-step iteration, while the ordinary secant Eq. (1.2)
will be satisfied exactly. In other case, as long as the condition (2.10) is not
satisfied, the single-step approach will be used.

3. Convergence Analysis

In this section, we establish the global convergence property of the scaled
two-step method. We will combine the convergence results of Nocedal and
Wright [7] for using two tools of the trace and determinant in the convergence
analysis, and Al-Baali [2] for self-scaling technique. To study the convergence
analysis of the method, we consider the following direct Hessian update for-
mula

Bk+1 = λk

(
Bk − BkrkrT

k Bk

rT
k Bkrk

)
+

wkwT
k

wT
k rk

, (3.1)
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where λk = min(1/bk, 1) is the scaling factor in which bk = rT
k Bkrk/wT

k rk.
Furthermore, we impose the additional conditions that

yT
k sk + γ2

kyT
k−1sk−1 − γk(yT

k−1sk + yT
k sk−1) > ν1, and |δk +

1
2
| ≥ ν2

(3.2)

when

γk(yT
k−1sk + yT

k sk−1) > 0,

where γk denotes the ratio δ2k/(1 + 2δk), and ν1 and ν2 are small positive
constants. More precisely, we concern with the following algorithm.

Algorithm 3.1. Given initial point x0, Hessian approximation B0, conver-
gence tolerance 0, small positive constants ν1 and ν2;
k ← 0;
while gk ;

Compute search direction Bkpk = −gk;
Choose a steplength αk along pk such that the strong Wolfe conditions (1.3)
and (1.4) are satisfied, and set xk+1 = xk + αkpk;
Define sk = xk+1 − xk and yk = gk+1 − gk;
If a single-step iteration is being executed,

then set rk = sk and wk = yk;
else

compute {tj}2j=0 and δk, from (2.6)–(2.9);
evaluate γk = δ2k/(1 + 2δk);
If the condition γk(yT

k−1sk + yT
k sk−1) ≤ 0 or the condition (3.2) is

satisfied then Compute rk and wk, defined by (2.4) and (2.5);
If (rTk wk ≤ 10−4 rk wk or |δk| > δmax or |δk + 1

2 | < ν2) and
(yT

k−1sk + yT
k sk−1) ≤ 0 or (3.2) is satisfied with δk = 1

then recompute rk and wk using (2.4) and (2.5) with δk = 1.
If rTk wk ≤ 10−4 rk wk again,

then set rk = sk and wk = yk.
Update Bk by means of (3.1);
k ← k + 1;

end(while)

Now, we state our assumptions about the objective function. We denote
the Euclidean vector or matrix norm by ‖.‖. We also assume that the scaling
parameter is chosen, as in Al-Baali [7], such that

ν3 ≤ λk ≤ 1, (3.3)

where ν3 is a positive constant.

Assumption 3.1. (a) The objective function f is twice continuously differ-
entiable.

(b) The level set Ω = {x ∈ R
n : f(x) ≤ f(x0)} is bounded convex set, and

there exist positive constants m and M such that

m‖z‖2 ≤ zT G(x)z ≤ M‖z‖2, (3.4)
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for all z ∈ R
n and all x ∈ Ω.

It is noted that the condition (3.4) implies the following consequences

yT
k sk

sT
k sk

≥ m,
yT

k yk

yT
k sk

≤ M, and ‖yk‖ ≤ M‖sk‖, (3.5)

see [7,20]. Moreover, from the boundedness of the level set Ω, there is a
positive constant M̄ such that

‖x‖ ≤ M̄ (3.6)

for all x ∈ Ω. The following theorem is expressed to study the global con-
vergence of the method satisfying Assumption 3.1 and the conditions (1.3)
and (1.4).

Theorem 3.2. Let B0 be any symmetric positive definite initial matrix, and
let x0 be a starting point, for which Assumption 3.1 is satisfied. Then, the
sequence {xk} generated by Algorithm 3.1 converges to the minimizer x∗ of
f.

Proof. We define

mk =
wT

k rk

rT
k rk

, and Mk =
wT

k wk

wT
k rk

, (3.7)

and show that there are positive constants m1 and M1 such that

mk ≥ m1, and Mk ≤ M1. (3.8)

First, we consider the case γk(yT
k−1sk + yT

k sk−1) ≤ 0. Using (3.5), we have

Mk =
wT

k wk

wT
k rk

≤ ‖yT
k ‖2 + 2|γk|‖yT

k ‖‖yk−1‖ + γ2
k‖yT

k−1‖
‖yk‖2

M + γ2
k

‖yk−1‖2

M

≤ (‖yT
k ‖ + |γk|‖yk−1‖)2

1
M (‖yk‖2 + γ2

k‖yk−1‖2)
≤ 2M. (3.9)

And

mk =
wT

k rk

rT
k rk

≥ m‖sk‖2 + mγ2
k‖sk−1‖2

‖sk‖2 + 2|γk|‖sk‖‖sk−1‖ + γ2
k‖sk−1‖2

≥ m(‖sk‖2 + γ2
k‖sk−1‖2)

(‖sk‖ + |γk|‖sk−1‖)2
≥ m

2
. (3.10)

For this case, we see from (3.9) and (3.10) that the inequalities (3.8) are
satisfied with m1 = m

2 and M1 = 2M. In the case, γk(yT
k−1sk + yT

k sk−1) > 0,
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we have from the condition (3.2), (3.5) and (3.6) that

Mk =
wT

k wk

wT
k rk

≤ ‖yk‖2 + 2|γk|‖yk‖‖yk−1‖ + γ2
k‖yk−1‖2

yT
k sk + γ2

kyT
k−1sk−1 − γk(yT

k−1sk + yT
k sk−1)

≤ 1
ν1

(‖yk‖ + |γk|‖yk−1‖)2 ≤ M2

ν1

(
‖sk‖ + | δ2

1 + 2δ
|‖sk−1‖

)2

≤ M2

ν1

(
‖xk+1‖ + ‖xk‖ +

δ2max

2ν2
(‖xk‖ + ‖xk−1‖)

)2

≤ 4M̄2M2

ν1

(
1 +

δ2max

2ν2

)2

. (3.11)

And

mk =
wT

k rk

rT
k rk

≥ yT
k sk + γ2

kyT
k−1sk−1 − γk(yT

k−1sk + sT
k−1yk)

‖sk‖2 + 2|γk|‖sk‖‖sk−1‖ + γ2
k‖sk−1‖2

≥ ν1
(‖sk‖ + |γk|‖sk−1‖)2

≥ ν1

4M̄2
(
1 + δ2

max
2ν2

)2 . (3.12)

Hence, the inequalities (3.8) are satisfied with m1 = ν1/

(
4M̄2

(
1 + δ2

max
2ν2

)2
)

and M1 = 4M̄2M2

ν1

(
1 + δ2

max
2ν2

)2

in this case. Subsequently, using (3.8) and the
arguments in [20], the following inequality holds.

trace(Bk+1) = trace(Bk) − ‖Bkrk‖2
rT
k Bkrk

+
‖wk‖2
wT

k rk
≤ trace(Bk) + M1.

(3.13)

Likewise, we can have a simple expression for the determinant as well, see
[20,24].

det(Bk+1) = det(Bk)
rT
k wk

rT
k Bkrk

λn−1
k .

By (3.8), (3.3) and the fact that the largest eigenvalue of Bk is also less than
trace(Bk), we have

det(Bk+1) = det(Bk)
rT
k wk

rT
k rk

rT
k rk

rT
k Bkrk

λn−1
k ≥ det(Bk)

m1

2trace(Bk)
νn−1
3 .

(3.14)

Since (3.13) and the determinant inequality (3.14) hold, then the rest of the
proof can be proceeded from Theorem 3.1. of [10]. �

To analyze the rate of convergence of the Algorithm 3.1, we further
assume that the Hessian matrix G(x) is Lipschitz continuous at x∗, that is,
there exists a positive constant L such that

‖G(x) − G(x∗)‖ ≤ L‖x − x∗‖, (3.15)

for all x near x∗.
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Theorem 3.3. Suppose that f is twice continuously differentiable and that
the iterates generated by the Algorithm 3.1 converge to a minimizer x∗ at
which Assumption 3.1 and (3.15) hold. Assume that the line search scheme
for finding αk starts with testing αk = 1. Then the sequence xk generated by
Algorithm 3.1 converges to x∗ at a superlinear rate.

Proof. Using expressions (3.13) and (3.12), the result follows from Theo-
rem (3.2), its proof, and Theorem 4.1. of Byrd et al. [10]. �

4. Numerical Results

In this section, we study the performance of the scaled two-step algorithm,
denoted SF21 in this paper. We give an algorithm description of the method
in updating for inverse Hessian approximation. As it was described in Sect. 2,
scaling of the updated matrices is required when the eigenvalues of the inverse
Hessian estimates are large. Hence, scaling procedure is employed whenever
the inequality (2.12) is hold.

Algorithm 4.1. (Scaled Modified two-step algorithm, denoted by SF21)
Given initial point x0, inverse Hessian approximation H0, convergence toler-
ance 0 small positive constants ν1 and ν2;
k ← 0;
while a convergence test does not hold;

Compute the search direction pk = −Hkgk;
Choose a steplength αk along pk such that the strong Wolfe conditions (1.3)
and (1.4) are satisfied: and set

xk+1 = xk + αkpk;

Define sk = xk+1 − xk and yk = gk+1 − gk;
If a single-step iteration is being executed,

then set rk = sk and wk = yk;
else

compute {tj}2j=0 and δk, from (2.6)–(2.9);
evaluate γk = δ2k/(1 + 2δk);
If the condition γk(yT

k−1sk + yT
k sk−1) ≤ 0 or the condition (3.2) is

satisfied then Compute rk and wk, defined by (2.4) and (2.5);
If (rTk wk ≤ 10−4 rk wk or |δk| > δmax or |δk + 1

2 | < ν2) and
(yT

k−1sk + yT
k sk−1) ≤ 0 or (3.2) is satisfied with δk = 1

then recompute rk and wk using (2.4) and (2.5) with δk = 1.
If rTk wk ≤ 10−4 rk wk again,

then set rk = sk and wk = yk.
Update Hk by means of (2.13);
k ← k + 1;

end(while)

We compare this method with
• BFGS0, standard BFGS algorithm [13],
• BFGS algorithm by Shanno and Phua [27],
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• F21, two-step algorithm by Ford and Moghrabi [15],
• DBFGS, damped BFGS algorithm by Al-Baali and Grandinetti [6].

For the BFGS0, and DBFGS methods, we let the initial Hessian approx-
imation be defined by H0 = I, and for the methods included BFGS, F21 and
SF21 the starting matrix after computing the first step but before performing
the first quasi-Newton update, is scaled by setting

H0 =
yT

k sk

yT
k yk

I.

All codes are written in Fortran 77 in double precision and implement the
same stopping criterion

‖g‖2 ≤ 10−5 ∗ max (1, ‖x‖). (4.1)

The process is also stopped if the number of function evaluations reaches 5000.
All algorithms use exactly the same line search strategy, based on quadratic
and cubic interpolations. Line searches are terminated when the strong Wolfe
conditions (1.3) and (1.4), with σ0 = 0.0001 and σ1 = 0.9 are satisfied (see
e.g., Fletcher, [13]). For the two-step methods, the safeguarding parameter
δmax was set to the value 22.0, as suggested by Ford and Moghrabi [15].
Furthermore, the values of ν1 = 10−13 and ν2 = ν3 = 10−4 are chosen. It
is noted that two-step algorithms F21 and SF21 are sensitive to the selected
value of ν1.

We examine 73 test problems (the same were used by Al-Baali, [3])
which are selected from Andrei [8] with the standard starting points. For each
test problem, 10 runs with dimension ranging from 4 to 500 are performed.
Our metric for assessing the performance of the algorithms is the reduction
on the number of function-gradient evaluations to solve each problem. For all
the methods, every gradient evaluation was counted as equal to one function
value calculation.

In this comparative study, the fraction P of problems is plotted for
any given method within a factor τ of the best number of function-gradient
evaluations, based on the performance profiles of Dolan and Moré [12].

It is observed from Figure 1 that the SF21 is always the top performer
for all values of τ . Hence, the use of the scaled modified two-step enables a
considerable computational saving on most problems with respect to BFGS0,
DBFGS, BFGS and F21 methods, in terms of number of function-gradient
calls.

Despite some occasional good results generated by SF21 for the set of
measurements being considered here, this method fails to satisfy the stopping
criterion (4.1) in 16 out of 730 test problems. Meanwhile, the number of
failures for the BFGS0 method is 49, for DBFGS, this number is 36, for
BFGS, this number is 24, for F21, this number is 34. From this point of view,
SF21 is favorably more stable method.

It is observed that SF21 update formula can be employed within the
framework of the two-step strategy without increase in the linear algebra
cost. This means that SF21 can be built very inexpensively and allows to
obtain an overall computational saving.
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Figure 1. performance profiles based on function and gradi-
ent evaluations

5. Conclusion

This paper has been devoted to the extension of scaling techniques to the two-
step quasi-Newton method. The basic idea of the scaling factor, considered in
this paper, is due to Al-Baali [1], which has been employed on the context of
extra updates for BFGS method to improve the direct Hessian approximation.
In the frame of the two-step quasi-Newton method, the scaling factor has been
set to be the maximum of the multiplier of Spedicato and one. This provides
a preconditioner that is capable to improve the eigenvalue quantities of the
two-step update at current step. Therefore, this scheme of scaling has been
performed at the iterations in which the specified criterion is satisfied. This
strategy suggests great reduction in the overall iteration cost of scaled two-
step algorithm.

The major advantage of our method, SF21, is that it is able to upgrade
the efficiency properties such as number of iterations and number of function-
gradient calls without causing significant additional storage demand and no
additional considerable computational cost, with respect to the ordinary two-
step methods. Our experiments showed that the scaled two-step method is
superior to the BFGS, DBFGS and F21 methods.
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