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Abstract. In this paper, we deal with complete spacelike submanifolds
Mn immersed in the de Sitter space Sn+p

p of index p with parallel normal-
ized mean curvature vector and constant scalar curvature R. Imposing
a suitable restriction on the values of R, we apply a maximum princi-
ple for the so-called Cheng–Yau operator L, which enables us to show
that either such a submanifold must be totally umbilical or it holds a
sharp estimate for the norm of its total umbilicity tensor, with equal-
ity if and only the submanifold is isometric to a hyperbolic cylinder
of the ambient space. In particular, when n = 2 this provides a nice
characterization of the totally umbilical spacelike surfaces of S2+p

p with
codimension p ≥ 2. Furthermore, we also study the case in which these
spacelike submanifold are L-parabolic.
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1. Introduction

At the end of the 70s, Goddard conjectured in his seminal paper [15] that
the unique complete spacelike hypersurfaces of de Sitter space S

n+1
1 with

constant mean curvature H were just the totally umbilical. Ten years have
passed until Ramanathan [20] proved that Goddard’s conjecture is true for
S
3
1 and 0 ≤ H ≤ 1. However, for H > 1 he showed that the conjecture is

false, as it can be seen from an example from Dajczer and Nomizu in [14].
Simultaneously and independently, Akutagawa [3] also proved that Goddard’s
conjecture is true when either n = 2 and H2 ≤ 1 or n ≥ 3 and H2 < 4(n−1)

n2 .
Moreover, he also constructed complete spacelike rotation surfaces in S

3
1 with

constant H satisfying H > 1 and which are not totally umbilical.
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In [17], Montiel proved that Goddard’s conjecture is true provided that
Mn is compact. Furthermore, he exhibited examples of complete spacelike
hypersurfaces in S

n+1
1 with constant H satisfying H2 ≥ 4(n−1)

n2 and being
non-totally umbilical, the so-called hyperbolic cylinders, which are isomet-
ric to a Riemannian product of the type H

1(r) × S
n−1(

√
1 + r2), for some

r > 0. In [18], Montiel characterized these hyperbolic cylinders as the only
complete non-compact spacelike hypersurfaces in S

n+1
1 with constant mean

curvature H2 = 4(n − 1)/n2 and having at least two ends. Later on, in [8],
Brasil, Colares and Palmas obtained a sort of extension of Montiel’s result,
showing that the hyperbolic cylinders are the only complete spacelike hyper-
surfaces in S

n+1
1 with constant mean curvature, nonnegative Ricci curvature

and having at least two ends. They also characterized all complete spacelike
hypersurfaces of constant mean curvature with two distinct principal cur-
vatures as been rotation hypersurfaces or generalized hyperbolic cylinders
H

k(r) × S
n−k(

√
1 + r2).

Regarding higher codimension, Cheng [11] extended Akutagawa’s result
for complete spacelike submanifolds with parallel mean curvature vector in
de Sitter space S

n+p
p of index p. Afterwards, Aiyama [2] studied compact

spacelike submanifolds Mn in S
n+p
p with parallel mean curvature vector and

proved that if the normal connection of Mn is flat, then Mn is totally umbil-
ical. In the same work [2], she proved that compact spacelike submanifolds
in S

n+p
p with parallel mean curvature vector and nonnegative sectional cur-

vatures must also be totally umbilical. Next, Li [16] showed that Montiel’s
result still holds for higher codimensional spacelike submanifolds in S

n+p
p .

More recently, Camargo, Chaves and Sousa [9] studied complete spacelike
submanifolds with parallel normalized mean curvature vector and constant
scalar curvature immersed in a semi-Riemannian space form Q

n+p
p (c) of con-

stant sectional curvature c and index p. In particular, they obtained char-
acterization results concerning totaly umbilical spacelike submanifolds and
hyperbolic cylinders of Sn+p

p , under certain constraints on both the squared
norm of the second fundamental form and on the mean curvature.

In this paper, we deal with complete spacelike submanifolds Mn im-
mersed in the de Sitter space S

n+p
p of index p, with parallel normalized mean

curvature vector and constant scalar curvature R. When 0 < R ≤ 1, we ap-
ply a maximum principle for the so-called Cheng–Yau operator L (Lemma
2), which enables us to show that either such a submanifold must be totally
umbilical or it holds a sharp estimate for the norm of its total umbilicity
tensor |Φ|2, with equality if and only the submanifold is isometric to a hyper-
bolic cylinder of the ambient space (Theorem 1). In particular, when n = 2
this characterizes the totally umbilical spacelike surfaces of S2+p

p , with codi-
mension p ≥ 2, as the only complete spacelike surfaces in S

2+p
p with parallel

normalized mean curvature vector, constant Gaussian curvature 0 < K ≤ 1
and such that supM |Φ|2 < 2p

p−1K (Corollary 3). Furthermore, we also study
the case in which these spacelike submanifold are L-parabolic (see Theorem
2 and its Corollary 3).
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The manuscript is organized as follows: initially, in Sect. 2 we develop a
suitable Simons type formula concerning spacelike submanifolds immersed in
S

n+p
p and having positive mean curvature function. In Sect. 3 we quote some

auxiliary results which constitute our analytical and algebraic machineries. In
particular, as application of Theorem 6.13 of [7] (see also Lemma 4.2 of [6]),
we obtain a generalized maximum principle for the Cheng–Yau operator L
(see Lemma 2). In Sect. 4, we use our Simons type formula to obtain an
appropriated lower estimate to the operator L acting on the square of norm
of total umbilicity tensor of a spacelike submanifold with constant scalar
curvature (see Proposition 1) and, next, we establish our characterization
theorems related to submanifolds totally umbilical and hyperbolic cylinders
of Sn+p

p (see Theorems 1 and 2).

2. A Simons Type Formula in S
n+p
p

We recall that a submanifold immersed into an indefinite ambient space is said
to be spacelike if its induced metric is positive definite. So, let Mn be an n-
dimensional connected spacelike submanifold immersed in the de Sitter space
S

n+p
p of index p. We choose a local field of semi-Riemannian orthonormal

frame {e1, . . . , en+p} in S
n+p
p , with dual co-frame {ω1, . . . , ωn+p}, such that,

at each point of Mn, e1, . . . , en is tangent to Mn. We will use the following
convention for the indices:

1 ≤ A,B,C, . . . ≤ n + p, 1 ≤ i, j, k, . . . ≤ n and
n + 1 ≤ α, β, γ, . . . ≤ n + p.

In this setting, the indefinite metric of Sn+p
p of index p is given by

ds2 =
∑

A

εA ω2
A =

∑

i

ω2
i −

∑

α

ω2
α,

where εi = 1 and εα = −1, 1 ≤ i ≤ n, n+1 ≤ α ≤ n+p. Denoting by {ωAB}
the connection forms of Sn+p

p , we have the structure equations of Sn+p
p are

given by:

dωA =
∑

B

εB ωAB ∧ ωB , ωAB + ωBA = 0, (2.1)

dωAB =
∑

C

εC ωAC ∧ ωCB − 1
2

∑

C,D

εCεDKABCD ωC ∧ ωD, (2.2)

where

KABCD = εAεB(δACδBD − δADδBC).

Next, we restrict all the tensors to Mn. First of all,

ωα = 0, n + 1 ≤ α ≤ n + p.
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Thus, the Riemannian metric of Mn is written as ds2 =
∑

i ω2
i . Since

∑
i ωαi∧

ωi = dωα = 0 and by Cartan’s Lemma we can write

ωαi =
∑

j

hα
ijωj , hα

ij = hα
ji. (2.3)

This gives the second fundamental form of Mn, A =
∑

α,i,j hα
ijωi ⊗ ωjeα.

Furthermore, we define the mean curvature vector h and the mean curvature
function H of Mn, respectively, by

h =
1
n

∑

α

(
∑

i

hα
ii

)
eα and H = |h| =

√√√√∑

α

(
∑

i

hα
ii

)2

.

From (2.1) and (2.2), the structure equations of Mn are divided into tangent
part

dωi =
∑

j

ωij ∧ ωj , ωij + ωji = 0,

dωij =
∑

k

ωik ∧ ωkj − 1
2

∑

k,l

Rijklωk ∧ ωl,

where Rijkl are the components of the curvature tensor of Mn.
Using the previous structure equations, we obtain the Gauss equation

Rijkl = (δikδjl − δilδjk) −
∑

α

(hα
ikhα

jl − hα
ilh

α
jk). (2.4)

The Ricci curvature and the (normalized) scalar curvature of Mn are
given, respectively, by

Rij = (n − 1)δij −
∑

α

(
∑

k

hα
kk

)
hα

ij +
∑

α,k

hα
ikhα

kj (2.5)

and
R =

1
n(n − 1)

∑

i

Rii. (2.6)

From (2.5) and (2.6) we obtain

|A|2 = n2H2 + n(n − 1)(R − 1), (2.7)

where |A|2 =
∑

α,i,j(h
α
ij)

2 is the square of the length of the second funda-
mental form A of Mn.

We also quote the structure equations of the normal bundle of Mn

dωα = −
∑

β

ωαβ ∧ ωβ , ωαβ + ωβα = 0,

dωαβ = −
∑

γ

ωαγ ∧ ωγβ − 1
2

∑

k,l

Rαβklωk ∧ ωl, (2.8)

where Rαβij satisfies the Ricci equation

Rαβij =
∑

l

(
hα

ilh
β
lj − hα

jlh
β
li

)
. (2.9)
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The components hα
ijk of the covariant derivative ∇A satisfy

∑

k

hα
ijkωk = dhα

ij +
∑

k

hα
ikωkj +

∑

k

hα
jkωki +

∑

β

hβ
ijωαβ . (2.10)

In this setting, from (2.3) and (2.10) we get the Codazzi equation

hα
ijk = hα

ikj = hα
kij . (2.11)

The first and the second covariant derivatives of hα
ij denoted by hα

ijk

and hα
ijkl, respectively, satisfy

∑

l

hα
ijklωl = dhα

ijk +
∑

l

hα
ljkωli +

∑

l

hα
ilkωlj +

∑

l

hα
ijlωlk +

∑

β

hβ
ijkωαβ .

Thus, taking the exterior derivative in (2.10), we obtain the Ricci iden-
tity

hα
ijkl − hα

ijlk =
∑

m

hα
mjRmikl +

∑

m

hα
imRmjkl +

∑

k,β

hβ
ikRαβjk. (2.12)

The Laplacian Δhα
ij of hα

ij is defined by Δhα
ij =

∑
k hα

ijkk. From equa-
tions (2.11) and (2.12), we obtain that

Δhα
ij =

∑

k

hα
kkij +

∑

k,l

hα
klRlijk +

∑

k,l

hα
liRlkjk +

∑

k,β

hβ
ikRαβjk. (2.13)

In what follows, we will consider the case that H > 0. So, we can choose a
local orthonormal frame {e1, . . . , en+p} such that en+1 = h

H . Thus,

Hn+1 =
1
n

tr(hn+1) = H and Hα =
1
n

tr(hα) = 0, α ≥ n + 2, (2.14)

where hα = (hα
ij) denotes the second fundamental form of Mn in direction

eα for every n + 1 ≤ α ≤ n + p. Hence, from (2.4), (2.9), (2.13) and (2.14),
we obtain

Δhn+1
ij = nHij + nhn+1

ij − nHδij +
∑

β,k,m

hn+1
km hβ

mkhβ
ij − 2

∑

β,k,m

hn+1
km hβ

mjh
β
ik

+
∑

β,k,m

hn+1
mi hβ

mkhβ
kj − nH

∑

m

hn+1
mi hn+1

mj +
∑

β,k,m

hn+1
jm hβ

mkhβ
ki,

(2.15)

and

Δhα
ij = nHα

ij + nhα
ij +

∑

β,k,m

hα
kmhβ

mkhβ
ij − 2

∑

β,k,m

hα
kmhβ

mjh
β
ik

+
∑

β,k,m

hα
mih

β
mkhβ

kj − nH
∑

m

hα
mih

n+1
mj +

∑

β,k,m

hα
jmhβ

mkhβ
ki,

(2.16)

for every n + 2 ≤ α ≤ n + p.
Since

Δ|A|2 = 2

⎛

⎝
∑

α,i,j

hα
ijΔhα

ij +
∑

α,i,j,k

(hα
ijk)2

⎞

⎠ , (2.17)
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inserting (2.15) and (2.16) into (2.17), we obtain the following Simons type
formula
1
2
Δ|A|2 =

∑

α,i,j,k

(hα
ijk)2 + n

∑

α,i,j

hα
ijH

α
ij + n(|A|2 − nH2) +

∑

α,β

(
tr(hαhβ)

)2

−nH
∑

α

tr
(
hn+1(hα)2

)
+

∑

α,β

N
(
hαhβ − hβhα

)
, (2.18)

where N(B) = tr(BBt), for all matrix B = (bij).

3. Auxiliary Lemmas

We devote this section to present some auxiliary lemmas which will be used
to prove our main results. For this, we define on Mn the symmetric tensor
Ψ =

∑n
i,j=1 ψijωi ⊗ ωj , where ψij = nHδij − hn+1

ij . According to Cheng and
Yau [12], we consider an operator L associated with Ψ acting on any smooth
function f ∈ C2(M) in the following way

Lf =
n∑

i,j=1

ψijfij =
∑

i,j

(nHδij − hn+1
ij )fij = nHΔf −

∑

i,j

hn+1
ij fij , (3.1)

where fij stands for a component of the Hessian of f . Thus, from (3.1) we
have that

Lf = tr(P ◦ ∇2f), (3.2)
where

P = nHI − hn+1, (3.3)
I is the identity in the algebra of smooth vector fields on Mn, hn+1 = (hn+1

ij )
denotes the second fundamental form of Mn in direction en+1 and ∇2f stands
for the self-adjoint linear operator metrically equivalent to the Hessian of f .

The following lemma gives a sufficient criteria for the ellipticity of the
operator L.

Lemma 1. Let Mn be a spacelike submanifold in the de Sitter space Sn+p
p with

H > 0. Let μ− and μ+ be, respectively, the minimum and the maximum of
the eigenvalues of the operator P at every point p ∈ Mn. If R < 1 (resp.,
R ≤ 1 on Mn), then the operator L is elliptic (resp., semi-elliptic), with

μ− > 0 (resp., μ− ≥ 0).

and

μ+ < 2nH (resp., μ+ ≤ 2nH).

Proof. Let us choose a local orthonormal frame {e1, . . . , en} on Mn such that
hn+1

ij = λn+1
i δij . Thus, for all i = 1, . . . , n, from (2.7) it is not difficult check

that

(λn+1
i )2 ≤ |A|2 = n2H2 + n(n − 1)(R − 1) < n2H2,

where we have used our assumption that R < 1 to obtain the last inequality.
Consequently, for all i = 1, . . . , n, we have

|λn+1
i | < |nH|.



MJOM Characterizations of Spacelike Submanifolds Page 7 of 22 12

Since H > 0, we get

−nH < λn+1
i < nH,

consequently, for every i

0 < nH − λn+1
i < 2nH.

However, μi := nH − λn+1
i are precisely the eigenvalues of operator P . In

particular, we conclude that μ− > 0 and μ+ < 2nH. The case R ≤ 1 follows
in a similar way. �

Taking f = nH in (3.1), we get

L(nH) = nHΔ(nH) − n
∑

i,j

hn+1
ij Hij . (3.4)

On the other hand, once
1
2
Δ(nH)2 = nHΔ(nH) + n2|∇H|2, from (2.7) and

(3.4), we have

L(nH) =
1
2
Δ|A|2 − n(n − 1)

2
ΔR − n2|∇H|2 − n

∑

ij

hn+1
ij Hij . (3.5)

Now, assume that R is constant; from (2.18) and (3.5), we get

L(nH) =
∑

α,i,j,k

(hα
ijk)2 + n

∑

i,j

hn+1
ij Hn+1

ij − n
∑

ij

hn+1
ij Hij − n2|∇H|2

+
∑

α,β

N
(
hαhβ − hβhα

)
+ n(|A|2 − nH2) + n

∑

i,j
α≥n+2

hα
ijH

α
ij

+
∑

α,β

(
tr(hαhβ)

)2 − nH
∑

α

tr(hn+1(hα)2). (3.6)

Under the assumption of having H > 0, expression (3.6) can be rewrit-
ten in a simpler way. For this, choose {e1, . . . , en+p} a local orthonormal
frame to Mn such that en+1 = h

H . Hence, Hn+1 = H and Hα = 0 for every
α ≥ n + 2, which implies that Hn+1

ij = Hij , Hα
ij = 0 and hence

L(nH) =
∑

α,i,j,k

(hα
ijk)2 − n2|∇H|2 +

∑

α,β

N
(
hαhβ − hβhα

)
+ n(|A|2 − nH2)

+
∑

α,β

(
tr(hαhβ)

)2 − nH
∑

α

tr
(
hn+1(hα)2

)
. (3.7)

Now, we consider the following symmetric tensor

Φ =
∑

α,i,j

Φα
ijωi ⊗ ωjeα,

where Φα
ij = hα

ij − Hαδij , and Hα is defined in (2.14).
Let |Φ|2 =

∑
α,i,j(Φ

α
ij)

2 be the square of the length of Φ. It is easy to
check that Φ is traceless and, from (2.7), we get the following relation:

|Φ|2 = |A|2 − nH2 = n(n − 1)H2 + n(n − 1)(R − 1). (3.8)
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Moreover, |Φ|2 ≥ 0, with equality at the umbilical points of M . For that
reason Φ is usually called the total umbilicity tensor of M .

According to [7], we say that the Omori–Yau maximum principle holds
on Mn for the operator L if, for any function u ∈ C2(M) with u∗ = supM u <
∞, there exists a sequence {pk}k∈N ⊂ Mn with the properties

u(pk) > u∗ − 1
k

, |∇u(pk)| <
1
k

and Lu(pk) <
1
k

for every k ∈ N. As a consequence of Theorem 6.13 of [7] (see also Lemma 4.2
of [6]), we obtain the following.

Lemma 2. Let Mn be a complete non-compact spacelike submanifold in S
n+p
p ,

with constant scalar curvature satisfying R ≤ 1. If supM |Φ|2 < +∞, then
the Omori–Yau maximum principle holds on Mn for the operator L.

Proof. From equation (2.7) and with the hypothesis on scalar curvature, we
write

(hα
ij)

2 ≤ |A|2 = n2H2 + n(n − 1)(R − 1) ≤ n2H2,

for every α, i, j and, hence

hα
iih

α
jj ≤ |hα

ii||hα
jj | ≤ (nH)2. (3.9)

On the other hand, since we are assuming supM |Φ|2 < +∞ and that
R is constant, from (3.8) it follows that supM H < +∞. Thus, from (2.4)
and (3.9), we obtain

Rijij = 1 −
∑

α

(
hα

iih
α
jj − (hα

ij)
2
) ≥ 1 −

∑

α

hα
iih

α
jj > −∞, (3.10)

that is, the sectional curvatures of Mn are bounded from below.
Moreover, from (3.3) and (2.14) we have

tr(P ) = n(n − 1)H

and, hence,
sup
M

tr(P ) < +∞. (3.11)

Furthermore, Lemma 1 guarantees us that the operator L is semi-
elliptic. Therefore, taking into account (3.2), (3.10), and (3.11), we can apply
Theorem 6.13 of [7] to conclude the desired result. �

From Lemma 2.2 of [9] we get the following

Lemma 3. Let Mn be a spacelike submanifold immersed in S
n+p
p with constant

scalar curvature R ≤ 1. Then

|∇A|2 =
∑

α,i,j,k

(hα
ijk)2 ≥ n2|∇H|2. (3.12)

Moreover, if R < 1 and the equality holds in (3.12) on Mn, then H is constant
on Mn.

We will also need the following algebraic lemma, whose proof can be
found in [21].
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Lemma 4. Let A,B : Rn → R
n be symmetric linear maps such that AB −

BA = 0 and tr(A) = tr(B) = 0. Then

− n − 2√
n(n − 1)

N(A)
√

N(B) ≤ tr(A2B) ≤ n − 2√
n(n − 1)

N(A)
√

N(B).

Moreover, the equality holds on the right-hand side (resp. left-hand side) if
and only if (n − 1) of the eigenvalues xi of A and corresponding eigenvalues
yi of B satisfy

|xi| =

√
N(A)

n(n − 1)
, xixj ≥ 0 and yi =

√
N(B)

n(n − 1)

(
resp. −

√
N(B)

n(n − 1)

)
.

4. Characterizations of Spacelike Submanifolds in S
n+p
p

Remark 1. From now on, we will consider spacelike submanifolds Mn of
S

n+p
p having parallel normalized mean curvature vector, which means that

H > 0 and the normalized mean curvature vector field h/H is parallel as a
section of the normal bundle. The assumption about parallel normalized mean
curvature vector was introduced by Chen in [10]. Submanifolds with nonzero
parallel mean curvature vector also have parallel normalized mean curvature
vector. But the condition of having parallel normalized mean curvature vector
is much weaker than the condition of having parallel mean curvature vector.
For instance, every hypersurface with non-vanishing mean curvature in a
semi-Riemannian manifold always has parallel normalized mean curvature
vector.

To establish our main results, a crucial point is to obtain a suitable lower
estimate for the operator L acting on the square of the norm of the total
umbilicity tensor of a spacelike submanifold. This is made in the following
proposition.

Proposition 1. Let Mn be a spacelike submanifold in S
n+p
p , with parallel nor-

malized mean curvature vector and constant scalar curvature R ≤ 1. Then
1
2
L(|Φ|2) ≥ 1√

n(n − 1)
|Φ|2QR(|Φ|)

√
|Φ|2 + n(n − 1)(1 − R),

where

QR(x) =
(n − p − 1)

p
x2−(n−2)x

√
x2 + n(n − 1)(1 − R)+n(n−1)R. (4.1)

Proof. First of all, since R is constant it follows from (3.8) that

1
n − 1

L(|Φ|2) =2HL(nH) + 2n〈P (∇H),∇H〉 ≥ 2HL(nH), (4.2)

once (3.2) guarantees that L(u2) = 2uL(u) + 2〈P (∇u),∇u〉 for every u ∈
C2(M) and Lemma 1 guarantees that the operator L is semi-elliptic.

Since the normalized mean curvature vector of Mn is parallel, we may
choose {e1, . . . , en+p} a local orthonormal frame to Mn such that en+1 = h

H .
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In particular, Hn+1 = H and Hα = 0 for every α ≥ n+2. en+1 being parallel
and denoting by ∇⊥ the normal connection of Mn in S

n+p
p , it follows that

0 = ∇⊥en+1 =
∑

α

ωαn+1eα.

Thus,

ωαn+1 = 0, for all α ≥ n + 1.

Hence, from (2.8), it follows that Rn+1αij = 0, for all α, i, j and, consequently,
from Ricci equation (2.9), we have that hn+1hα − hαhn+1 = 0, for all α.
This implies that the matrix hn+1 commutes with all the matrix hα. Thus,
being Φα = (Φα

ij), we have that Φα = hα − HαI, where I stands for the
identity. Hence, Φn+1 = hn+1 − HI and Φα = hα, for α ≥ n + 2. Therefore,
Φn+1 commutes with all the matrix Φα. Since the matrix Φα is traceless
and symmetric, once the matrix hα are symmetric, we can use Lemma 4, for
A = Φα and B = Φn+1, to obtain

∣∣tr((Φα)2Φn+1)
∣∣ ≤ n − 2√

n(n − 1)
N(Φα)

√
N(Φn+1). (4.3)

Summing (4.3) in α, we have
∑

α

∣∣tr((Φα)2Φn+1)
∣∣ ≤ n − 2√

n(n − 1)

∑

α

N(Φα)
√

N(Φn+1).

On the other hand, with a straightforward computation we guarantee that

−nH
∑

α

tr
[
hn+1(hα)2

]
+

∑

α,β

[
tr(hαhβ)

]2

= −nH
∑

α

tr
[
Φn+1(Φα)2

] − nH2|Φ|2 +
∑

α,β

[
tr(ΦαΦβ)

]2
(4.4)

and
N(hαhβ − hβhα) = N(ΦαΦβ − ΦβΦα) ≥ 0. (4.5)

Moreover, N(Φn+1) = tr(Φn+1)2 ≤ |Φ|2 and
∑

α N(Φα) = |Φ|2. Hence,

− nH
∑

α

|tr(Φn+1(Φα)2)| ≥ − n(n − 2)√
n(n − 1)

H|Φ|3. (4.6)

Using Cauchy–Schwarz inequality,

p
∑

α,β

[tr(ΦαΦβ)]2 ≥ p
∑

α

[tr(Φα)2]2= p
∑

α

[N(Φα)]2

≥
(

∑

α

N(Φα)

)2

= |Φ|4, (4.7)

Hence, from (3.7), (3.8), (3.12), (4.4), (4.5), (4.6) and (4.7) we obtain

L(nH) ≥ |Φ|2
(

|Φ|2
p

− n(n − 2)√
n(n − 1)

|Φ|H − n
(
H2 − 1

)
)

. (4.8)
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Thus, from (4.2) and (4.8) we get

1
2(n − 1)

L(|Φ|2) ≥ H|Φ|2
(

|Φ|2
p

− n(n − 2)√
n(n − 1)

H|Φ| − n(H2 − 1)

)
. (4.9)

Besides, from (3.8) we have

H2 =
1

n(n − 1)
|Φ|2 + (1 − R). (4.10)

Consequently, taking into account that H > 0, we can write

H =
1√

n(n − 1)

√
|Φ|2 + n(n − 1)(1 − R). (4.11)

Therefore, inserting (4.10) and (4.11) in (4.9) we conclude that desired result.
�

Now, we are in a position to present our first theorem.

Theorem 1. Let Mn be a complete spacelike submanifold immersed in S
n+p
p

with parallel normalized mean curvature vector and constant scalar curvature
0 < R ≤ 1. Then

(i) either supM |Φ|2 = 0 and Mn is a totally umbilical submanifold,
(ii) or

sup
M

|Φ|2 ≥ α(n, p,R) > 0,

where α(n, p,R) is a positive constant depending only on n, p,R (see
Remark 3).

Moreover, the equality supM |Φ|2 = α(n, p,R) holds and this supremum is
attained at some point of Mn if and only if p = 1, n ≥ 3 and Mn is isometric
to a hyperbolic cylinder H

1(r) × S
n−1(

√
1 + r2) of radius r > 0.

Remark 2. Geometrically, Theorem 1 can be seen as a gap theorem for the
total umbilicity tensor of M , close in spirit to other similar gap theorems
either for the second fundamental form, as in the classical papers on minimal
submanifolds by Simons [22] and Chern, do Carmo and Kobayashi [13], or
for the total umbilicity tensor itself, as in [4].

Proof of Theorem 1. If supM |Φ|2 = 0, then Mn is totally umbilical and,
hence, item (i) holds. If supM |Φ|2 = +∞, then (ii) is trivially satisfied. So,
let us suppose that 0 < supM |Φ|2 < +∞ and let us take u = |Φ|2. Then,
from Proposition 1 we get

L(u) ≥ f(u), (4.12)
where

f(u) =
2√

n(n − 1)
uQR(

√
u)

√
u + n(n − 1)(1 − R)

and QR(x) is given by (4.1).
If Mn is compact, there exists a point p0 ∈ Mn such that u(p0) = u∗.

Consequently, ∇u(p0) = 0 and Lu(p0) ≤ 0. Therefore, from (4.12) we get
f(u∗) ≤ 0. Now, assume that Mn is complete and non-compact. Since u∗ <



12 Page 12 of 22 L. J. Alías et al. MJOM

+∞, Lemma 2 guarantees that there exists a sequence of points {pk}k∈N ⊂
Mn satisfying

u(pk) > u∗ − 1
k

and Lu(pk) <
1
k

(4.13)

for every k ∈ N. Therefore, from (4.12) and (4.13), we get
1
k

> Lu(pk) ≥ f(u(pk)). (4.14)

Taking into (4.14) the limit when k → +∞, by continuity, we have

0 ≥ f(u∗) =
2√

n(n − 1)
u∗QR(

√
u∗)

√
u∗ + n(n − 1)(1 − R).

Hence, in any case we obtain that, when 0 < u < +∞, it must be
f(u∗) ≤ 0. Since u∗ > 0 and R ≤ 1, this implies

QR(
√

u∗) ≤ 0. (4.15)

Note that the hypothesis R > 0 guarantees us that

QR(0) = n(n − 1)R > 0.

At this point, we observe from (4.1) that if p = 1 and (n − 2)/n ≤ R ≤ 1,
QR(x) > 0 for every x ≥ 0. Therefore, (4.15) cannot hold and we conclude
in this case that Mn must be a totally umbilical hypersurface. In particular,
this happens when p = 1 and n = 2. On the other hand, if p = 1, n ≥ 3 and
0 < R < (n − 2)/n it is easy to see that QR(x) has a unique positive root x0

determined by

x2
0 = α(n, 1, R) =

n(n − 1)R2

(n − 2)(n − 2 − nR)
.

The same happens when p ≥ 2, n ≥ 2 and 0 < R ≤ 1, but in this case the
unique positive root x0 of QR(x) = 0 does not have a so simple expression,
unless n = 2 (see Remark 3 for the details).

Therefore, either if p = 1, n ≥ 3 and 0 < R < (n − 2)/n or if p ≥ 2,
n ≥ 2 and 0 < R ≤ 1, inequality (4.15) implies

u∗ ≥ x2
0 = α(n, p,R),

that is,

sup
M

|Φ|2 ≥ α(n, p,R).

This proves the inequality in (ii).
Moreover, equality supM |Φ|2 = α(n, p,R) holds if, and only if,

√
u∗ =

x0. Thus QR(
√

u) ≥ 0 on Mn, which jointly with (4.12) implies that

L(u) ≥ 0 on Mn.

Now, suppose that R < 1. Hence, Lemma 1 assures that the oper-
ator L is elliptic. Therefore, if there exists a point p0 ∈ Mn such that
|Φ(p0)| = supM |Φ|, from the maximum principle the function u = |Φ|2 must
be constant and, consequently, |Φ| ≡ x0. Thus,

0 =
1
2
L(|Φ|2) ≥ 1√

n(n − 1)
|Φ|2QR(|Φ|)

√
|Φ|2 + n(n − 1)(1 − R). (4.16)
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Hence, the inequality (4.2) become equality. In particular, since L is elliptic
if and only if P is positive definite, from (4.2) we obtain that H is constant.
Since |Φ| > 0 and R < 1, from (4.16) we must have QR(|Φ|) = 0. Thus, all
inequalities obtained along the proof of Proposition 1 are, in fact, equalities.
In particular, from inequality (4.6) we conclude that

tr(Φn+1)2 = |Φ|2.
So, from (3.8) we get

tr(Φn+1)2 = |Φ|2 = |A|2 − nH2. (4.17)

On the other hand, we also have that

tr(Φn+1)2 = |A|2 −
∑

α>n+1

∑

i,j

(hα
ij)

2 − nH2. (4.18)

Thus, from (4.17) and (4.18) we conclude that
∑

α>n+1

∑
i,j(h

α
ij)

2 = 0. But,
from inequality (4.7) we also have that

|Φ|4 = p
∑

α≥n+1

[N(Φα)]2 = pN(Φn+1)2 = p|Φ|4. (4.19)

Since |Φ| > 0, we must have that p = 1.
In this setting, from (3.12) and (4.19) we get

∑

i,j,k

(hn+1
ijk )2 = n2|∇H|2 = 0,

that is, hn+1
ijk = 0 for all i, j. Hence, we obtain that Mn is an isoparametric

hypersurface of Sn+1
1 .

Hence, since the equality occurs in (4.3), we have that also occurs the
equality in Lemma 4. Consequently, Mn has at most two distinct constant
principal curvatures. Therefore, we can apply classical congruence theorem
due to Abe, Koike and Yamaguchi (see Theorem 5.1 of [1]) we conclude that
Mn must be one of the two following standard product embeddings into S

n+1
1 :

(a) H
1(r) × S

n−1(
√

1 + r2), or (b) H
n−1(r) × S

1(
√

1 + r2), of positive radius
r > 0. In case (a), for a given radius r > 0 the standard product embedding
H

1(r) × S
n−1(

√
1 + r2) ↪→ S

n+1
1 has constant principal curvatures given by

λ1 =
√

1 + r2

r
, λ2 = · · · = λn =

r√
1 + r2

.

Therefore,

nH =
1 + nr2

r
√

1 + r2
, |A|2 =

1 + 2r2 + nr4

r2(1 + r2)
, and |Φ|2 =

n − 1
nr2(1 + r2)

,

and its constant scalar curvature is given

R =
n − 2

n(1 + r2)
,

which satisfies our hypothesis, since

0 < R <
n − 2

n
< 1
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for every r > 0. On the other hand, in case (b) and for a given radius r > 0 the
standard product embedding H

n−1(r) × S
1(

√
1 + r2) ↪→ S

n+1
1 has constant

principal curvatures given by

λ1 = · · · = λn−1 =
√

1 + r2

r
, λn =

r√
1 + r2

.

Therefore,

nH =
(n − 1) + nr2

r
√

1 + r2
, |A|2 =

n − 1 + 2(n − 1)r2 + nr4

r2(1 + r2)
, and

|Φ|2 =
n − 1

nr2(1 + r2)
,

and its constant scalar curvature is given

R = −n − 2
nr2

< 0,

which does not satisfy our hypothesis. �

Remark 3. A direct computation from (4.1) shows that when p ≥ 2 and
0 < R ≤ 1 the unique positive root x0 of QR(x) = 0 is determined by

x2
0 = α(n, p,R)

where α(n, p,R) is the unique positive root of the following quadratic equa-
tion:

aY 2 + bY + c = 0, (4.20)

with

a =
(

n − p − 1
p

)2

− (n − 2)2 = − (n − 1)(p − 1)((n − 1)(p + 1) − 2p)
p2

< 0,

b =
n(n − 1)

p

(
2(n − p − 1)R − (n − 2)2p(1 − R)

)
,

and

c = n2(n − 1)2R2 > 0.

Actually, since a < 0 and c > 0 it then follows that the discriminant of (4.20)
is D = b2 − 4ac > b2. Hence, −b − √

D < 0 and the unique positive root of
(4.20) is given by

α(n, p,R) =
−b − √

D

2a

=
n(n − 1)p

2((n − p − 1)2 − (n − 2)2p2)
β(n, p,R),

where

β(n, p,R) = (n − 2)2p(1 − R) − 2(n − p − 1)R

−(n−2)
√

p(1−R)((n−2)2p(1 − R)−4(n − p − 1)R) + 4p2R2.
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In particular, when n = 2 the expression for α(n, p,R) reduces to

α(2, p, R) =
2pR

p − 1
.

We recall that, in the context of spacelike surfaces, the Gaussian cur-
vature of M2 satisfies the relation K = R. Hence, as a consequence of the
proof of Theorem 1, we also obtain the following.

Corollary 1. The only complete spacelike surfaces immersed in S
2+p
p , p ≥ 2,

with parallel normalized mean curvature vector, constant Gaussian curvature
0 < K ≤ 1 and such that supM |Φ|2 < 2p

p−1K, are the totally umbilical ones.

5. Some Remarks and Applications to L-Parabolic Manifolds

We recall that a Riemannian manifold Mn is said to be parabolic (with
respect to the Laplacian operator) if the constant functions are the only
subharmonic functions on Mn which are bounded from above; that is, for a
function u ∈ C2(M)

Δu ≥ 0 and u ≤ u∗ < +∞ implies u = constant.

More generally, let Mn be a Riemannian manifold and consider a general
class of second-order differential operators on M given by

L(u) = tr(P ◦ ∇2u) (5.1)

for every u ∈ C2(M), where P : TM → TM is a symmetric operator on Mn.
In this setting, Mn is said to be L-parabolic (or parabolic with respect to
the operator L) if the constant functions are the only functions u ∈ C2(M)
which are bounded from above and satisfying Lu ≥ 0. That is, for a function
u ∈ C2(M)

Lu ≥ 0 and u ≤ u∗ < +∞ implies u = constant.

The differential operator L is elliptic (resp. semi-elliptic) if and only if P is
positive definite (resp. positive semi-definite).

By a standard tensor computation, it is not difficult to see that

L(u) = div(P(∇u)) − 〈divP,∇u〉 (5.2)

for every function u ∈ C2(M), where

divP = tr(∇P) =
n∑

i=1

∇P(ei, ei)

with

∇P(X,Y ) = (∇Y P)X = ∇Y (PX) − P(∇Y X)

for every X,Y ∈ TM . In particular, when divP = 0

L(u) = tr(P ◦ ∇2u) = div(P(∇u)) (5.3)

and the operator L can be seen as a divergence type operator. This happens,
for instance, for the Cheng–Yau operator L given in (3.1) in the case of
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spacelike submanifolds Mn of Sn+p
p with parallel normalized mean curvature

vector, as shown below.

Lemma 5. Let Mn be a spacelike submanifold in S
n+p
p with parallel normal-

ized mean curvature vector and let L be the Cheng–Yau operator on Mn

given in (3.1). Then divP = 0. Equivalently, Lu = div(P (∇u) for every
u ∈ C2(M).

Proof. In our case, we have P = nHI −hn+1, where I denotes the identity on
TM and hn+1 stands for the second fundamental form on Mn in the direction
of en+1 = h/H. Thus, for every tangent vector fields X,Y ∈ TM , we have

∇P (X,Y ) = nY (H)X − ∇hn+1(X,Y ). (5.4)

Since en+1 is parallel, it follows from the Codazzi equation (2.11) that ∇hn+1

is symmetric, that is

∇hn+1(X,Y ) = ∇hn+1(Y,X)

for every X,Y ∈ TM . Therefore, for every X ∈ TM and for every ei, 1 ≤
i ≤ n, we have

〈∇hn+1(ei, ei),X〉=〈(∇ei
hn+1)ei,X〉=〈(∇ei

hn+1)X, ei〉=〈(∇Xhn+1)ei, ei〉,
which implies

〈tr(∇hn+1),X〉 =
n∑

i=1

〈∇hn+1(ei, ei),X〉 =
n∑

i=1

〈(∇Xhn+1)ei, ei〉

= tr(∇Xhn+1) = ∇X(tr hn+1)
= n〈∇H,X〉

for every X ∈ TM . In other words,

tr(∇hn+1) = n∇H.

Using this in (5.4) we easily conclude

divP = tr(∇P ) = n∇H − n∇H = 0

as desired. �

Our objective in Theorem 2 below is to characterize the hyperbolic
cylinders of the form H

1(r) × S
n−1(

√
1 + r2) as the only L-parabolic com-

plete spacelike submanifolds in S
n+p
p with parallel normalized mean curva-

ture vector and constant scalar curvature 0 < R ≤ 1 satisfying supM |Φ|2 =
α(n, p,R). To this aim, we first need to prove the L-parabolicity of the hy-
perbolic cylinders. Observe that, for every positive radius r, H1(r) × S

n−1

(
√

1 + r2) is canonically embedded in S
n+p
p as a spacelike hypersurface of the

totally geodesic submanifold S
n+1
1 ⊂ S

n+p
p , so that

H
1(r) × S

n−1(
√

1 + r2) ↪→spacelike hypersurface S
n+1
1 ↪→totally geodesic S

n+p
p .

Therefore, hn+1 = S, where S stands for the shape operator of H
1(r) ×

S
n−1(

√
1 + r2) as a spacelike hypersurface of Sn+1

1 , and nH = trS.



MJOM Characterizations of Spacelike Submanifolds Page 17 of 22 12

Recall that S has constant principal curvatures given by

λ1 =
√

1 + r2

r
, λ2 = · · · = λn =

r√
1 + r2

,

with

nH =
1 + nr2

r
√

1 + r2
,

and it splits as

S(U, V ) =

(√
1 + r2

r
U,

r√
1 + r2

V

)

for every U ∈ TH
1(r) and V ∈ TS

n−1(
√

1 + r2). Thus, the operator P =
nHI − S also splits as

P (U, V ) =
(

(n − 1)r√
1 + r2

U,
1 + (n − 1)r2

r
√

1 + r2
V

)

for every U ∈ TH
1(r) and V ∈ TS

n−1(
√

1 + r2). Then, the L-parabolicity
of H

1(r) × S
n−1(

√
1 + r2) is a consequence of the following general result,

inspired by Proposition 4.2 in [5].

Proposition 2. Let M = M1×M2 be a Riemannian (connected) product man-
ifold, where M1 is parabolic (with respect to the Laplacian operator) and M2

is compact. Let P : TM → TM be a positive definite symmetric operator on
M which splits as

P(U, V ) = (λU, μV )

for every U ∈ TM1 and V ∈ TM2, with positive constants λ, μ ∈ R. Then
Mn is L-parabolic.
Corollary 2. The hyperbolic cylinders H

1(r) × S
n−1(

√
1 + r2), as spacelike

submanifolds of Sn+p
p , are parabolic with respect to the Cheng–Yau operator

L.

For the proof of Proposition 2 we will need the following lemma, which
extends Lemma 4.1 in [5] to the case of semi-elliptic operators.

Lemma 6. Assume that L is semi-elliptic on a connected Riemannian mani-
fold Mn. Mn is L-parabolic if and only if every positive, bounded function u
satisfying L(u) ≥ 0 is constant.

Proof. The “if” part follows directly from the definition, without the posi-
tivity of the function. Therefore, it suffices to prove the “only if” part.

Let u ∈ C2(M) be a function which is bounded from above and satisfying
L(u) ≥ 0. Consider the positive function v = eu, which is also bounded from
above with v∗ = supM v = eu∗

, u∗ = supM u < +∞. Moreover, from (5.1) an
easy computation gives

L(v) = euL(u) + eu〈P(∇u),∇u〉 ≥ 0, (5.5)
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since P is positive semi-definite. Then, our assumptions show that v is con-
stant and, since ∇v = eu∇u, it follows that ∇u = 0. Therefore, u is also
constant, and Mn is L-parabolic. �

Proof of Proposition 2. First of all, since λ and μ are both constants, it easily
follows that divP = 0, so that (5.3) holds. Let u ∈ C2(M) be a positive,
bounded function satisfying L(u) ≥ 0. According to Lemma 6, it suffices to
prove that u is constant.

We observe that if v = u2, then v : M → R is also positive and bounded.
Using again (5.3), we have

L(v) = 2uL(u) + 2〈P(∇u),∇u〉 ≥ 0. (5.6)

For every x ∈ M1 and every y ∈ M2, let us denote by vx : M2 → R and by
vy : M1 → R the functions given by

vx(y) = vy(x) = v(x, y).

An easy computation gives

∇v(x, y) = (∇1vy(x),∇2vx(y)), for every (x, y) ∈ M1 × M2

where ∇1 and ∇2 denote the gradient operators on M1 and M2, respectively.
Therefore,

P(∇v(x, y)) = (λ∇1vy(x), μ∇2vx(y)), for every (x, y) ∈ M1 × M2,

and from (5.3) we obtain

Lv(x, y) = λΔ1vy(x) + μΔ2v
x(y), for every (x, y) ∈ M1 × M2, (5.7)

where Δ1 and Δ2 denote the Laplacian operators on M1 and M2, respectively.
Since M2 is compact, integrating this expression (5.7) over M2 we have,

from the divergence theorem,
∫

M2

Lv(x, y)dy = λ

∫

M2

Δ1vy(x)dy + μ

∫

M2

Δ2v
x(y)dy = λ

∫

M2

Δ1vy(x)dy. (5.8)

Therefore, from Lv ≥ 0 and λ > 0 we have
∫

M2

Δ1vy(x)dy ≥ 0. (5.9)

Now, the compactness of M2 allows us to compute derivatives under the
integral sign to get

∫

M2

Δ1vy(x)dy =
∫

M2

k∑

i=1

(eiei − ∇1
ei

ei)vy(x)dy

=
k∑

i=1

(eiei − ∇1
ei

ei)
(∫

M2

vy(x)dy

)

= Δ1h(x)

where {e1 . . . , ek} is a local orthonormal frame on M1 with k = dimM1, and

h(x) =
∫

M2

vy(x)dy.
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Hence, it follows from (5.9) that h : M1 → R is a subharmonic function.
Moreover, for every x ∈ M1

h(x) =
∫

M2

vy(x)dy ≤ sup
M

v

(∫

M2

dy

)
= sup

M
v vol(M2) < +∞.

As a consequence, h is a subharmonic function on M1 which is bounded
from above. Since M1 is parabolic, we conclude that h is constant and, in
particular, Δ1h = 0.

Returning to (5.8), we obtain that
∫

M2

Lv(x, y)dy = λΔ1h(x) = 0 for every x ∈ M1. (5.10)

Since L(v) ≥ 0, this implies L(v) = 0. Thus, from (5.6) we obtain that
〈P(∇u),∇u〉 = 0 and, since P is positive definite, we conclude ∇u = 0, as
desired.

We are now ready to prove the following result.

Theorem 2. Let Mn, n ≥ 3, be a complete spacelike submanifold immersed
in S

n+p
p , with parallel normalized mean curvature vector and constant scalar

curvature 0 < R ≤ 1. Suppose that Mn is not totally umbilical. If Mn is
L-parabolic, then

sup
M

|Φ|2 ≥ α(n, p,R) > 0, (5.11)

with equality if and only if p = 1 and Mn is isometric to a hyperbolic cylinder
H

1(r) × S
n−1(

√
1 + r2) of radius r > 0.

Proof. If supM |Φ|2 = +∞, then there is nothing to prove. Suppose then
that 0 < supM |Φ|2 < +∞. In this case, we can proceed as in the first part of
the proof of Theorem 1, to guarantee that supM |Φ|2 ≥ α(n, p,R). Moreover,
if equality holds in (5.11), then we have QR(|Φ|) ≥ 0 and, consequently,
L(|Φ|2) ≥ 0 on Mn. Therefore, from the L-parabolicity of Mn we conclude
that the function u = |Φ|2 must be constant and equal to α(n, p,R). At this
point, we can reason as in the proof of the Theorem 1 to conclude the result.

�
Observe that from the proof of Theorem 2 we also obtain the following

rigidity result

Corollary 3. The only L-parabolic complete spacelike surfaces M2 immersed
in S

2+p
p , p ≥ 2, with parallel normalized mean curvature vector, constant

Gaussian curvature 0 < K ≤ 1 and such that supM |Φ|2 ≤ 2p
p−1K, are the

totally umbilical ones.

We closed our paper establishing the following L-parabolicity criterium.

Proposition 3. Let Mn be a complete spacelike submanifold immersed in S
n+p
p

with parallel normalized mean curvature vector and constant scalar curvature
0 < R ≤ 1. If supM |Φ|2 < +∞ and, for some reference point o ∈ Mn,

∫ +∞

0

dr

vol(∂Br)
= +∞, (5.12)
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then Mn is L-parabolic. Here Br denotes the geodesic ball of radius r in Mn

centered at the origin o.

Proof. From Lemma 5 we know that

L(u) = div(P (∇u)), (5.13)

for any u ∈ C2(M), where P is defined in (3.3).
Now, we consider on Mn the symmetric (0, 2) tensor field ξ given by

ξ(X,Y ) = 〈PX, Y 〉, or, equivalently, ξ(∇u, ·)� = P (∇u), where � : T ∗M →
TM denotes the musical isomorphism. Thus, from (5.13) we get

L(u) = div
(
ξ(∇u, ·)�

)
.

On the other hand, as supM |Φ|2 < +∞ and Mn has constant scalar
curvature, from equation (3.8), we have that supM H < +∞. So, we can
define a positive continuous function ξ+ on [0,+∞), by

ξ+(r) = 2n sup
∂Br

H. (5.14)

Thus, from (5.14) we have

ξ+(r) = 2n sup
∂Br

H ≤ 2n sup
M

H < +∞. (5.15)

Hence, from (5.12) and (5.15) we get
∫ +∞

0

dr

ξ+(r)vol(∂Br)
= +∞.

Therefore, we can apply Theorem 2.6 of [19] to conclude the proof. �

Acknowledgements

The authors would like to thank the referee for reading the manuscript in
great detail and giving several valuable suggestions and useful comments
which improved the paper. This work is a result of the activity developed
within the framework of the Programme in Support of Excellence Groups of
the Región de Murcia, Spain, by Fundación Séneca, Science and Technology
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