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Abstract. By means of classical fixed point index, we prove new results
on the existence, non-existence, localization and multiplicity of non-
trivial solutions for systems of Hammerstein integral equations where
the nonlinearities are allowed to depend on the first derivative. As a
byproduct of our theory, we discuss the existence of positive solutions
of a system of third order ODEs subject to nonlocal boundary condi-
tions. Some examples are provided to illustrate the applicability of the
theoretical results.
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1. Introduction

Motivated by earlier work of do Ó et al. [2] on radial solutions of ellip-
tic systems, Infante and Pietramala [5] studied the existence, multiplicity
and non-existence of nontrivial solutions of systems of Hammerstein integral
equations of the type{

u(t) =
∫ 1

0
k1(t, s)g1(s)f1(s, u(s), v(s)) ds,

v(t) =
∫ 1

0
k2(t, s)g2(s)f2(s, u(s), v(s)) ds.

The methodology of [5] is based on classical fixed point index theory and
the authors work in a suitable cone in (C[0, 1])2. Due to the choice of the
space involved, the setting of [5] does not allow derivative dependence in the
nonlinearities.
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On the other hand, Minhós and de Sousa [10] studied the system of third
order ordinary differential equations subject to nonlocal boundary conditions⎧⎪⎪⎨

⎪⎪⎩
−u′′′(t) = f1(t, v(t), v′(t)),
−v′′′(t) = f2(t, u(t), u′(t)),
u(0) = u′(0) = 0, u′(1) = αu′(η),
v(0) = v′(0) = 0, v′(1) = αv′(η),

(1.1)

where 0 < η < 1 and 1 < α < 1/η. The approach of [10] relies on the
celebrated Krasnosel’skĭı–Guo fixed point theorem and on the rewriting the
system (1.1) in the form{

u(t) =
∫ 1

0
k(t, s)f1(s, v(s), v′(s)) ds,

v(t) =
∫ 1

0
k(t, s)f2(s, u(s), u′(s)) ds.

(1.2)

Minhós and de Sousa proved the existence of one positive solution of the
system (1.2), by assuming suitable superlinear/sublinear behaviours of the
nonlinearities. A key ingredient in [10] is the use of the cone

K̂ :=
{

w ∈ C1[0, 1] : w(t) ≥ 0, min
t∈[ η

α ,η]
w(t) ≥ c‖w‖C , min

t∈[ η
α ,η]

w′(t) ≥ d‖w′‖C

}
,

(1.3)
where c, d ∈ (0, 1] and ‖w‖C := maxt∈[0, 1] |w(t)|. The cone (1.3) is similar
to a cone of non-negative functions first used by Krasnosel’skĭı, see, e.g., [7],
and Guo, see, e.g., [4] in the space C[0, 1]. Note that the functions in (1.3)
are non-negative and their derivatives are non-negative on a subset of [0, 1].

Here we make use of a new cone of functions that are allowed to change
sign, similar to one introduced, in the space of continuous functions, by In-
fante and Webb [6]. With this ingredient we prove existence, multiplicity
and non-existence results for nontrivial solutions of the systems of integral
equations of the kind{

u(t) =
∫ 1

0
k1(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds,

v(t) =
∫ 1

0
k2(t, s)g2(s)f2(s, u(s), u′(s), v(s), v′(s)) ds,

extending the results of [5] to this different setting.
We note that our approach can be also used to prove the existence of

non-negative solutions; we highlight this fact by considering a generalization
of the system (1.1), that is,⎧⎪⎪⎨

⎪⎪⎩
−u′′′(t) = g1(t)f1(t, u(t), u′(t), v(t), v′(t)),
−v′′′(t) = g2(t)f2(t, u(t), u′(t), v(t), v′(t)),
u(0) = u′(0) = 0, u′(1) = α1u

′(η1),
v(0) = v′(0) = 0, v′(1) = α2v

′(η2),

(1.4)

where 0 < ηi < 1, 1 < αi < 1
ηi

. Note that the boundary conditions in (1.4)
can generate two different kernels and the nonlinearities are allowed to have
a stronger coupling with respect to the ones present in (1.1).

Some examples are given to show that the constants that occur in our
theoretical results can be computed.
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2. The System of Integral Equations

We begin by stating some assumptions on the terms that occur in the system
of Hammerstein integral equations{

u(t) =
∫ 1

0
k1(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds,

v(t) =
∫ 1

0
k2(t, s)g2(s)f2(s, u(s), u′(s), v(s), v′(s)) ds,

(2.1)

namely
(A1) For i = 1, 2, fi : [0, 1]×R

4 → [0,+∞) is a L∞-Carathéodory function,
that is, fi(·, u1, u2, v1, v2) is measurable for each fixed (u1, u2, v1, v2),
fi(t, ·, ·, ·, ·) is continuous for almost every (a.e.) t ∈ [0, 1], and for each
r > 0 there exists ϕi,r ∈ L∞[0, 1] such that

fi(t, u1, u2, v1, v2) ≤ ϕi,r(t) for u1, u2, v1, v2 ∈ [−r, r] and a. e. t ∈ [0, 1].

(A2) For every i = 1, 2, ki : [0, 1]2 → R is such that ki are measurable, and
for all τ ∈ [0, 1], we have

lim
t→τ

|ki(t, s) − ki(τ, s)| = 0, for a. e. s ∈ [0, 1]

and

lim
t→τ

∣∣∣∣∂ki

∂t
(t, s) − ∂ki

∂t
(τ, s)

∣∣∣∣ = 0, for a. e. s ∈ [0, 1].

(A3) For every i = 1, 2, there exist subintervals [ai, bi], [γi, δi] ⊆ [0, 1], func-
tions φi, ψi ∈ L∞[0, 1], and constants ci, di ∈ (0, 1] such that

|ki(t, s)| ≤ φi(s) for t ∈ [0, 1] and a. e. s ∈ [0, 1],∣∣∣∣∂ki

∂t
(t, s)

∣∣∣∣ ≤ ψi(s) for t ∈ [0, 1] and a. e. s ∈ [0, 1],

ki(t, s) ≥ ciφi(s) for t ∈ [ai, bi] and a. e. s ∈ [0, 1],
∂ki

∂t
(t, s) ≥ diψi(s) for t ∈ [γi, δi] and a. e. s ∈ [0, 1].

(A4) For every i = 1, 2, we have gi ∈ L1[0, 1], gi(t) ≥ 0 a.e. t ∈ [0, 1],∫ bi

ai
φi(s)gi(s) ds > 0 and

∫ δi

γi
ψi(s)gi(s) ds > 0.

Forward in the paper, we use the space
(
C1[0, 1]

)2 equipped with the
norm

‖(u, v)‖ := max{‖u‖C1 , ‖v‖C1},

where ‖w‖C1 := max {‖w‖C , ‖w′‖C}.
For the reader’s convenience, we recall that a cone K in a Banach space

X is a closed convex set such that λx ∈ K for x ∈ K and λ ≥ 0 and
K ∩ (−K) = {0}.

Consider, in the space C1[0, 1], the cones

K̃i :=
{

w ∈ C1[0, 1] : min
t∈[ai,bi]

w(t) ≥ ci‖w‖C , min
t∈[γi,δi]

w′(t) ≥ di‖w′‖C

}
,

(2.2)
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and their product in
(
C1[0, 1]

)2 defined by

K := {(u, v) ∈ K̃1 × K̃2}. (2.3)

By a nontrivial solution of the system (2.1) we mean a solution (u, v) ∈
K of (2.1) such that ‖(u, v)‖ 
= 0. Note that the functions in K̃i are non-
negative on the sub-intervals [ai, bi] and non-decreasing on [γi, δi], but nev-
ertheless, they can change sign or have a different variation in [0, 1].

We define the integral operator

T (u, v)(t) :=

(
T1(u, v)(t)
T2(u, v)(t)

)
=

( ∫ 1

0
k1(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds∫ 1

0
k2(t, s)g2(s)f2(s, u(s), u′(s), v(s), v′(s)) ds

)
,

(2.4)
and prove that T leaves the cone K invariant and is compact.

Lemma 2.1. The operator T given by (2.4) maps K into K and is compact.

Proof. Take (u, v) ∈ K. Then, by (A3),

‖T1(u, v)‖C ≤
∫ 1

0

φ1(s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds,

and

min
t∈[a1,b1]

T1(u, v)(t) = min
t∈[a1,b1]

∫ 1

0

k1(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds

≥ c1

∫ 1

0

φ1(s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds

≥ c1‖T1(u, v)‖C .

Moreover,

‖ (T1(u, v))′ ‖C ≤
∫ 1

0

ψ1(s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds,

and

min
t∈[γ1,δ1]

(T1(u, v)(t))′ = min
t∈[γ1,δ1]

∫ 1

0

∂k1

∂t
(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds

≥ d1

∫ 1

0

ψ1(s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds

≥ d1‖ (T1(u, v))′ ‖C .

Therefore, T1K̃1 ⊂ K̃1. By similar arguments it can be proved that T2K̃2 ⊂
K̃2.

The compactness of T follows, in a routine way, by the Ascoli–Arzelà
Theorem. �

To specify our notation, for Ω an open bounded subset with Ω ⊂ K
(endowed with the relative topology), we denote by Ω and ∂Ω the closure
and the boundary relative to K, respectively. If Ω is an open bounded subset
of X then we write ΩK = Ω ∩ K, an open subset of K.
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The next Lemma summarizes some classical results on fixed point index
(more details can be seen in the books [1,4]).

Lemma 2.2. Let Ω be an open bounded set with 0 ∈ ΩK and ΩK 
= K. Assume
that F : ΩK → K is a compact map such that x 
= Fx for all x ∈ ∂ΩK . Then
the fixed point index iK(F,ΩK) has the following properties:

(1) If there exists e ∈ K \ {0} such that x 
= Fx + λe for all x ∈ ∂ΩK and
all λ > 0, then iK(F,ΩK) = 0.

(2) If μx 
= Fx for all x ∈ ∂ΩK and for every μ ≥ 1, then iK(F,ΩK) = 1.
(3) If iK(F,ΩK) 
= 0, then F has a fixed point in ΩK .
(4) Let Ω1 be open in X with Ω1

K ⊂ ΩK . If iK(F,ΩK) = 1 and iK(F,Ω1
K) =

0, then F has a fixed point in ΩK \ Ω1
K . The same result holds if

iK(F,ΩK) = 0 and iK(F,Ω1
K) = 1.

Along the paper, we use the following (relative) open bounded sets in
K:

Kρ1,ρ2 = {(u, v) ∈ K : ‖u‖C1 < ρ1 and ‖v‖C1 < ρ2}, (2.5)

For our index calculations we make use of the following Lemma, similar
to Lemma 5 of [3]. The novelty here is that we take into account the derivative.
We omit the simple proof.

Lemma 2.3. For the set defined by (2.5) we have that (w1, w2) ∈ ∂Kρ1,ρ2 iff
(w1, w2) ∈ K, and for i = 1, 2,

max
t∈[0,1]

w1(t) = ρ1, −ρ1 ≤ w′
1(t) ≤ ρ1, −ρ2 ≤ w2(t) ≤ ρ2, −ρ2 ≤ w′

2(t) ≤ ρ2,

or

−ρ1 ≤ w1(t) ≤ ρ1, max
t∈[0,1]

w′
1(t) = ρ1, −ρ2 ≤ w2(t) ≤ ρ2, −ρ2 ≤ w′

2(t) ≤ ρ2,

or

−ρ1 ≤ w1(t) ≤ ρ1, −ρ1 ≤ w′
1(t) ≤ ρ1, max

t∈[0,1]
w2(t) = ρ2, − ρ2 ≤ w′

2(t) ≤ ρ2,

or

−ρ1 ≤ w1(t) ≤ ρ1, −ρ1 ≤ w′
1(t) ≤ ρ1, −ρ2 ≤ w2(t) ≤ ρ2, max

t∈[0,1]
w′

2(t) = ρ2.

3. Existence Results and Non-existence Results

The existence results are obtained via the fixed point index on the set Kρ1,ρ2

given by (2.5). First, we obtain sufficient conditions for the fixed point index
on the set Kρ1,ρ2 to be 1.

Lemma 3.1. Assume that
(I1ρ1,ρ2

) there exist ρ1, ρ2 > 0 such that for every i = 1, 2,

fρ1,ρ2
i < min {mi,m

∗
i } , (3.1)
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where
fρ1,ρ2

i

:= sup

{
fi(t, u1, u2, v1, v2)

ρi
: (t, u1, u2, v1, v2) ∈ [0, 1] × [−ρ1, ρ1]

2 × [−ρ2, ρ2]
2

}
,

(3.2)

1
mi

:= max
t∈[0,1]

∫ 1

0

|ki(t, s)|gi(s) ds (3.3)

and
1

m∗
i

:= max
t∈[0,1]

∫ 1

0

∣∣∣∣∂ki

∂t
(t, s)

∣∣∣∣ gi(s) ds. (3.4)

Then iK(T,Kρ1,ρ2) = 1.

Proof. We claim that λ(u, v) 
= T (u, v) for every (u, v) ∈ ∂Kρ1,ρ2 and for
every λ ≥ 1, which implies that the index is 1 on Kρ1,ρ2 , by Lemma 2.2 (3).

Assume this is not true. Then there exist λ ≥ 1 and (u, v) ∈ ∂Kρ1,ρ2

such that λ(u, v) = T (u, v).
Consider that

‖u‖C = ρ1, ‖u′‖C ≤ ρ1, ‖v‖C ≤ ρ2 and ‖v′‖C ≤ ρ2 (3.5)

holds. Then we have

λ |u(t)| ≤
∫ 1

0

|k1(t, s)| g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds,

and taking the maximum over [0, 1], by (3.2) and (3.3)

λρ1 ≤ max
t∈[0,1]

∫ 1

0

|k1(t, s)| g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds

≤ max
t∈[0,1]

∫ 1

0

|k1(t, s)| g1(s)ρ1fρ1,ρ2
1 ds

≤ ρ1f
ρ1,ρ2
1

1
m1

.

By (3.1), λρ1 < ρ1, which contradicts the fact that λ ≥ 1.
If

‖u‖C ≤ ρ1, ‖u′‖C = ρ1, ‖v‖C ≤ ρ2 and ‖v′‖C ≤ ρ2,

then we have

λ |u′(t)| ≤
∫ 1

0

∣∣∣∣∂k1
∂t

(t, s)
∣∣∣∣ g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds.

By (3.2) and (3.4), and taking the maximum in [0, 1],

λρ1 ≤ max
t∈[0,1]

∫ 1

0

∣∣∣∣∂ki

∂t
(t, s)

∣∣∣∣ g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds

≤ max
t∈[0,1]

∫ 1

0

∣∣∣∣∂ki

∂t
(t, s)

∣∣∣∣ g1(s)ρ1f
ρ1,ρ2
1 ds

≤ ρ1f
ρ1,ρ2
1

1
m∗

1

,
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we obtain a similar contradiction as above.
The other cases follow the same arguments. �

Second, we provide a condition to have a null fixed point index on Kρ1,ρ2 .

Lemma 3.2. Assume that

(I0ρ1,ρ2
) there exist ρ1, ρ2 > 0 such that for every i = 1, 2,

f1,(ρ1,ρ2) > M1, f∗
1,(ρ1,ρ2)

> M∗
1 , f2,(ρ1,ρ2) > M2, f∗

2,(ρ1,ρ2)
> M∗

2 , (3.6)

where

f1,(ρ1,ρ2) := inf

⎧⎨
⎩

f1(t, u1, u2, v1, v2)

ρ1
:

(t, u1, u2, v1, v2) ∈ [a1, b1] × [c1ρ1, ρ1] × [−ρ1, ρ1] × [−ρ2, ρ2]
2

⎫⎬
⎭ ,

f∗
1,(ρ1,ρ2) := inf

⎧⎨
⎩

f1(t, u1, u2, v1, v2)

ρ1
:

(t, u1, u2, v1, v2) ∈ [γ1, δ1] × [−ρ1, ρ1] × [d1ρ1, ρ1] × [−ρ2, ρ2]
2

⎫⎬
⎭ ,

f2,(ρ1,ρ2) := inf

⎧⎨
⎩

f2(t, u1, u2, v1, v2)

ρ2
:

(t, u1, u2, v1, v2) ∈ [a2, b2] × [−ρ1, ρ1]
2 × [c2ρ2, ρ2] × [−ρ2, ρ2]

⎫⎬
⎭ ,

f∗
2,(ρ1,ρ2) := inf

⎧⎨
⎩

f2(t, u1, u2, v1, v2)

ρ2
:

(t, u1, u2, v1, v2) ∈ [γ2, δ2] × [−ρ1, ρ1]
2 × [−ρ2, ρ2] × [d2ρ2, ρ2]

⎫⎬
⎭ ,

and

1
Mi

: = min
t∈[ai,bi]

∫ bi

ai

ki(t, s)gi(s) ds, (3.7)

1
M∗

i

: = min
t∈[γi,δi]

∫ δi

γi

∂ki

∂t
(t, s)gi(s) ds . (3.8)

Then iK(T,Kρ1,ρ2) = 0.

Proof. Consider e(t) ≡ 1 for t ∈ [0, 1], and note that (e, e) ∈ K.
We claim that

(u, v) 
= T (u, v) + λ(e, e) for (u, v) ∈ ∂Kρ1,ρ2 and λ ≥ 0.

Assume, by contradiction, that there exist (u, v) ∈ ∂Kρ1,ρ2 and λ ≥ 0 such
that (u, v) = T (u, v) + λ(e, e).

Consider that (3.5) holds. Then we can assume that for all t ∈ [a1, b1]
we have

c1ρ1 ≤ u(t) ≤ ρ1,−ρ1 ≤ u′(t) ≤ ρ1,−ρ2 ≤ v(t) ≤ ρ2 and − ρ2 ≤ v′(t) ≤ ρ2.
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Then, for t ∈ [a1, b1], we obtain, by (3.6),

u(t) =
∫ 1

0

k1(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds + λe(t)

≥
∫ b1

a1

k1(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds + λ

≥
∫ b1

a1

k1(t, s)g1(s)ρ1f1,(ρ1,ρ2) ds + λ.

Taking the maximum over [a1, b1] gives

ρ1 ≥ max
t∈[a1,b1]

u(t) ≥ ρ1f1,(ρ1,ρ2)
1

M1
+ λ.

By (3.6), we obtain the following contradiction: ρ1 > ρ1 + λ.
Suppose that

−ρ1 ≤ u(t) ≤ ρ1, max
t∈[0,1]

u′(t) = ρ1,−ρ2 ≤ v(t) ≤ ρ2,−ρ2 ≤ v′(t) ≤ ρ2,

holds. Then, that for all t ∈ [γ1, δ1], we have

u′(t) =
∫ 1

0

∂k1
∂t

(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds + λe(t)

≥
∫ δ1

γ1

∂k1
∂t

(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds + λ

≥
∫ δ1

γ1

∂k1
∂t

(t, s)g1(s)ρ1f∗
1,(ρ1,ρ2)

ds + λ.

Taking the maximum over [γ1, δ1] gives

ρ1 ≥ max
t∈[γ1,δ1]

u′(t) ≥ ρ1f
∗
1,(ρ1,ρ2)

1
M∗

1

+ λ,

and by (3.7), a similar contradiction is achieved.
For the other cases, the procedure is analogous. �

In the following Theorem, we provide a result valid for up to three
nontrivial solutions, but it is possible to prove the existence of four or more
nontrivial solutions; see for example [8] for the kind of results that may be
stated. We omit the proof that follows, in a routine manner, by means of the
properties of fixed point index.

Theorem 3.3. The system (2.1) has at least one nontrivial solution in K if
one of the following conditions holds:
(S1) For i = 1, 2 there exist ρi, ri ∈ (0,∞) with ρi/ci < ri such that (I0ρ1,ρ2

),
(I1r1,r2

) hold.
(S2) For i = 1, 2 there exist ρi, ri ∈ (0,∞) with ρi < ri such that (I1ρ1,ρ2

),
(I0r1,r2

) hold.
The system (2.1) has at least two nontrivial solutions in K if one of the

following conditions holds:
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(S3) For i = 1, 2 there exist ρi, ri, si ∈ (0,∞) with ρi/ci < ri < si such that
(I0ρ1,ρ2

), (I1r1,r2
) and (I0s1,s2

) hold.
(S4) For i = 1, 2 there exist ρi, ri, si ∈ (0,∞) with ρi < ri and ri/ci < si

such that (I1ρ1,ρ2
), (I0r1,r2

) and (I1s1,s2
) hold.

The system (2.1) has at least three nontrivial solutions in K if one of
the following conditions holds:
(S5) For i = 1, 2 there exist ρi, ri, si, σi ∈ (0,∞) with ρi/ci < ri < si and

si/ci < σi such that (I0ρ1,ρ2
), (I1r1,r2

), (I0s1,s2
) and (I1σ1,σ2

) hold.
(S6) For i = 1, 2 there exist ρi, ri, si, σi ∈ (0,∞) with ρi < ri and ri/ci <

si < σi such that (I1ρ1,ρ2
), (I0r1,r2

), (I1s1,s2
) and (I0σ1,σ2

) hold.

In the next example, we illustrate the applicability of Theorem 3.3.

Example 3.4. Consider the system⎧⎨
⎩

u(t) =
∫ 1

0
s( 78 t − t2)

(
(u(t))2 + (u′(t))2

)
(2 + cos (v(t) v′(t))) ds,

v(t) =
∫ 1

0
s( 1110 t − t2 − 1

10 )
(
(v(t))2 + (v′(t))2

)
(2 − sin (u(t)u′(t))) ds.

(3.9)
In this case, we have

k1(t, s) = s

(
7
8
t − t2

)
, k2(t, s) = s

(
11
10

t − t2 − 1
10

)
,

∂k1
∂t

(t, s) = s

(
7
8

− 2t

)
,
∂k2
∂t

(t, s) = s

(
11
10

− 2t

)
,

g1(t) ≡ 1, g2(t) ≡ 1,

f1(t, u1, u2, v1, v2) =
(
(u1)

2 + (u2)
2
)

(2 + cos (v1 v2)) ,

f2(t, u1, u2, v1, v2) =
(
(v1)

2 + (v2)
2
)

(2 − sin (u1 u2)) .

Note that k1, k2,
∂k1
∂t

and
∂k2
∂t

change sign on [0, 1]2. The assumption (A3)
is satisfied with the choices

φ1(s) =
49
256

s, φ2(s) =
81
400

s,

a1 =
7
32

, b1 =
21
32

, c1 =
3
4
, a2 =

13
40

, b2 =
31
40

, c2 =
3
4

ψ1(s) =
9
8
s, ψ2(s) =

11
10

s,

γ1 = 0, δ1 =
7
32

, d1 =
7
18

, γ2 = 0, δ2 =
11
40

, d2 =
13
44

,

Furthermore, (A4) is satisfied since∫ 21
32

7
32

49
256

sds =
2401
65536

,

∫ 31
40

13
40

81
400

sds =
8019

160000
,

∫ 7
32

0

9
8
sds

=
441

16384
,

∫ 11
40

0

11
10

sds =
1331
32000

.
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By direct calculation, we have

1
m1

= max
t∈[0,1]

∫ 1

0

∣∣∣∣s
(

7
8
t − t2

)∣∣∣∣ ds =
49
512

,

1
m2

= max
t∈[0,1]

∫ 1

0

∣∣∣∣s
(

11
10

t − t2 − 1
10

)∣∣∣∣ ds =
81
800

,

1
m∗

1

= max
t∈[0,1]

∫ 1

0

∣∣∣∣s
(

7
8

− 2t

)∣∣∣∣
ds =

9
16

,
1

m∗
2

= max
t∈[0,1]

∫ 1

0

∣∣∣∣s
(

11
10

− 2t

)∣∣∣∣ ds =
11
20

,

1
M1

= min
t∈[ 7

32 , 2132 ]

∫ 21
32

7
32

s

(
7
8
t − t2

)
ds =

7203
262144

,
1

M2

= min
t∈[ 1340 , 3140 ]

∫ 31
40

13
40

s

(
11
10

t − t2 − 1
10

)
ds =

24057
640000

,

1
M∗

1

= min
t∈[0, 7

32 ]

∫ 7
32

0

s

(
7
8

− 2t

)
ds =

343
32768

,

1
M∗

2

= min
t∈[0, 1140 ]

∫ 11
40

0

s

(
11
10

− 2t

)
ds =

1331
64000

.

Now we need

fρ1,ρ2
1 ≤ 6ρ1 < min {m1,m

∗
1} =

16
9

(
true if ρ1 <

1
27

)
,

and

fρ1,ρ2
2 ≤ 6ρ2 < min {m2,m

∗
2} =

20
11

(
true if ρ2 <

10
33

)
.

Furthermore, we need

f1,(ρ1,ρ2) ≥ 9
16

ρ1 > M1 =
262144
7203

(
true if ρ1 >

4194304
64827

)
,

f∗
1,(ρ1,ρ2)

≥ 49
324

ρ1 > M∗
1 =

32768
343

(
valid if ρ1 >

10616832
16807

)
,

f2,(ρ1,ρ2) ≥ 9
16

ρ2 > M2 =
640000
24057

(
true if ρ2 >

10240000
216513

)
,

f∗
2,(ρ1,ρ2)

≥ 169
1936

ρ2 > M∗
2 =

64000
1331

(
true if ρ2 >

1024000
1859

)
.

Thus, if we fix

0 < ρ1 <
1
27

, 0 < ρ2 <
10
33

,

r1 > max
{

4194304
64827

,
10616832

16807

}
=

10616832
16807

,

r2 > max
{

10240000
216513

,
1024000

1859

}
=

1024000
1859
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the conditions (I1ρ1,ρ2
), (I0r1,r2

) hold and we obtain, by Theorem 3.3, the ex-
istence of one nontrivial solution of the system (3.9).

Remark 3.5. Note that in the case of non-negative kernels, the same reason-
ing as above provides the existence of positive solutions. In this case, one may
use the smaller cones (with abuse of notation)

K̃i :=
{

w ∈ C1[0, 1] : w ≥ 0, min
t∈[ai,bi]

w(t) ≥ ci‖w‖C , min
t∈[γi,δi]

w′(t) ≥ di‖w′‖C

}
.

If, additionally, the derivative with respect to t of the kernels is non-
negative, one may seek solutions in the even smaller cone (again with abuse
of notation) given by

K̃i :=

{
w ∈ C1[0, 1] : w ≥ 0, w′ ≥ 0, min

t∈[ai,bi]
w(t) ≥ ci‖w‖C , min

t∈[γi,δi]
w′(t) ≥ di‖w′‖C

}
.

For brevity we do not re-state all the results within these frameworks,
but we illustrate the latter situation in Sect. 4, when discussing the sys-
tem (1.4).

We now give sufficient conditions for the non-existence of nontrivial
solutions for the system (2.1).

Theorem 3.6. Let mi be given by (3.3), Mi be given by (3.7) and ai, bi, ci as in
(A3) and suppose that the following conditions (N1) and (N2) are satisfied:
(N1) Either

f1(t, u1, u2, v1, v2) < m1|u1| for every t ∈ [0, 1], u1 
= 0 and u2, v1, v2 ∈ R;
(3.10)

or

f1(t, u1, u2, v1, v2) >
M1

c1
u1 for every t ∈ [a1, b1], u1 > 0 and u2, v1, v2 ∈ R,

(3.11)
holds.

(N2) Either

f2(t, u1, u2, v1, v2) < m2|v1| for every t ∈ [0, 1], v1 
= 0 and u1, u2, v2 ∈ R;

or

f2(t, u1, u2, v1, v2) >
M2

c2
v1 for every t ∈ [a2, b2], v1 > 0 and u1, u2, v2 ∈ R,

holds.
Then there is no nontrivial solution of the system (2.1) in the cone K given
by (2.3).

Proof. Suppose, by contradiction, that there exists a nontrivial solution of
(2.1) in K, that is, (u, v) ∈ K such that (u, v) = T (u, v) and (u, v) 
= (0, 0).
Assume, without loss of generality, that ‖u‖C 
= 0. If (3.10) holds, then, for
t ∈ [0, 1], we have
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|u(t)| ≤
∫ 1

0

|k1(t, s)|g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds

< m1

∫ 1

0

|k1(t, s)|g1(s)|u(s)|ds ≤ m1‖u‖C

∫ 1

0

|k1(t, s)|g1(s) ds.

Taking the maximum for t ∈ [0, 1], we have, by (3.3), the following contra-
diction:

‖u‖C < m1‖u‖C sup
t∈[0,1]

∫ 1

0

|k1(t, s)|g1(s) ds = ‖u‖C .

If (3.11) holds, then, for t ∈ [a1, b1], we have

u(t) =
∫ 1

0

k1(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds

>

∫ b1

a1

k1(t, s)g1(s)
M1

c1
u(s) ds.

Taking the minimum for t ∈ [a1, b1], we obtain, for some ξ1 > 0, the following
contradiction, by (3.7) and (2.2),

ξ1 = min
t∈[a1,b1]

u(t) >
M1

c1
inf

t∈[a1,b1]

∫ b1

a1

k1(t, s)g1(s) min
s∈[a1,b1]

u(s) ds

≥M1‖u‖C inf
t∈[a1,b1]

∫ b1

a1

k1(t, s)g1(s) ds = ‖u‖C ≥ ξ1.

The proof in the case of ‖v‖C 
= 0 follows as above, using the condition (N2).
�

4. Positive Solutions of Some Third Order Systems

We turn back our attention to the system of third order ODEs with three
point boundary conditions⎧⎪⎪⎨

⎪⎪⎩
−u′′′(t) = g1(t)f1(t, u(t), u′(t), v(t), v′(t)),
−v′′′(t) = g2(t)f2(t, u(t), u′(t), v(t), v′(t)),
u(0) = u′(0) = 0, u′(1) = α1u

′(η1),
v(0) = v′(0) = 0, v′(1) = α2v

′(η2),

(4.1)

where for i = 1, 2, fi : [0, 1] × [0, +∞)4 → [0, +∞) is a L∞-Carathéodory
function, gi ∈ L1[0, 1] with gi(t) ≥ 0 for a.e. t ∈ [0, 1], 0 < ηi < 1 and
1 < αi < 1

ηi
.

By routine calculation, we can associate to the system (4.1) the system
of Hammerstein integral equations{

u(t) =
∫ 1

0
k1(t, s)g1(s)f1(s, u(s), u′(s), v(s), v′(s)) ds,

v(t) =
∫ 1

0
k2(t, s)g2(s)f2(s, u(s), u′(s), v(s), v′(s)) ds,

(4.2)
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where ki(t, s) are the Green’s function given by

ki(t, s) =
1

2(1 − αηi)

⎧⎪⎪⎨
⎪⎪⎩

(2ts − s2)(1 − αiηi) + t2s(αi − 1), s ≤ min{ηi, t},
t2(1 − αiηi) + t2s(αi − 1), t ≤ s ≤ ηi,
(2ts − s2)(1 − αiηi) + t2(αiηi − s), ηi ≤ s ≤ t,
t2(1 − s), max{ηi, t} ≤ s.

(4.3)
The derivatives of the Green’s functions (4.3) are given by

∂ki

∂t
(t, s) =

1
(1 − αiηi)

⎧⎪⎪⎨
⎪⎪⎩

s(1 − αiηi) + ts(αi − 1), s ≤ min{ηi, t},
t(1 − αiηi) + ts(αi − 1), t ≤ s ≤ ηi,
s(1 − αiηi) + t(αiηi − s), ηi ≤ s ≤ t,
t(1 − s), max{ηi, t} ≤ s,

(4.4)

The following Lemmas provide some useful properties of the Green’s
functions and their derivatives.

Lemma 4.1. [9] Take 0 < ηi < 1, 1 < αi < 1
ηi

and ki as in (4.3). Then we
have

0 ≤ ki(t, s) ≤ φi(s), (t, s) ∈ [0, 1] × [0, 1],

where

φi(s) =
1 + αi

1 − αiηi
s(1 − s).

Furthermore, we have

ki(t, s) ≥ ciφi(s), (t, s) ∈
[

ηi

αi
, ηi

]
× [0, 1],

where

0 < ci =
η2

i

2α2
i (1 + αi)

min{αi − 1, 1} < 1. (4.5)

Lemma 4.2. [10] Take 0 < ηi < 1, 1 < αi < 1
ηi

, ∂ki

∂t as in (4.4). Then we
have

0 ≤ ∂ki

∂t
(t, s) ≤ ψi(s), (t, s) ∈ [0, 1] × [0, 1],

where

ψi(s) =
(1 − s)

(1 − αiηi)
.

Furthermore, we have

∂ki

∂t
(t, s) ≥ diψi(s), (t, s) ∈

[
ηi

αi
, ηi

]
× [0, 1],

with

0 < di = min{αiηi, ηi} < 1. (4.6)
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From Lemmas 4.1 and 4.2 we obtain that ki satisfies a stronger positivity
requirement than (A3). This setting enables us to work in the cone

K := {(u, v) ∈ K̃1 × K̃2}, (4.7)

where

K̃i :=

⎧⎨
⎩w ∈ C1[0, 1] : w ≥ 0, w′ ≥ 0, min

t∈[
ηi
αi

, ηi]
w(t) ≥ ci‖w‖C , min

t∈[
ηi
αi

, ηi]
w′(t) ≥ di‖w′‖C

⎫⎬
⎭ .

The condition (I1ρ1,ρ2
) in this case reads as follows:

(I1ρ1,ρ2
) there exist ρ1, ρ2 > 0 such that for every i = 1, 2, fρ1,ρ2

i < min
{mi,m

∗
i }, where

fρ1,ρ2
i := sup

{
fi(t, u1, u2, v1, v2)

ρi
: (t, u1, u2, v1, v2) ∈ [0, 1] × [0, ρ1]

2 × [0, ρ2]
2

}
,

1

mi
= max

t∈[0,1]

∫ 1

0
ki(t, s)gi(s) ds,

1

m∗
i

= max
t∈[0,1]

∫ 1

0

∂ki

∂t
(t, s)gi(s) ds.

On the other hand, the condition (I0ρ1,ρ2
) reads as follows:

(I0ρ1,ρ2
) there exist ρ1, ρ2 > 0 such that for every i = 1, 2,

f1,(ρ1,ρ2) > M1, f∗
1,(ρ1,ρ2)

> M∗
1 , f2,(ρ1,ρ2) > M2, f∗

2,(ρ1,ρ2)
> M∗

2 , (4.8)

where

f1,(ρ1,ρ2) := inf

⎧⎨
⎩

f1(t, u1, u2, v1, v2)
ρ1

:

(t, u1, u2, v1, v2) ∈ [a1, b1] × [c1ρ1, ρ1] × [0, ρ1] × [0, ρ2]2

⎫⎬
⎭ ,

f∗
1,(ρ1,ρ2)

:= inf

⎧⎨
⎩

f1(t, u1, u2, v1, v2)
ρ1

:

(t, u1, u2, v1, v2) ∈ [γ1, δ1] × [0, ρ1] × [d1ρ1, ρ1] × [0, ρ2]2

⎫⎬
⎭ ,

f2,(ρ1,ρ2) := inf

⎧⎨
⎩

f2(t, u1, u2, v1, v2)
ρ2

:

(t, u1, u2, v1, v2) ∈ [a2, b2] × [0, ρ1]2 × [c2ρ2, ρ2] × [0, ρ2]

⎫⎬
⎭ ,

f∗
2,(ρ1,ρ2)

:= inf

⎧⎨
⎩

f2(t, u1, u2, v1, v2)
ρ2

:

(t, u1, u2, v1, v2) ∈ [γ2, δ2] × [0, ρ1]2 × [0, ρ2] × [d2ρ2, ρ2]

⎫⎬
⎭ .

We can now state an existence result for one nontrivial solution for
the System (4.1). Note that it is possible to state a result for two or more
nontrivial solutions, in the spirit of Theorem 3.3.

Theorem 4.3. For i = 1, 2, let fi : [0, 1] × [0, +∞)4 → [0, +∞) be a L∞-
Carathéodory function and let gi ∈ L1[0, 1] be such that gi(t) ≥ 0 for a.e.
t ∈ [0, 1] and
(A∗4)∫ ηi

ηi
αi

1 + αi

1 − αiηi
s(1 − s)gi(s) ds > 0,

∫ ηi

ηi
αi

(1 − s)
(1 − αiηi)

gi(s) ds > 0.
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The system (4.1) admits a nontrivial solution with non-negative,
non-decreasing components if one of the following conditions hold.

(Ŝ1) For i = 1, 2 there exist ρi, ri ∈ (0,∞) with ρi/ci < ri such that
(I0ρ1,ρ2

), (I1r1,r2
) hold.

(Ŝ2) For i = 1, 2 there exist ρi, ri ∈ (0,∞) with ρi < ri such that (I1ρ1,ρ2
),

(I0r1,r2
) hold.

Example 4.4. Consider the following third order nonlinear system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−u′′′(t) = t
(
(u(t))2 + (u′(t))2

)
(2 + cos (v(t) v′(t))) ,

−v′′′(t) = t
(
(v(t))2 + (v′(t))2

)
(2 − sin (u(t)u′(t))) ,

u(0) = u′(0) = 0, u′(1) = 3
2u′ ( 1

2

)
,

v(0) = v′(0) = 0, v′(1) = 2v′ ( 1
3

)
.

(4.9)

The system (4.9) is a particular case of the system (4.1) with

g1(t) ≡ 1, g2(t) ≡ 1,

f1(t, u1, u2, v1, v2) =t
(
(u1)

2 + (u2)
2
)

(2 + cos (v1 v2)) ,

f2(t, u1, u2, v1, v2) =t
(
(v1)

2 + (v2)
2
)

(2 − sin (u1 u2)) ,

η1 =
1
2
, α1 =

3
2
, η2 =

1
3
, α2 = 2.

Note that f1 and f2 are continuous and non-negative.
Furthermore, we may take

φ1(s) = 10s (1 − s) , φ2(s) = 9s (1 − s) ,

ψ1(s) = 4 (1 − s) , ψ2(s) = 3 (1 − s) ,

c1 =
1
45

, c2 =
1

216
, d1 =

1
2
, d2 =

1
3
,

a1 = γ1 =
1
3
, b1 = δ1 =

1
2
,

a2 = γ2 =
1
6
, b2 = δ2 =

1
3
.

Moreover, as

∫ 1
2

1
3

10s (1 − s) ds =
65
162

,

∫ 1
3

1
6

9s (1 − s) ds =
5
18

,

∫ 1
2

1
3

4 (1 − s) ds =
7
18

,

∫ 1
3

1
6

3 (1 − s) ds =
3
8
,

assumption (A∗4) holds.



242 Page 16 of 18 G. Infante, F. Minhós MJOM

We have

1

m1
= max

t∈[0,1]

∫ 1

0

k1(t, s) ds

≤ max
t∈[0,1]

⎛
⎝ ∫ 1

2
0

(
t2s + ts − s2

)
ds +

∫ 1−
√

2
2 t

1
2

(−2t2s + ts + 3
2
t2 − s2

)
ds

+
∫ 1

1−
√

2
2 t

(−2t2s + 2t2 − s2
)
ds

⎞
⎠

=
1

24
+

√
2

3
,

1

m∗
1

= max
t∈[0,1]

∫ 1

0

∂k1

∂t
(t, s)g1(s) ds ≤ max

t∈[0,1]

(∫ 1
2

0

2ts + s ds +

∫ 1

1
2

−4ts + 3t + s ds

)

=
3

4
,

1

m2
= max

t∈[0,1]

∫ 1

0

k2(t, s) ds

≤ max
t∈[0,1]

(∫ 1
3

0

3

2
t2s + ts − s2

2
ds +

∫ 1

1
3

−3

2
t2s + ts − s2

2
+ 3t2ds

)
=

43

324
,

1

m∗
2

= max
t∈[0,1]

∫ 1

0

∂k2

∂t
(t, s) ds

≤ max
t∈[0,1]

(∫ 1
3

0

3ts + s ds +

∫ 1

1
3

−3ts + s + 6t ds

)
=

10

3
,

1

M1
= min

t∈[ 13 , 12 ]

∫ 1
2

1
3

k1(t, s) ds = min
t∈[ 13 , 12 ]

∫ 1
2

1
3

(
t2s +

t2

2

)
ds =

11

648
,

1

M∗
1

= min
t∈[ 13 , 12 ]

∫ 1
2

1
3

∂k1

∂t
(t, s) ds = min

t∈[ 13 , 12 ]

∫ 1
2

1
3

(2ts + t) ds =
11

108
,

1

M2
= min

t∈[ 16 , 13 ]

∫ 1
3

1
6

k2(t, s) ds = min
t∈[ 16 , 13 ]

∫ 1
3

1
6

(
3

2
t2s + ts − s2

2

)
ds =

17

5184
,

1

M∗
2

= min
t∈[ 16 , 13 ]

∫ 1
3

1
6

∂k2

∂t
(t, s) ds = min

t∈[ 16 , 13 ]

∫ 1
3

1
6

(3ts + t) ds =
7

144
,

and therefore, we obtain

m1 =
1

1
24 +

√
2
3

, m∗
1 =

4
3
, m2 =

324
43

, m∗
2 =

3
10

,

M1 =
648
11

, M∗
1 =

108
11

, M2 =
5184
17

, M∗
2 =

144
7

.

Moreover, for

ρ1 <
2
9

and ρ2 <
1
20

,

we obtain

fρ1,ρ2
1 ≤ 6ρ1 < min {m1,m

∗
1} =

4
3
,
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fρ1,ρ2
2 ≤ 6ρ2 < min {m2,m

∗
2} =

3
10

.

Taking

ρ1 >
3936 600

11
and ρ2 >

279 936
17

,

we obtain

f1,(ρ1,ρ2) > ρ1
6075 > M1 = 648

11 ,

f∗
1,(ρ1,ρ2)

> ρ1
12 > M∗

1 = 108
11 ,

f2,(ρ1,ρ2) > ρ2
54 > M2 = 5184

17 ,

f∗
2,(ρ1,ρ2)

> ρ2
54 > M∗

2 = 144
7 ,

that is, assumption (Ŝ2) holds.
Therefore, all the assumptions of Theorem 4.3 are satisfied.
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[7] Krasnosel’skĭı, M.A., Zabrĕıko, P.P.: Geometrical Methods of Nonlinear Anal-
ysis. Springer, Berlin (1984)

[8] Lan, K.Q.: Multiple positive solutions of Hammerstein integral equations with
singularities. Differ. Equ. Dyn. Syst. 8, 175–195 (2000)

[9] Guo, L.-J., Sun, J.-P., Zhao, Y.-H.: Existence of positive solutions for nonlinear
third-order three-point boundary value problems. Nonlinear Anal. 68, 3151–
3158 (2008)



242 Page 18 of 18 G. Infante, F. Minhós MJOM

[10] Minhós, F., de Sousa, R.: On the solvability of third-order three point systems
of differential equations with dependence on the first derivative. Bull. Braz.
Math. Soc. (N.S.) 48, 485–503 (2017)

Gennaro Infante
Dipartimento di Matematica e Informatica
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