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Abstract. Let G be a group with the weak maximal condition on non-
permutable subgroups. We prove that if G is a generalized radical group
then G is either quasihamiltonian or a soluble-by-finite minimax group.
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1. Introduction

A group G is said to have the weak maximal condition, denoted by max-∞
if, in every ascending chain of subgroups

H1 � H2 � H3 � · · · � Hn � · · ·
at most finitely many of the indices |Hi+1 : Hi| are infinite. There is a corre-
sponding weak minimal condition, min-∞, connected with descending chains,
these being natural generalizations of the maximal and minimal conditions
respectively. These concepts of weak maximal and weak minimal condition
were first discussed in the papers of Zaitsev [16–18] and Baer [1] who showed
that for soluble groups the conditions max-∞, min-∞ and minimax are
equivalent. Zaitsev [17, Theorem 5] also showed that a locally soluble group
with the weak minimal condition is a soluble minimax group.

More general conditions than the weak maximal condition have been
defined. For a property P, a group G is said to satisfy the weak maximal con-
dition on P-subgroups if there is no infinite ascending chain H1 < H2 < H3 <
· · · Hn < · · · of P-subgroups of G with each |Hi+1 : Hi| infinite. Similarly,
we can define the weak minimal condition for P-subgroups by considering
descending chains. The structure of groups satisfying the weak maximal (re-
spectively minimal) condition on non-normal subgroups was investigated by
Kurdachenko and Goretskii [9] who showed that a locally (soluble-by-finite)

L. K. Chataut would like to thank the University of Alabama for financial support during
his Ph.D. studies. This work formed part of his Ph.D. dissertation.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-017-1034-3&domain=pdf
http://orcid.org/0000-0001-5227-5127


232 Page 2 of 10 L. K. Chataut, M. R. Dixon MJOM

group G satisfies the weak maximal condition (respectively, weak minimal
condition) on non-normal subgroups if and only if G is either a Dedekind
group or is an almost soluble minimax group. Also L. A. Kurdachenko and
H. Smith studied the structure of groups satisfying the weak minimal and
weak maximal conditions on non-subnormal subgroups in [10,11]. Groups
satisfying the minimal condition on non-quasinormal subgroups were studied
in [3].

In this paper, we investigate generalized radical groups satisfying the
weak maximal condition on non-permutable subgroups and recall that a
group is called generalized radical if it is the last term of an ascending normal
series whose factors are locally nilpotent or locally finite. We recall also that
a subgroup H of a group G is said to be permutable or quasinormal in G if
HK = KH for every subgroup K of G, a concept introduced by Ore [13]. We
shall often denote the weak maximal condition on non-permutable subgroups
by max-∞-qn. Of course the class of groups satisfying max-∞-qn contains
the class of soluble minimax groups and also the class of quasihamiltonian
groups, those groups in which every subgroup is permutable. Such groups
were classified quite precisely by Iwasawa [7].

The layout of the paper is as follows: In Sect. 2 we obtain several prelim-
inary results that will be useful in the proof of our main theorem. In Sect. 3
we prove the main result of our paper which is as follows:

Theorem 1.1. Let G be a generalized radical group satisfying max-∞-qn. Then
either G is quasihamiltonian, or G is a soluble-by-finite minimax group.

We note that similar results can be obtained for groups with the weak
minimal condition on non-permutable subgroups, some details of which ap-
pear in [4,5]. Our notation is generally that in standard use, where not ex-
plained, and can be found in [14]. The authors would like to thank the referee
for several suggestions that improved this paper.

2. Preliminary Results

It is clear that every subgroup and factor group of a group satisfying max-
∞-qn also satisfies max-∞-qn.

We note the following easily proved fact. Its proof appeared in [5] but
we give its simple proof for the sake of completeness:

Lemma 2.1. Let C ≤ B ≤ A be subgroups of a group G and suppose A,B,C
are permutable where |A : B|, |B : C| are infinite. Let x ∈ G. Then at least
one of |A〈x〉 : B〈x〉|, |B〈x〉 : C〈x〉| is infinite.

Proof. It is easy to see that |A〈x〉 : B〈x〉| = |A : B(A ∩ 〈x〉)| and that
|B(A ∩ 〈x〉) : B| = |A ∩ 〈x〉 : B ∩ 〈x〉|, so

|A : B| = |A〈x〉 : B〈x〉| · |A ∩ 〈x〉 : B ∩ 〈x〉|.
We may suppose that |A〈x〉 : B〈x〉| is finite. Then |A ∩ 〈x〉 : B ∩ 〈x〉| is
infinite, so B ∩ 〈x〉 = 1. However, |B〈x〉 : C〈x〉||B ∩ 〈x〉 : C ∩ 〈x〉| = |B : C|
also and hence |B〈x〉 : C〈x〉| infinite. This completes the proof. �
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One consequence of this lemma is the following frequently used corollary:

Corollary 2.2. Suppose A1 ≤ A2 ≤ A3 ≤ · · · is an ascending chain of per-
mutable subgroups of G with |Ai+1 : Ai| infinite for all i. Let x ∈ G. Then
there is a subsequence {ij}j≥1 such that |Aij+1〈x〉 : Aij 〈x〉| is infinite for all
j ≥ 1.

The next result is also very useful.

Lemma 2.3. Let G be a group satisfying max-∞-qn and suppose that there are
subgroups X, Y with Y � X such that X/Y is a direct product of infinitely
many nontrivial subgroups. Then

(i) X is permutable in G.
(ii) X〈x〉 is permutable in G, for all x ∈ G.

Proof. (i) It is easy to see that X/Y = Dr i≥1(Ci/Y ), where each of the
subgroups Ci/Y is itself an infinite direct product of nontrivial subgroups.
Clearly, X =

∏
i≥1 Ci, the product of the groups Ci.

Let H =
∏

i≥1 C2i,Dn =
∏

j≤n C2i and let K =
∏

i≥1 C2i−1, En =
∏

i≤n C2i−1. Then H � HE1 � HE2 � · · · is an ascending chain of subgroups
of G and |En+1 : En| is infinite for all n. Since G satisfies max-∞-qn there
is a natural number k such that HEk is permutable in G. Similarly there
is a natural number l such that KDl is permutable in G. It follows that
X = HK = HEkKDl is permutable in G.

(ii) By Part (i), Ck is permutable in G, for each k ≥ 1. If we write
Ln = C1C2 · · · Cn we have an ascending chain L1 � L2 � L3 � · · · of
permutable subgroups of G with |Ln+1 : Ln| infinite for all n.

Fix x ∈ G. By Corollary 2.2 there is a subsequence Lk1 � Lk2 � Lk3 �

· · · such that |Lkl+1〈x〉 : Lkl
〈x〉| is infinite for all l ≥ 1. Since G satisfies

max-∞-qn there exists a positive integer m such that Lkm
〈x〉 is permutable

in G. Since
∏

r �=km
Lr is permutable in G, we deduce that X〈x〉 is permutable

in G, as required. �

We continue this section of preliminary results with the following useful
lemma. In general, even the intersection of two permutable subgroups need
not be permutable.

Lemma 2.4. Let G be a group satisfying max-∞-qn and suppose that G con-
tains subgroups L,B with L � B. Suppose that B/L = Dr i≥1 Ci/L and
Ci/L = Dr j≥1Bi,j/L. Then ∩i≥1Ci〈x〉 = L〈x〉 for all x ∈ G. In particular,
L is permutable in G.

Proof. We note that, by Lemma 2.3, Ci is permutable in G and hence we
can form the subgroups Ci〈x〉, for each x ∈ G. Let d ∈ ∩i≥1Ci〈x〉. Then
d ∈ Ci〈x〉 for all i and we may write

d = cnxin for all n, (1)

where cn ∈ Cn and in ∈ Z for each n. This implies c−1
k+1 ck = xik+1 x−ik ∈

B ∩ 〈x〉 for all k. If B ∩ 〈x〉 = 1, then ck = cj for all k, j, so cj ∈ ∩k≥1Ck = L
and hence d ∈ L〈x〉. Therefore, L〈x〉 = ∩i≥1Ci〈x〉 in this case.
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Assume that B ∩ 〈x〉 	= 1. Then there exists l 	= 0 such that xl ∈ B.
Then, for some natural number k 	= 0, we have xlL ∈ Dr k

i=1Ci/L. Let W/L =
Dr i>kCi/L. If W ∩ 〈x〉 	= 1, then there exists m ∈ Z such that xm ∈ W so
that xmL ∈ Dr i>kCi/L. This implies that xlm ∈ L, so there exists a positive
integer μ such that L ∩ 〈x〉 = 〈xμ〉.

Now, in Eq. (1), we write ij = μqj + rj with 0 ≤ rj < μ and observe
that dj = cjx

qjμ ∈ Cj . Equation (1) then becomes

d = dnxrn for all n.

Since 0 ≤ ri < μ, there are infinitely many ri with a common value t.
Therefore,

dx−t ∈ ∩i≥1Ci = L

and consequently d ∈ L〈x〉. Therefore, ∩i≥1Ci〈x〉 = L〈x〉, so L〈x〉 is a sub-
group of G, for each x ∈ G and hence L is permutable in G. This completes
the proof. �

We conclude this section with a further elementary lemma which helps
us handle elements of finite order:

Lemma 2.5. Let G be a group satisfying max-∞-qn and let x, y ∈ G, where
y has finite order. Let L ≤ G and suppose that {Ak}k≥1 is a collection of
subgroups of G such that L is a normal subgroup of Ak for all k. Suppose that
〈Ak : k ≥ 1〉/L = Drk≥1 Aj/L. and Ak〈x〉〈y〉 is a subgroup for all k. Then
L〈x〉〈y〉 is a subgroup of G.

Proof. First suppose that x has finite order. It suffices to show that ∩k≥1Ak

〈x〉〈y〉 ⊆ L〈x〉〈y〉. Suppose that d ∈ ∩k≥1Ak〈x〉〈y〉. Then d ∈ Ak〈x〉〈y〉 for
all k and we have

d = anxinyjn for all n ≥ 1, (2)

where ak ∈ Ak and ik, jk are non-negative integers for all k. Since both x
and y have finite order we may assume that in = in+1 and jn = jn+1, for all
n ≥ 1. Denote these common values by r, s respectively. Then, from (2), we
have d = anxrys, for all n, where an ∈ An. Then an = an+1, for all n ≥ 1
and it follows that a1 ∈ ∩i≥1Ai = L. Hence d ∈ L〈x〉〈y〉, as required.

Now let x have infinite order and write Dr j≥1Aj/L as Dr i≥1 (Dr j≥1

Bi,j/L), where for each i, j, Bi,j = Ak for some k and then set Ci/L =
Dr j≥1Bi,j/L.

Suppose that d ∈ ∩i≥1Ci〈x〉〈y〉. Then d ∈ Ci〈x〉〈y〉 for all i and hence
we may write

d = anxinyjn for all n ≥ 1,

where ai ∈ Ci, ik ∈ Z, jk is a natural number. As earlier, we may assume
that jn = jn+1 = r, for all n ≥ 1 and some fixed natural number r. Then it
follows that dy−r ∈ ∩i≥1Cki

〈x〉. However, ∩i≥1Ci〈x〉 = L〈x〉 by Lemma 2.4.
Therefore, d ∈ L〈x〉〈y〉 and hence L〈x〉〈y〉 is a subgroup. �
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3. The Proof of the Main Theorem

Theorem 3.1. Let G be a group satisfying max-∞-qn. Suppose G contains
a subgroup B of the form B1 × B2 × B3 × · · · , with Bi 	= 1. Then G is
quasihamiltonian.

Proof. Since B is an infinite direct product we can write B = Drj≥1 Cj , where
Cj = Dr i≥1Bi,j and |Drj≤i+1 Cj : Drj≤i Cj | is infinite. By Lemma 2.3, each
Cj is permutable in G. Clearly ∩j≥1Cj = 1.

Since Ck is an infinite direct product it contains an ascending chain

D1 � D2 � D3 � · · · � Ck

of permutable subgroups Di such that |Di+1 : Di| is infinite for all i. Clearly
we may choose Di to also be a direct product of infinitely many non-trivial
factors.

Fix k and x, y ∈ G. An easy argument involving Corollary 2.2 allows us
to assume that |Di+1〈x〉 : Di〈x〉|, |Di+1〈y〉 : Di〈y〉| are both infinite and since
G satisfies max-∞-qn, there exists a positive integer l such that Dl〈x〉, Dl〈y〉
per G. We let Dl = Ek, so Ek〈x〉, Ek〈y〉 are permutable in G and Ek is
a direct product of infinitely many non-trivial factors. This implies that
Ek〈x〉〈y〉 ≤ G for all k and hence ∩k≥1Ek〈x〉〈y〉 ≤ G. Of course ∩k≥1Ek = 1.

We claim that ∩k≥1Ek〈x〉〈y〉 = 〈x〉〈y〉 and Lemma 2.5 shows that this
is true when at least one of x, y has finite order. Thus we assume that x, y
both have infinite order and it is then easy to see that we may assume 〈x〉 ∩
Ek = 〈y〉 ∩ Ek = 1 for all k. Since each Ek is permutable a theorem of
Stonehewer [15, 13.2.3] shows that x, y ∈ NG(Ek) for all k, so Ek � Ek〈x〉〈y〉.
Furthermore, for each k, either Ek〈x〉 ∩ 〈y〉 = 1 or Ek〈x〉 ∩ 〈y〉 	= 1, so, by
deleting terms as necessary we may assume that either Ek〈x〉 ∩ 〈y〉 = 1 for
all k, or Ek〈x〉 ∩ 〈y〉 	= 1 for all k.

In the former case [15, 13.2.3] implies that Ek〈x〉 � Ek〈x〉〈y〉 for all k,
so ∩k≥1Ek〈x〉 � ∩k≥1Ek〈x〉〈y〉. Lemma 2.4 shows that ∩k≥1Ek〈x〉 = 〈x〉, so
〈x〉 � Ek〈x〉〈y〉 and 〈x〉〈y〉 is a subgroup. Thus 〈x〉〈y〉 = 〈y〉〈x〉 in this case.

In the latter case we first assume that 〈x〉 ∩ 〈y〉 	= 1. Let d ∈ ∩k≥1Ek

〈x〉〈y〉, so

d = enxinyjn for all n ∈ N.

Since 〈x〉 ∩ 〈y〉 	= 1, we have xr = ys for some r, s ∈ Z. Also jn = sqn +
rn where 0 ≤ rn < s. Hence xinyjn = xin+rqnyrn = xlnyrn for all n ∈ N

where ln = in + r qn. Since, rn < s, we may assume that rn = rn+1 = t,
for some fixed natural number t, for all n ∈ N. We deduce that dy−t ∈
∩k≥1Ek〈x〉 = 〈x〉, using Lemma 2.4. Hence ∩k≥1Ek〈x〉〈y〉 = 〈x〉〈y〉, a sub-
group of G.

Finally, we suppose that Ek〈x〉 ∩ 〈y〉 	= 1 for all k and 〈x〉 ∩ 〈y〉 = 1. We
let E = E1 × E2 × · · · and note that we may assume E ∩ 〈y〉 = 1 = E ∩ 〈x〉.

Suppose that d ∈ ∩k≥1Ek〈x〉〈y〉 and write

d = xinenyjn for all n ∈ N,
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where ek ∈ Ek. We recall that Ek is normalized by 〈x, y〉. Notice that if
ir = is for r 	= s, then ery

jr = esy
js and since E ∩ 〈y〉 = 1 we deduce that

er = es = 1, so d ∈ 〈x〉〈y〉. Similarly if jr = js, then d ∈ 〈x〉〈y〉.
For all distinct r, s the equation xirery

jr = xisesy
js implies that

x(ir−is) = esfry
(js−jr),

for some element fr ∈ Er, since 〈x, y〉 ≤ NG(Er). Thus if r, s,m, n are distinct
we have

(
xir−is

)im−in = asar

(
yjs−jr

)im−in

and
(
xim−in

)ir−is = aman

(
yjn−jm

)ir−is
,

for certain elements ai ∈ Ei. It follows from these two equations that ai = 1,
for i = r, s,m, n, since E ∩ 〈y〉 = 1. This implies that (js − jr)(im − in) =
(jn − jm)(ir − is) = 0, since 〈x〉 ∩ 〈y〉 = 1, so ir = is or jn = jm. It follows
that ∩k≥1Ek〈x〉〈y〉 = 〈x〉〈y〉 is a subgroup in this case also. Consequently G
is quasihamiltonian. �

The proof of our next result is very similar to that given in [3].

Theorem 3.2. Let G be a locally finite group satisfying max-∞-qn. Then either
G is quasihamiltonian or it is a Chernikov group.

Proof. Suppose that G is not a Chernikov group. Then, by a Theorem of
Shunkov [8, Theorem 5.8], G does not satisfy the minimal condition on abelian
subgroups. Therefore, G contains an infinite abelian subgroup A, which is not
Chernikov and it is easy to see that A = Dri≥1 〈ai〉, where each ai has prime
power order. The result now follows from Theorem 3.1. �

Theorem 3.2 allows us to easily prove the following proposition:

Proposition 3.3. Let G be a generalized radical group satisfying max-∞-qn.
Then G is radical-by-finite.

Proof. Let R be the maximal normal radical subgroup of G and suppose
R 	= G. Then there exists N � G such that R � N and N/R is locally finite.
Let L = G/R and suppose K is the maximal normal locally finite subgroup
of L. Since K satisfies max-∞-qn it is either quasihamiltonian or Chernikov
by Theorem 3.2. If K is quasihamiltonian, then K is locally nilpotent, so K
is trivial by the choice of R. Thus K is Chernikov and hence finite.

If L is infinite then K 	= L and the locally finite radical of L/K is trivial.
Hence there is a nontrivial normal torsion-free locally nilpotent subgroup
M/K of L/K. Since

CM (K) � CM (K)/CM (K) ∩ K � CM (K)K/K

it follows that CM (K) is locally nilpotent. Also L/CL(K) is finite so CM (K)
is infinite, contradicting the choice of R. The result follows: �

Our next result generalizes Theorem 3.1. There is a more general version
of this result, but the one given is suitable for our purposes.
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Proposition 3.4. Let G be a generalized radical group satisfying max-∞-qn.
Suppose that G contains an abelian subgroup A that has a subgroup K such
that A/K is periodic and π(A/K) is infinite. Then K〈x〉〈y〉 is a subgroup for
all x, y ∈ G.

Proof. Let x, y ∈ G. As in the proof of Theorem 3.1 we may write A/K =
Drj≥1 Cj/K where each Cj/K is an infinite direct product of non-trivial
groups, for all j ≥ 1. By Lemma 2.3, each Cj is permutable in G and, as in
the proof of Theorem 3.1, Cj contains a subgroup Ej such that K ≤ Ej and
Ej , Ej〈x〉, Ej〈y〉 are permutable. Furthermore, we may assume that Ej/K
is a direct product of infinitely many non-trivial factors. Then Ej〈x〉〈y〉 is a
subgroup for all j and hence ∩j≥1Ej〈x〉〈y〉 ≤ G.

If x, y ∈ G and at least one of x, y has finite order then we use Lemma 2.5
to deduce that K〈x〉〈y〉 = ∩i≥1Ei〈x〉〈y〉. Hence K〈x〉〈y〉 is a subgroup of G,
so we may assume that x and y are both elements of infinite order.

If Ei〈x〉 ∩ 〈y〉 = 1 for all i ≥ 1, then by [15, 13.2.3], Ei〈x〉 � Ei〈x〉〈y〉
for all i. Therefore, ∩i≥1Ei〈x〉 � ∩i≥1Ei〈x〉〈y〉. Since ∩i≥1Ei〈x〉 = K〈x〉, by
Lemma 2.4, it follows that K〈x〉〈y〉 is a subgroup in this case.

Consequently we may suppose that Ei〈x〉 ∩ 〈y〉 	= 1 for all i. Suppose
first that 〈x〉 ∩ 〈y〉 	= 1.

In this case we have xr = ys for some r, s 	= 0. If d ∈ ∩i≥1Ei〈x〉〈y〉,
we have d = bnxinyjn , for all n, where bi ∈ Bi, ik, jk ∈ Z. We write jk =
qks + rk, 0 ≤ rk < s and lk = ik + rqk to reduce this, using xr = ys, to

d = bnxlnyrn . (3)

Since rk < s, we may assume that rm = rm+1 = r, for all m. Then Eq. (3)
reduces to

d = bkn
xlnyr,

so dy−r ∈ ∩n≥1En〈x〉. Now Lemma 2.4 implies that dy−r ∈ K〈x〉 and,
therefore, d ∈ K〈x〉〈y〉. Hence ∩i≥1Ei〈x〉〈y〉 = K〈x〉〈y〉 is a subgroup in this
case.

Hence we may suppose that Ei〈x〉 ∩ 〈y〉 	= 1, for all i and 〈x〉 ∩ 〈y〉 = 1.
In this case suppose that E1 ∩ 〈y〉 	= 1 and that d ∈ ∩i≥1Ei〈x〉〈y〉. As usual,
write

d = xinbnyjn for all n. (4)

Since E1 ∩ 〈y〉 	= 1 and E1/K is periodic, it follows that K ∩ 〈y〉 	= 1 Hence
K ∩〈y〉 = 〈yμ〉 for some μ 	= 0. Thus yμ ∈ Ei for all i. We write jk = qkμ+rk

where 0 < rk < μ, for some qk ∈ Z and ck = bkyμqk ∈ Ek. Then, from
Eq. (4), we have

d = xincnyrn .

Since, 0 < rk < μ, we may assume that rm = rm+1 = r, for all m ∈ N. Then
dy−r ∈ ∩i≥1Ei〈x〉. By Lemma 2.4, dy−r ∈ K〈x〉 so d ∈ K〈x〉〈y〉 and K〈x〉〈y〉
is a subgroup of G in this case.

Finally, we suppose also that E1 ∩ 〈x〉 = 1 = E1 ∩ 〈y〉 so, by [15,
13.2.3], x, y ∈ NG(Ei) for all i. Hence x, y ∈ NG(K) and we can form the
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groups Ei〈x〉〈y〉/K. By Theorem 3.1, ∩i≥1Ei〈x〉〈y〉/K = 〈Kx〉〈Ky〉. There-
fore K〈x〉〈y〉/K is a subgroup of Ei〈x〉〈y〉/K and hence K〈x〉〈y〉 is a subgroup
of G. �

We use this to prove the following theorem:

Theorem 3.5. Let G be a generalized radical group satisfying max-∞-qn. Then
either G is quasihamiltonian, or G is soluble-by-finite of finite rank.

Proof. Since G is a generalized radical group satisfying max-∞-qn, it follows,
by Proposition 3.3, that G is radical-by-finite. Let N be a normal radical sub-
group of G such that G/N is finite. Now, we consider the abelian subgroups
of G. If G contains an abelian subgroup A of infinite rank, then A contains
a subgroup of the form A1 × A2 × A3 × · · · it follows, by Theorem 3.1, that
G is quasihamiltonian.

If all the abelian subgroups of G have finite rank, then, by the Baer–
Heineken Theorem [2], G also has finite rank. We prove that G is soluble-by-
finite in this case. Clearly we may assume that G is non-quasihamiltonian.
Since G has finite rank [6, Theorem A] implies that there exist normal sub-
groups 1 ≤ T ≤ L ≤ M ≤ G such that T is locally finite, L/T is a torsion-free
nilpotent group, M/L is a finitely generated torsion-free abelian group and
G/M is finite.

Since T satisfies max-∞-qn, Theorem 3.2 shows that T is either quasi-
hamiltonian or Chernikov. If T is quasihamiltonian, then T is locally nilpo-
tent, so T = Drp∈π Tp, where π is a set of primes. If |π| is infinite then G
is quasihamiltonian by Theorem 3.1. Therefore, |π| is finite. Since a locally
finite p-group of finite rank is Chernikov each Tp is Chernikov and hence so
is T .

Without loss of generality, we may assume that T is finite. Since

CM (T )/ζ(T ) = CM (T )/CM (T ) ∩ T � CM (T )T/T

is soluble, CM (T ) is soluble. Moreover, G/M and M/CM (T ) are finite, so G
is soluble-by-finite. This completes the proof. �

We now prove our main theorem, mentioned in the Introduction.

Proof of Theorem 1.1. It follows by Theorem 3.5 that if G is not quasi-
hamiltonian, then G is a soluble-by-finite group of finite rank. To prove the
theorem we may assume that G is soluble and, for a contradiction, not mini-
max. Then G contains an abelian subgroup that is not minimax, by a result
of Baer [14, Theorem 10.35]. Let A be such an abelian group and note that
A contains a finitely generated torsion-free subgroup K such that A/K is
periodic and π(A/K) is infinite. Hence A contains a collection of subgroups
Ki ≤ K such that K/Ki is finite and ∩i≥1Ki = 1. It follows that A/Ki is
a periodic group such that π(A/Ki) is infinite. Using the first part of the
argument of Proposition 3.4 we see that G has a torsion subgroup. Indeed if
x, y ∈ G are both of finite order, then we can form the groups Ki〈x〉〈y〉 and
then their intersection D = ∩i≥1Ki〈x〉〈y〉. If d ∈ D, then d = kix

miyni for
certain ki ∈ Ki,mi, ni ∈ Z. Since x, y have finite order we may assume that
mi = r, ni = s, for fixed integers r, s and then we see that ki = kj for all i, j.
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Since ∩i≥1Ki = 1 this implies that ki = 1 for all i and hence D = 〈x〉〈y〉,
so that 〈x〉〈y〉 = 〈y〉〈x〉. (Indeed using an argument similar to that given in
the proof of Lemma 2.4 it is possible to show that 〈x〉〈y〉 is a subgroup when
only one of these elements has finite order.)

Thus G is generated by its elements of infinite order and we let x, y be
two such elements. We claim that K contains a subgroup F of finite index
such that x, y ∈ NG(F ). Proposition 3.4 implies that each subgroup of K
of finite index is permutable in G. Since K is permutable in G, [15, 13.2.3]
implies that if K ∩ 〈x〉 = 1 and K ∩ 〈y〉 = 1, then x, y ∈ NG(K) and we let
F = K in this case. If K ∩ 〈x〉 	= 1, then |K〈x〉 : K| is finite, so there is a
normal subgroup F of K〈x〉 contained in K such that K〈x〉/F is finite. Since
F is permutable, if F ∩〈y〉 = 1, then F is also normalized by y and our claim
follows. If F ∩ 〈y〉 	= 1, then,

|F 〈x〉〈y〉 : F | = |F 〈x〉〈y〉 : F 〈x〉| · |F 〈x〉 : F |
is finite and there is a normal subgroup X of F 〈x〉〈y〉, lying in F , such that
x, y ∈ NG(X) and |F 〈x〉〈y〉 : X| is finite. We note that the group X〈x〉〈y〉
is polycyclic. Furthermore Xr is normalized by x, y, for all natural numbers
r. Let N be a normal subgroup of X〈x〉〈y〉 of finite index. Since X〈x〉〈y〉/N
is finite, there is an integer k such that Xk ≤ N . Of course Xk〈x〉〈y〉 is a
group, so Xk〈x〉〈y〉 = Xk〈y〉〈x〉. Hence N〈x〉〈y〉 = N〈y〉〈x〉. We now invoke
[12, Theorem A] to deduce that 〈x〉〈y〉 = 〈y〉〈x〉. Since x, y were arbitrary
elements of G of infinite order, we deduce that G is quasihamiltonian, which
is the contradiction sought. The result follows. �
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