Mediterranean Journal **I** of Mathematics

CrossMark

Derivations, Local and 2-Local Derivations on Some Algebras of Operators on Hilbert C*-Modules

Jun He, Jiankui Li and Danjun Zhao

Abstract. For a commutative C*-algebra *A* with unit *e* and a Hilbert *A*module M, denote by $\text{End}_{A}(\mathcal{M})$ the algebra of all bounded A-linear mappings on *M*, and by $\text{End}_{\mathcal{A}}^*(\mathcal{M})$ the algebra of all adjointable mappings on M. We prove that if M is full, then each derivation on $\text{End}_{A}(\mathcal{M})$ is A -linear, continuous, and inner, and each 2-local derivation on $\text{End}_{\mathcal{A}}(\mathcal{M})$ or End^{*}_{*A*}(*M*) is a derivation. If there exist *x*₀ in *M* and *f*₀ in *M*['], such that $f_0(x_0) = e$, where *M*^{\prime} denotes the set of all bounded *A*-linear mappings from *M* to *A*, then each *A*-linear local derivation on End_A(*M*) is a derivation.

Mathematics Subject Classification. 47B47, 47L10.

Keywords. Derivation, Hilbert C*-module, inner derivation, local derivation, 2-local derivation.

1. Introduction and Preliminaries

The structure of derivations on operator algebras is an important part of the theory of operator algebras.

Let A be an algebra and M be an A-bimodule. Recall that a *derivation* is a linear mapping d from A into M such that $d(xy) = d(x)y + xd(y)$, for all x, y in A. For each m in M, one can define a derivation D_m by $D_m(x) =$ mx − xm, for all x in A. Such derivations are called *inner derivations*.

It is a classical problem to identify those algebras on which all derivations are inner derivations. Several authors investigate this topic. The following two results are classical. Sakai [\[17](#page-10-0)] proves that all derivations from a W*-algebra into itself are inner derivations. Christensen [\[3](#page-9-0)] proves that all derivations from a nest algebra into itself are inner derivations.

In 1990, Kadison [\[10](#page-10-1)] and Larson and Sourour [\[13](#page-10-2)] independently introduced the concept of local derivation in the following sense: a linear mapping δ from A into M such that for every $a \in \mathcal{A}$, there exists a derivation $d_a : \mathcal{A}$

 $\rightarrow M$, depending on a, satisfying $\delta(a) = d_a(a)$. In [\[10](#page-10-1)], Kadison proves that each continuous local derivation from a von Neumann algebra into its dual Banach module is a derivation. In [\[13](#page-10-2)], Larson and Sourour prove that each local derivation from $B(\mathcal{X})$ into itself is a derivation, where X is a Banach space. Johnson [\[8\]](#page-10-3) proves that each local derivation from a C*-algebra into its Banach bimodule is a derivation. Pan and the second author of this paper [\[14](#page-10-4)] prove that each local derivation from the algebra $M\bigcap alg\mathcal{L}$ into $B(\mathcal{H})$ is a derivation, where $\mathcal H$ is a Hilbert space, $\mathcal M$ is a von Neumann algebra acting on H , and $\mathcal L$ is a commutative subspace lattice in $\mathcal M$. For more information about this topic, we refer to $[2, 4, 6]$ $[2, 4, 6]$ $[2, 4, 6]$ $[2, 4, 6]$.

In 1997, \check{S} emrl [\[18\]](#page-10-7) introduced the concept of 2-local derivations. Recall that a mapping $\delta : A \to M$ (not necessarily linear) is called a *2-local derivation* if for each $a, b \in \mathcal{A}$, there exists a derivation $d_{a,b} : \mathcal{A} \to \mathcal{M}$ such that $\delta(a) = d_{a,b}(a)$ and $\delta(b) = d_{a,b}(b)$. Moreover, the author proves that every 2-local derivation on $B(\mathcal{H})$ is a derivation for a separable Hilbert space \mathcal{H} . Zhang and Li [\[19](#page-10-8)] extend the above result for arbitrary symmetric digraph matrix algebras and construct an example of 2-local derivation which is not a derivation on the algebra of all upper triangular complex 2×2 matrices. Ayupov and Kudaybergenov [\[1](#page-9-3)] prove that each 2-local derivation on a von Neumann algebra is a derivation. For more information about this topic, we refer to $[2,7,11]$ $[2,7,11]$ $[2,7,11]$ $[2,7,11]$.

In this paper, we study derivations, local derivations and 2-local derivations on some algebras of operators on Hilbert C*-modules. There are few results in this topic. Li et al. [\[15](#page-10-11)] prove that each derivation on $\text{End}^*_{\mathcal{A}}(\mathcal{M})$ is inner, where $\mathcal M$ is a full Hilbert C^{*}-module over a commutative unital C^* -algebra A. Moghadam et al. [\[16\]](#page-10-12) prove that each A-linear derivation on $\text{End}_{\mathcal{A}}(\mathcal{M})$ is inner, where M is a full Hilbert C^{*}-module over a commutative unital C^{*}-algebra A with the property that there exist x_0 in M and f_0 in \mathcal{M}' such that $f_0(x_0) = e$.

Hilbert C*-modules provide a natural generalization of Hilbert spaces by replacing the complex field $\mathbb C$ with an arbitrary C^* -algebra. The theory of Hilbert C*-modules plays an important role in the theory of operator algebras, as it can be applied in many fields, such as index theory of elliptic operators, K- and K K-theory, noncommutative geometry, and so on.

In the following, we would first review some properties of Hilbert C^* modules [\[12\]](#page-10-13):

Let A be a C^{*}-algebra and M be a left A -module.

M is called a *Pre-Hilbert A-module* if there exists a mapping $\langle \cdot, \cdot \rangle : \mathcal{M} \times$ $\mathcal{M} \longrightarrow \mathcal{A}$ with the following properties: for each $\lambda \in \mathbb{C}$, $a \in \mathcal{A}$, $x, y, z \in \mathcal{M}$,

- (1) $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0$ implies that $x = 0$,
- (2) $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle,$
- (3) $\langle ax, y \rangle = a \langle x, y \rangle$,
- (4) $\langle x, y \rangle = \langle y, x \rangle^*.$

The mapping $\langle \cdot, \cdot \rangle$ is called an A-valued inner product. The inner product induces a norm on M: $||x|| = ||\langle x, x\rangle||^{1/2}$. M is called a *Hilbert* A-module (or more exactly, a Hilbert C^* -module over A), if it is complete with respect to this norm.

We denote by $\langle M, M \rangle$ the closure of the linear span of all the elements of the form $\langle x, y \rangle, x, y \in \mathcal{M}$. M is called a *full* Hilbert A-module if $\langle \mathcal{M}, \mathcal{M} \rangle =$ A.

For a full Hilbert A -module M , we have the following lemma:

Lemma 1.1. Let A be a C^* -algebra with unit e and M be a full Hilbert A *module. There exists a sequence* $\{x_i\}_{i=1}^n \subseteq M$, such that $\sum_{i=1}^n \langle x_i, x_i \rangle = e$.

A linear mapping T from M into itself is said to be $\mathcal{A}-linear$ if $T(ax) =$ $aT(x)$ for each $a \in \mathcal{A}$ and $x \in \mathcal{M}$. A bounded \mathcal{A} -linear mapping from \mathcal{M} into itself is called an *operator* on M. Denote by $\text{End}_{\mathcal{A}}(\mathcal{M})$ all operators on \mathcal{M} . End $_A(\mathcal{M})$ is a Banach algebra.

A mapping T from M into itself is said to be *adjointable* if there exists a mapping T^* such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$, for all $x, y \in \mathcal{M}$. Notice that each adjointable mapping must be an operator. Denote by $\text{End}_{\mathcal{A}}^*(\mathcal{M})$ all adjointable operators on M. $\text{End}_{\mathcal{A}}^*(\mathcal{M})$ is a C^{*}-algebra.

Similarly, a linear mapping f from M into A is said to be A -linear if $f(ax) = af(x)$ for each $a \in A$ and $x \in M$. The set of all bounded A-linear mappings from M to $\mathcal A$ is denoted by $\mathcal M'$.

For each x in M , one can define a mapping \hat{x} from M to \hat{A} as follows: $\hat{x}(y) = \langle y, x \rangle$, for all $y \in \mathcal{M}$. Obviously, $\hat{x} \in \mathcal{M}'$.

For each x in M and f in M', one can define a mapping $\theta_{x,f}$ from
the itself as follows: $\theta_{x,f} = f(x)x$ for all $x \in M$. Obviously $\theta_{x,f}$ M into itself as follows: $\theta_{x,f} y = f(y)x$, for all $y \in M$. Obviously, $\theta_{x,f} \in$ $\operatorname{End}_{\mathcal{A}}(\mathcal{M}).$

In particular, for each x, y in M, we have $\theta_{x,\hat{y}}z = \hat{y}(z)x = \langle z,y \rangle x$, for all $z \in \mathcal{M}$.

For the operators of the above forms, we have the following lemmas:

Lemma 1.2. Let M be a Hilbert C^* -module over a C^* -algebra \mathcal{A} . *For all* $a \in \mathcal{A}, x, y \in \mathcal{M}, f, g \in \mathcal{M}$, $A \in End_{\mathcal{A}}(\mathcal{M})$, we have

- (1) $\theta_{x,f}A = \theta_{x,f \circ A}$,
- (2) $A\theta_{x,f} = \theta_{Ax,f}$

(3) *if in addition,* A *is commutative, then* $\theta_{x,f} \theta_{y,g} = f(y) \theta_{x,g}$, $\theta_{ax,f} = a \theta_{x,f}$.

Lemma 1.3. *Let* M *be a Hilbert C*-module over a C*-algebra* A*. For all* $a \in \mathcal{A}, x, y, z, w \in \mathcal{M}, A \in End^*_{\mathcal{A}}(\mathcal{M})$ *, we have*

- (1) $\theta_{x,\hat{y}} \in End^*\mathcal{A}(\mathcal{M})$, and $\theta_{x,\hat{y}}^* = \theta_{y,\hat{x}}$,
 (2) $\theta_{y,\hat{y}} = \theta_{y,\hat{y}}$
- (2) $\theta_{x,\hat{y}}A = \theta_{x,\hat{y}\circ A} = \theta_{x,\widehat{A^*y}}$
- (3) $A\theta_{x,\hat{y}} = \theta_{Ax,\hat{y}}$
- (4) *if in addition,* A *is commutative, then* $\theta_{x,\hat{y}}\theta_{z,\hat{w}} = \langle z,y\rangle\theta_{x,\hat{w}}, \theta_{ax,\hat{y}} = \langle z,\hat{y}\rangle\theta_{x,\hat{w}}$ $a\theta_{x,\hat{y}}=\theta_{x,\widehat{a^*y}}.$

For a commutative C^{*}-algebra A , for each a in A , one can define a mapping T_a from M into itself as follows: $T_a x = ax$, for all $x \in M$. Obviously, $T_a \in \text{End}_{\mathcal{A}}(\mathcal{M})$. It is worthwhile to notice that if A is not commutative, then T_a is not A-linear. In this case, T_a is not in End_A(\mathcal{M}).

Lemma 1.4. *Let* A *be a commutative C*-algebra with unit* e *and* M *be a full Hilbert* $\mathcal{A}\text{-module. Then }\mathcal{Z}(End_{\mathcal{A}}(\mathcal{M})) = \{T_a : a \in \mathcal{A}\}.$

Proof. For each A in End_A(\mathcal{M}) and x in M, since $AT_a x = A(ax) = aAx =$ T_aAx , we have $AT_a = T_aA$. It is to say $T_a \in \mathcal{Z}(\text{End}_{\mathcal{A}}(\mathcal{M}))$.

On the other hand, assume $A \in \mathcal{Z}(\text{End}_{\mathcal{A}}(\mathcal{M}))$. By Lemma [1.1,](#page-2-0) there exists a sequence $\{x_i\}_{i=1}^n \subseteq \mathcal{M}$, such that $\sum_{i=1}^n \langle x_i, x_i \rangle = e$. Thus we have

$$
\sum_{i=1}^{n} A\theta_{x,x_i} x_i = \sum_{i=1}^{n} \langle x_i, x_i \rangle Ax = Ax,
$$

and

$$
\sum_{i=1}^{n} \theta_{x, \hat{x_i}} Ax_i = \sum_{i=1}^{n} \langle Ax_i, x_i \rangle x.
$$

Let $\sum_{i=1}^{n} \langle Ax_i, x_i \rangle = a$. Then we have $A = T_a$. The proof is complete. \Box

For an algebra A, if for each a in A, $a\mathcal{A}a = 0$ implies that $a = 0$, then it is said to be *semi-prime*.

Lemma 1.5. *Let* A *be a C*-algebra and* M *be a Hilbert* A*-module. Then End*A(M) *is a semi-prime Banach algebra.*

Proof. Let A be in End_A(M). Assume that $ABA = 0$ for each B in End_A(M). In particular, for each $x \in \mathcal{M}$ and $f \in \mathcal{M}'$, we have

 $A\theta_{x,f}Ax = \theta_{Ax,f\circ A}x = f(Ax)Ax = 0.$

By taking $y = Ax$ and $f = \hat{y}$, we have $\langle y, y \rangle y = 0$. It follows that

$$
\langle \langle y, y \rangle y, \langle y, y \rangle y \rangle = \langle y, y \rangle^{3} = 0.
$$

Since $\langle y, y \rangle$ is a self-adjoint element, we have $\langle y, y \rangle = 0$, and $y = 0$. Hence $A = 0$, and End $_A(M)$ is semi-prime. The proof is complete. $A = 0$, and End_A(\mathcal{M}) is semi-prime. The proof is complete.

2. Derivations on $\text{End}_{\mathcal{A}}(\mathcal{M})$

In this section, we study derivations on $\text{End}_{\mathcal{A}}(\mathcal{M})$. We begin with several lemmas.

Lemma 2.1. *Let* A *be a commutative unital C*-algebra and* M *be a full Hilbert* A-module. Then each derivation on $End_A(\mathcal{M})$ is A-linear, i.e. $d(aA)$ $= ad(A),$ for each $a \in A$ and $A \in End_A(\mathcal{M}).$

Proof. Suppose d is a derivation on $\text{End}_{\mathcal{A}}(\mathcal{M})$.

By Lemma [1.4,](#page-2-1) we have $\mathcal{Z}(\text{End}_{\mathcal{A}}(\mathcal{M})) = \{T_a : a \in \mathcal{A}\}\)$. For each A in $\text{End}_{\mathcal{A}}(\mathcal{M}),$ By

$$
d(T_a A) = d(T_a)A + T_a d(A)
$$

and

$$
d(AT_a) = Ad(T_a) + d(A)T_a,
$$

we obtain $d(T_a)A = Ad(T_a)$. Hence $d(T_a) \in \mathcal{Z}(\text{End}_{\mathcal{A}}(\mathcal{M}))$, and $d(\mathcal{Z}(\text{End}_{\mathcal{A}}$ $(\mathcal{M}))\subseteq \mathcal{Z}(\text{End}_{\mathcal{A}}(\mathcal{M})).$

Since $\mathcal{Z}(\text{End}_{\mathcal{A}}(\mathcal{M})) = \{T_a : a \in \mathcal{A}\}\$ is a commutative C^{*}-algebra, and every derivation on a commutative C*-algebra is zero, we have $d(T_a) = 0$.

It follows that

$$
d(aA) = d(T_aA) = d(T_a)A + T_a d(A) = T_a d(A) = ad(A),
$$

which means that d is $\mathcal A$ -linear. The proof is complete. \Box

Lemma 2.2. *Let* A *be a commutative unital C*-algebra and* M *be a full Hilbert* A-module. Then each derivation on $End_A(\mathcal{M})$ is continuous.

Proof. Suppose d is a derivation on $\text{End}_{\mathcal{A}}(\mathcal{M})$. Assume that $\{T_n\}$ is a sequence converging to zero in End_A(\mathcal{M}), and $\{d(T_n)\}\)$ converges to T.

According to the closed graph theorem, to show d is continuous, it is sufficient to prove that $T = 0$.

By Lemma [2.1,](#page-3-0) we know d is A-linear. For $x, y \in \mathcal{M}$, $f, g \in \mathcal{M}'$, we have

$$
d(\theta_{x,f}T_n\theta_{y,g}) = d(f(T_ny)\theta_{x,g}) = f(T_ny)d(\theta_{x,g}) \to 0,
$$

and

$$
d(\theta_{x,f}T_n\theta_{y,g}) = d(\theta_{x,f})T_n\theta_{y,g} + \theta_{x,f}d(T_n)\theta_{y,g} + \theta_{x,f}T_nd(\theta_{y,g}).
$$

Since ${T_n}$ converges to zero and ${d(T_n)}$ converges to T, we have

 $d(\theta_{x,f}T_n\theta_{y,q}) \rightarrow \theta_{x,f}T\theta_{y,q} = f(Ty)\theta_{x,q}.$

It follows that $f(T y) \theta_{x,q} = 0$.

Let $a = \tilde{f}(Ty)$; then we have $a\theta_{x,q} = \theta_{ax,q} = 0$. For each $z \in \mathcal{M}$, we have

$$
\theta_{ax,g}z = g(z)ax = 0.
$$
\n(1)

By taking $g = \widehat{ax}$ and $z = ax$ in [\(1\)](#page-4-0), we can obtain $ax = 0$, i.e.

$$
f(Ty)x = 0.\t\t(2)
$$

By taking $f = \widehat{Ty}$ and $x = Ty$ in [\(2\)](#page-4-1), we can obtain $Ty = 0$. i.e. $T = 0$. The proof is complete. proof is complete.

Now we can prove our main theorem in this section.

Theorem 2.3. Let A be a commutative C^* -algebra with unit e and M be a full *Hilbert* A-module. Then each derivation on $End_{\mathcal{A}}(\mathcal{M})$ is an inner derivation.

Proof. Suppose d is a derivation on $\text{End}_{\mathcal{A}}(\mathcal{M})$ and $\{x_i\}_{i=1}^n$ is a sequence in \mathcal{M} such that $\sum_{i=1}^n |x_i - x_j| = e$ M such that $\sum_{i=1}^{n} \langle x_i, x_i \rangle = e$.
Define a mapping T from

Define a mapping T from $\mathcal M$ into itself by the following:

$$
Tx = \sum_{i=1}^{n} d(\theta_{x,x_i}) x_i,
$$

for all $x \in \mathcal{M}$.

By Lemmas [2.1](#page-3-0) and [2.2,](#page-4-2) d is A -linear and continuous; thus T is also A-linear and continuous. That is to say $T \in \text{End}_{\mathcal{A}}(\mathcal{M})$.

Now it is sufficient to show that $d(A) = TA - AT$, for each $A \in$ $\operatorname{End}_{\mathcal{A}}(\mathcal{M}).$

For each $x \in \mathcal{M}$, we have

$$
T A x = \sum_{i=1}^{n} d(\theta_{Ax,x_i}) x_i
$$

=
$$
\sum_{i=1}^{n} d(A \theta_{x,x_i}) x_i
$$

=
$$
\sum_{i=1}^{n} d(A) \theta_{x,x_i} x_i + \sum_{i=1}^{n} A d(\theta_{x,x_i}) x_i
$$

=
$$
d(A) \sum_{i=1}^{n} \langle x_i, x_i \rangle x + A \sum_{i=1}^{n} d(\theta_{x,x_i}) x_i
$$

=
$$
d(A) x + A Tx.
$$

It implies that $d(A) = TA - AT$. Hence d is an inner derivation. The is complete. □ proof is complete.

3. 2-Local Derivations on $\text{End}_{\mathcal{A}}(\mathcal{M})$ and $\text{End}_{\mathcal{A}}^{*}(\mathcal{M})$

In this section, we characterize 2-local derivations on $\text{End}_{\mathcal{A}}(\mathcal{M})$ and $\text{End}^*_{\mathcal{A}}(\mathcal{M})$. First, we show the following lemma:

Lemma 3.1. Let A be a commutative unital C^* -algebra and M be a Hilbert A *module. For* $x_i \in \mathcal{M}$ *and* $f_i \in \mathcal{M}'$, if $\sum_{i=1}^n \theta_{x_i,f_i} = 0$, then $\sum_{i=1}^n f_i(x_i) = 0$.

Proof. Let $a_{i,j} = f_j(x_i) \in \mathcal{A}$ and $\Lambda = (a_{i,j})_{n \times n} \in M_n(\mathcal{A})$. We have

$$
\sum_{i=1}^{n} f_i(x_k)x_i = \sum_{i=1}^{n} \theta_{x_i, f_i} x_k = 0.
$$

It follows that

$$
\sum_{i=1}^{n} a_{k,i} a_{i,j} = \sum_{i=1}^{n} f_i(x_k) f_j(x_i) = f_j(\sum_{i=1}^{n} f_i(x_k) x_i) = 0,
$$

which implies that $\Lambda^2 = 0$.

Since A is a commutative unital C^{*}-algebra, it is well known that A is \ast -isomorphic to $C(S)$ for some compact Hausdorff space S. Without loss of generality, we can assume $A = C(S)$.

Then for each $t \in \mathcal{S}$, we have $a_{i,j}(t) \in \mathbb{C}$ and $\Lambda(t), \Lambda^2(t) \in M_n(\mathbb{C})$.

Recall that for a matrix A in $M_n(\mathbb{C})$, $A^2 = 0$ implies that $tr(A) = 0$, where $tr(A)$ denotes the trace of A, i.e. the sum of all the diagonal elements.

Hence $\Lambda^2(t) = 0$ implies that $tr(\Lambda(t)) = 0$. It follows that $tr(\Lambda) = 0$, that is to say $\sum_{i=1}^{n} f_i(x_i) = 0$. The proof is complete. \Box

Theorem 3.2. *Let* A *be a commutative unital C*-algebra and* M *be a full Hilbert* A-module. Then each 2-local derivation on $End_A(\mathcal{M})$ is a derivation.

Proof. Denote by $\Gamma(\mathcal{M})$ the linear span of the set $\{\theta_{x,f} : x \in \mathcal{M}, f \in \mathcal{M}'\}$.
By Lamma 1.2, $\Gamma(\mathcal{M})$ is a two side ideal of End $\Lambda(\mathcal{M})$. By Lemma [1.2,](#page-2-2) $\Gamma(\mathcal{M})$ is a two-side ideal of End_A(\mathcal{M}).

For each $S = \sum_{i=1}^n \theta_{x_i,f_i} \in \Gamma(\mathcal{M})$, define $\phi(S) = \sum_{i=1}^n f_i(x_i)$.
One can verify that ϕ is well defined by Lemma 3.1. And ob

One can verify that ϕ is well defined by Lemma [3.1.](#page-5-0) And obviously, ϕ is A-linear. Moreover, for each $A \in \text{End}_{\mathcal{A}}(\mathcal{M})$, we have

$$
\phi(\theta_{x,f}A) = \phi(\theta_{x,f\circ A}) = f(Ax) = \phi(\theta_{Ax,f}) = \phi(A\theta_{x,f}).
$$

It follows that $\phi(SA) = \phi(AS)$ for each $A \in \text{End}_{\mathcal{A}}(\mathcal{M})$ and $S \in \Gamma(\mathcal{M})$.

Suppose δ is a 2-local derivation on End_A(\mathcal{M}). By the definition of 2local derivation, there exists a derivation d on $\text{End}_{A}(\mathcal{M})$ such that $\delta(A)$ = $d(A)$ and $\delta(S) = d(S)$. By Theorem [2.3,](#page-4-3) d is an inner derivation, i.e. there exists an element $T \in \text{End}_{\mathcal{A}}(\mathcal{M})$ such that $d = D_T$.

Thus we have

$$
\delta(A)S + A\delta(S) = d(A)S + Ad(S) = d(AS) = D_T(AS) = TAS - AST.
$$

Since $\Gamma(\mathcal{M})$ is a two-side ideal of $\text{End}_{\mathcal{A}}(\mathcal{M})$, we know that $AS \in \Gamma(\mathcal{M})$. Hence

$$
\phi(\delta(A)S + A\delta(S)) = \phi(TAS - AST) = 0,
$$

which follows that $\phi(\delta(A)S) = -\phi(A\delta(S)).$

Now, for each $A, B \in \text{End}_{\mathcal{A}}(\mathcal{M})$ and $S \in \Gamma(\mathcal{M})$, we have

$$
\phi(\delta(A+B)S) = -\phi((A+B)\delta(S))
$$

= $-\phi(A\delta(S)) - \phi(B\delta(S))$
= $\phi(\delta(A)S) + \phi(\delta(B)S)$
= $\phi((\delta(A) + \delta(B))S).$

Let $C = \delta(A + B) - \delta(A) - \delta(B)$; we obtain $\phi(CS) = 0$. By taking $S = \theta_{x,f}$, we have

$$
\phi(C\theta_{x,f}) = f(Cx) = 0 \Rightarrow \langle Cx, Cx \rangle = 0 \Rightarrow Cx = 0 \Rightarrow C = 0.
$$

It means that $\delta(A + B) = \delta(A) + \delta(B)$. That is to say δ is an additive mapping. In addition, by the definition of 2-local derivation, it is easy to show that δ is homogeneous and $\delta(A^2) = A\delta(A) + \delta(A)A$ for each $A \in \text{End } A(\mathcal{M})$. Hence δ is a Jordan derivation.

By Lemma [1.5,](#page-3-1) $\text{End}_{\mathcal{A}}(\mathcal{M})$ is a semi-prime Banach algebra. According to the classical result that every Jordan derivation on a semi-prime Banach algebra is a derivation [\[5\]](#page-10-14), we obtain that δ is a derivation. The proof is \Box complete.

Theorem 3.3. *Let* A *be a commutative unital C*-algebra and* M *be a full Hilbert* A-module. Then each 2-local derivation on $\text{End}^*_{A}(\mathcal{M})$ is a derivation.

Proof. Denote by $\Gamma^*(\mathcal{M})$ the linear span of the set $\{\theta_{x,\hat{y}} : x, y \in \mathcal{M}\}\$. By Lemma [1.3,](#page-2-3) $\Gamma^*(\mathcal{M})$ is a two-side ideal of $\text{End}_{\mathcal{A}}^*(\mathcal{M})$.

For each $S = \sum_{i=1}^{n} \theta_{x_i,\widehat{y_i}} \in \Gamma^*(\mathcal{M})$, define $\phi(S) = \sum_{i=1}^{n} \langle x_i, y_i \rangle$.
By Lemma 3.1, *b* is well defined. For each $A \in \text{End}^*(\mathcal{M})$, we h By Lemma [3.1,](#page-5-0) ϕ is well defined. For each $A \in \text{End}^*_{\mathcal{A}}(\mathcal{M})$, we have

$$
\phi(\theta_{x,\widehat{y}}A) = \phi(\theta_{x,\widehat{A^*y}}) = \langle x, A^*y \rangle = \langle Ax, y \rangle = \phi(\theta_{Ax,\widehat{y}}) = \phi(A\theta_{x,\widehat{y}}).
$$

It follows that $\phi(SA) = \phi(AS)$ for each $A \in \text{End}_{\mathcal{A}}^{*}(\mathcal{M})$ and $S \in \Gamma^{*}(\mathcal{M})$.

In [\[15\]](#page-10-11), the authors prove that for a commutative unital C^* -algebra $\mathcal A$ and a full Hilbert A-module M, each derivation on $\text{End}^*_{\mathcal{A}}(\mathcal{M})$ is an inner derivation.

The rest of the proof is similar to Theorem [3.2,](#page-5-1) so we omit it. \Box

4. Local Derivations on End*A***(***M***)**

In this section, we discuss local derivations on $\text{End}_{\mathcal{A}}(\mathcal{M})$. Through this section, we assume that A is a commutative C*-algebra with unit e , and M is a Hilbert A-module, and moreover, there exist x_0 in $\mathcal M$ and f_0 in $\mathcal M'$ such that $f_0(x_0) = e$. Denote the unit of End_A(M) by I. Define $\mathcal{L} = span{\theta_{x,f_0}}$: $x \in \mathcal{M}$, and $\mathcal{R} = span{\theta_{x_0,f} : f \in \mathcal{M}' }$.

Lemma 4.1. (1) θ_{x_0, f_0} *is an idempotent;*

- (2) *each element in* $\mathcal L$ *is an* $\mathcal A$ -linear combination of some idempotents in $\mathcal L$ *, and each element in* R *is an* A*-linear combination of some idempotents in* R*;*
- (3) \mathcal{L} *is a left ideal of* $End_{\mathcal{A}}(\mathcal{M})$ *, and* \mathcal{R} *is a right ideal of* $End_{\mathcal{A}}(\mathcal{M})$ *;*
- (4) $\mathcal L$ *is a left separating set of End_A(M)*, *i.e. for each* A *in End_A*(M), $A\mathcal{L} = 0$ *implies that* $A = 0$ *, and* \mathcal{R} *is a right separating set of* $End_{\mathcal{A}}(\mathcal{M})$ *, i.e.* for each A in $\text{End}_A(\mathcal{M})$, $\mathcal{R}A = 0$ implies that $A = 0$

Proof. (1) $\theta_{x_0,f_0} \theta_{x_0,f_0} = f_0(x_0) \theta_{x_0,f_0} = \theta_{x_0,f_0}$. (2) For each $x \in \mathcal{M}$, there exists a non-zero complex number $\lambda \in \mathbb{C}$, such that $e - \lambda f_0(x)$ is invertible in A. Denote $e - \lambda f_0(x)$ by a^{-1} ; then we have

$$
f_0(a(x_0 - \lambda x)) = af_0(x_0 - \lambda x) = a(e - \lambda f_0(x)) = aa^{-1} = e.
$$

By (1), we know that $\theta_{a(x_0-\lambda x),f_0}$ is an idempotent.

Thus we have

$$
\theta_{x,f_0} = \lambda^{-1} \theta_{x_0,f_0} - \lambda^{-1} a^{-1} \theta_{a(x_0 - \lambda x),f_0}.
$$

That is to say θ_{x,f_0} is an A-linear combination of idempotents in \mathcal{L} .

Similarly, for each $f \in \mathcal{M}'$, there exists a non-zero complex number $\lambda \in \mathbb{C}$, such that $e - \lambda f(x_0)$ is invertible in A. Denote $e - \lambda f(x_0)$ by a^{-1} , then we have

$$
(a(f_0 - \lambda f))(x_0) = a(e - \lambda f(x_0)) = aa^{-1} = e.
$$

Again by (1), we know that $\theta_{x_0,a(f_0-\lambda f)}$ is an idempotent. Thus we have

$$
\theta_{x_0,f} = \lambda^{-1} \theta_{x_0,f_0} - \lambda^{-1} a^{-1} \theta_{x_0,a(f_0 - \lambda f)}.
$$

(3) For each $A \in \text{End}_{\mathcal{A}}(\mathcal{M})$, since $A\theta_{x,f_0} = \theta_{Ax,f_0}$, we know that \mathcal{L} is a left ideal of End_A(M). Similarly, R is a right ideal of End_A(M) since $\theta_{x_0,f}A =$ $\theta_{x_0,f\circ A}$.

(4) Suppose $A \in \text{End}_{\mathcal{A}}(\mathcal{M}), \theta_{x,f_0} \in \mathcal{L}, \theta_{x_0,f} \in \mathcal{R}.$ If $A\theta_{x,f_0}=0$, then

$$
0 = A\theta_{x,f_0}x_0 = \theta_{Ax,f_0}x_0 = f_0(x_0)Ax = Ax,
$$

i.e. $A = 0$.

If $\theta_{x_0,f}A = 0$, then for each x in M, we have $f(Ax)x_0 = \theta_{x_0,f}Ax = 0$. It follows that $f(Ax) = f(Ax)f_0(x_0) = f_0(f(Ax)x_0) = 0$. Since f is arbitrarily chosen, we can obtain $\langle Ax, Ax \rangle = 0$, which means that $Ax = 0$. Hence $A = 0$.
The proof is complete. The proof is complete.

Let J be a left A-module, and ϕ be a bilinear mapping from $\text{End}_{\mathcal{A}}(\mathcal{M})\times$ End $_A(\mathcal{M})$ into \mathcal{J} .

We say that ϕ is A-bilinear if $\phi(aA, B) = \phi(A, aB) = a\phi(A, B)$ for each $A, B \in \text{End}_{\mathcal{A}}(\mathcal{M})$ and $a \in \mathcal{A}$.

We say that ϕ preserves zero product if $AB = 0$ implies that $\phi(A, B) = 0$ for each $A, B \in \text{End}_{\mathcal{A}}(\mathcal{M}).$

Lemma 4.2. Let $\mathcal J$ be a left $\mathcal A$ -module, and ϕ : End $_A(\mathcal M) \times$ End $_A(\mathcal M) \to \mathcal J$ *be an* A-bilinear mapping preserving zero product. Then for each $A, B \in$ $End_{\mathcal{A}}(\mathcal{M}), L \in \mathcal{L}, \text{ and } R \in \mathcal{R}, \text{ we have}$

$$
\phi(A, LB) = \phi(AL, B) = \phi(I, ALB)
$$
\n(3)

and

$$
\phi(AR, B) = \phi(A, RB) = \phi(ARB, I). \tag{4}
$$

Proof. Suppose P is an idempotent in $\text{End}_{\mathcal{A}}(\mathcal{M})$. Let $Q = I - P$.

Since ϕ preserves zero product, we have

 $\phi(A, PB) = \phi(AP + AQ, PB) = \phi(AP, PB) = \phi(AP, B - QB) = \phi(AP, B).$

By Lemma [4.1\(](#page-7-0)2), each element in $\mathcal L$ is an $\mathcal A$ -linear combination of idempotents in L. Considering ϕ is A-bilinear, we obtain that $\phi(A, LB)$ = $\phi(AL, B)$.

By Lemma [4.1\(](#page-7-0)3), $\mathcal L$ is a left ideal, so $AL \in \mathcal L$. Hence $\phi(AL, B) =$ $\phi(I, ALB)$.

Similarly, we can show the equation (4.2) is true. \Box

For an algebra A with unit e, a linear mapping δ on A is said to be a *generalized derivation* if $\delta(ab) = a\delta(b) + \delta(a)b - a\delta(e)b$, for all a, b in A.

Theorem 4.3. *Suppose that* A *is a commutative C*-algebra with unit* e*, and* M is a Hilbert A-module, and moreover, there exist x_0 in M and f_0 in \mathcal{M}' such that $f_0(x_0) = e$. If δ is an A-linear mapping from $End_{\mathcal{A}}(\mathcal{M})$ into *itself such that: for each* A, B, C *in End*_A(\mathcal{M}), $AB = BC = 0$ *implies that* $A\delta(B)C = 0$, then δ is a generalized derivation. In particular, if $\delta(I) = 0$, *where I is the unit of* $End_A(\mathcal{M})$ *, then* δ *is a derivation.*

Proof. Suppose A, B, X, Y, A_0, B_0 are arbitrary elements in $\text{End}_{\mathcal{A}}(\mathcal{M})$, where $A_0B_0 = 0$, L and R are arbitrary elements in L and R, respectively.

Define a bilinear mapping $\phi_1: \phi_1(X, Y) = X\delta(YA_0)B_0$. Then ϕ_1 is an A-bilinear mapping preserving zero product.

By Lemma [4.2,](#page-8-0) we have

$$
\phi_1(R, A) = \phi_1(RA, I),
$$

 $R\delta(AA_0)B_0 = R A\delta(A_0)B_0.$

Since R is a right separating set of End $_A(\mathcal{M})$, we have

 $\delta(AA_0)B_0 = A\delta(A_0)B_0.$

Now define a bilinear mapping ϕ_2 : $\phi_2(X, Y) = \delta(AX)Y - A\delta(X)Y$. Then ϕ_2 is also an A-bilinear mapping preserving zero product.

Again by Lemma [4.2,](#page-8-0) we have

$$
\phi_2(B, L) = \phi_2(I, BL),
$$

i.e.

$$
\delta(AB)L - A\delta(B)L = \delta(A)BL - A\delta(I)BL.
$$

Since $\mathcal L$ is a left separating set of $\text{End}_{\mathcal A}(\mathcal M)$, we obtain that

$$
\delta(AB) = A\delta(B) + \delta(A)B - A\delta(I)B.
$$

That is to say δ is a generalized derivation. The proof is complete. \Box

Applying the above Theorem, we can get the following corollary immediately:

Corollary 4.4. *Suppose* A *is a commutative C*-algebra with unit* e*,* M *is a Hilbert* A-module, and moreover, there exist x_0 in M and f_0 in M such *that* $f_0(x_0) = e$. Then each A-linear local derivation δ on $End_A(\mathcal{M})$ *is a derivation.*

Proof. For each A, B, C in $\text{End}_{\mathcal{A}}(\mathcal{M})$, if $AB = BC = 0$, by the definition of local derivation, there exists a derivation δ_B such that $\delta_B(B) = \delta(B)$. Thus we have

$$
A\delta(B)C = A\delta_B(B)C = \delta_B(ABC) - \delta_B(A)BC - AB\delta_B(C) = 0.
$$

Let I be the unit of $\text{End}_{\mathcal{A}}(\mathcal{M})$, by the definition of local derivation; there exists a derivation δ_I such that $\delta_I(I) = \delta(I) = 0$.

By Theorem [4.3,](#page-8-1) δ is a derivation. The proof is complete. \Box

Acknowledgements

This paper was partially supported by National Natural Science Foundation of China (Grant No. 11371136).

References

- [1] Ayupov, S., Kudaybergenov, K.: 2-Local derivations on von Neumann algebras. Positivity **19**, 445–455 (2014)
- [2] Ayupov, S., Kudaybergenov, K., Peralta, A.: A survey on local and 2-local derivations on C*- and von Neuman algebras. Top. Funct. Anal. Algebra Contemp. Math. **672**, 73–126 (2016)
- [3] Christensen, E.: Derivations of nest algebras. Math. Ann. **229**, 155–161 (1977)
- [4] Crist, R.: Local derivations on operator algebras. J. Funct. Anal. **135**, 72–92 (1996)
- [5] Cusack, J.: Jordan derivations on rings. Proc. Am. Math. Soc. **53**, 321–324 (1975)
- [6] Hadwin, D., Li, J.: Local derivations and local automorphisms on some algebras. J. Oper. Theory **60**, 29–44 (2008)
- [7] He, J., Li, J., An, G., Huang, W.: Characterizations of 2-local derivations and local Lie derivations on some algebras. Sib. Math. J. **(to appear)** (2017)
- [8] Johnson, B.: Local derivations on C*-algebras are derivations. Trans. Am. Math. Soc. **353**, 313–325 (2001)
- [9] Kadison, R.: Derivations of operator algebras. Ann. Math. **83**, 280–293 (1966)
- [10] Kadison, R.: Local derivations. J. Algebra **130**, 494–509 (1990)
- [11] Kim, S., Kim, J.: Local automorphisms and derivations on $M_n(\mathbb{C})$. Proc. Am. Math. Soc. **132**, 1389–1392 (2004)
- [12] Lance, E.: Hilbert C*-Modules: A Toolkit for Operator Algebraists. Cambridge University Press, Cambridge (1995)
- [13] Larson, D., Sourour, A.: Local derivations and local automorphisms. Proc. Symp. Pure Math. **51**, 187–194 (1990)
- [14] Li, J., Pan, Z.: Annihilator-preserving maps, multipliers and local derivations. Linear Algebra Appl. **432**, 5–13 (2010)
- [15] Li, P., Han, D., Tang, W.: Derivations on the algebra of operators in Hilbert C*-modules. Acta Math. Sin. (Engl. Ser.) **28**, 1615–1622 (2012)
- [16] Moghadam, M., Miri, M., Janfada, A.: A note on derivations on the algebra of operators in Hilbert C*-modules. Mediterr. J. Math. **13**, 1167–1175 (2016)
- [17] Sakai, S.: Derivations of W*-algebras. Ann. Math. **83**, 273–279 (1966)
- [18] Semrl, P.: Local automorphisms and derivations on $B(H)$. Proc. Am. Math. Soc. **125**, 2677–2680 (1997)
- [19] Zhang, J., Li, H.: 2-Loacl derivations on digraph algebras. Acta Math. Sin. (Chin. Ser.) **49**, 1401–1406 (2006)

Jun He, Jiankui Li and Danjun Zhao Department of Mathematics East China University of Science and Technology Shanghai 200237 China e-mail: jiankuili@yahoo.com

Received: June 1, 2017. Revised: October 12, 2017. Accepted: October 20, 2017.