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Abstract. For a commutative C*-algebra A with unit e and a Hilbert A-
module M, denote by EndA(M) the algebra of all bounded A-linear
mappings on M, and by End∗

A(M) the algebra of all adjointable map-
pings onM. We prove that ifM is full, then each derivation on EndA(M)
isA-linear, continuous, and inner, and each 2-local derivation on EndA(M)

or End∗
A(M) is a derivation. If there exist x0 in M and f0 in M′

, such

that f0(x0) = e, where M′
denotes the set of all bounded A-linear map-

pings from M to A, then each A-linear local derivation on EndA(M) is
a derivation.
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1. Introduction and Preliminaries

The structure of derivations on operator algebras is an important part of the
theory of operator algebras.

Let A be an algebra and M be an A-bimodule. Recall that a derivation
is a linear mapping d from A into M such that d(xy) = d(x)y + xd(y), for
all x, y in A. For each m in M, one can define a derivation Dm by Dm(x) =
mx − xm, for all x in A. Such derivations are called inner derivations.

It is a classical problem to identify those algebras on which all deriva-
tions are inner derivations. Several authors investigate this topic. The fol-
lowing two results are classical. Sakai [17] proves that all derivations from a
W*-algebra into itself are inner derivations. Christensen [3] proves that all
derivations from a nest algebra into itself are inner derivations.

In 1990, Kadison [10] and Larson and Sourour [13] independently intro-
duced the concept of local derivation in the following sense: a linear mapping
δ from A into M such that for every a ∈ A, there exists a derivation da : A
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→ M, depending on a, satisfying δ(a) = da(a). In [10], Kadison proves that
each continuous local derivation from a von Neumann algebra into its dual
Banach module is a derivation. In [13], Larson and Sourour prove that each
local derivation from B(X ) into itself is a derivation, where X is a Banach
space. Johnson [8] proves that each local derivation from a C*-algebra into
its Banach bimodule is a derivation. Pan and the second author of this paper
[14] prove that each local derivation from the algebra M⋂

algL into B(H) is
a derivation, where H is a Hilbert space, M is a von Neumann algebra acting
on H, and L is a commutative subspace lattice in M. For more information
about this topic, we refer to [2,4,6].

In 1997, Šemrl [18] introduced the concept of 2-local derivations. Recall
that a mapping δ : A → M (not necessarily linear) is called a 2-local deriva-
tion if for each a, b ∈ A, there exists a derivation da,b : A → M such that
δ(a) = da,b(a) and δ(b) = da,b(b). Moreover, the author proves that every
2-local derivation on B(H) is a derivation for a separable Hilbert space H.
Zhang and Li [19] extend the above result for arbitrary symmetric digraph
matrix algebras and construct an example of 2-local derivation which is not
a derivation on the algebra of all upper triangular complex 2 × 2 matrices.
Ayupov and Kudaybergenov [1] prove that each 2-local derivation on a von
Neumann algebra is a derivation. For more information about this topic, we
refer to [2,7,11].

In this paper, we study derivations, local derivations and 2-local deriva-
tions on some algebras of operators on Hilbert C*-modules. There are few
results in this topic. Li et al. [15] prove that each derivation on End∗

A(M)
is inner, where M is a full Hilbert C*-module over a commutative unital
C*-algebra A. Moghadam et al. [16] prove that each A-linear derivation on
EndA(M) is inner, where M is a full Hilbert C*-module over a commutative
unital C*-algebra A with the property that there exist x0 in M and f0 in
M′

such that f0(x0) = e.
Hilbert C*-modules provide a natural generalization of Hilbert spaces

by replacing the complex field C with an arbitrary C*-algebra. The theory
of Hilbert C*-modules plays an important role in the theory of operator
algebras, as it can be applied in many fields, such as index theory of elliptic
operators, K- and K K-theory, noncommutative geometry, and so on.

In the following, we would first review some properties of Hilbert C*-
modules [12]:

Let A be a C*-algebra and M be a left A-module.
M is called a Pre-Hilbert A-module if there exists a mapping 〈·, ·〉 : M×

M −→ A with the following properties: for each λ ∈ C, a ∈ A, x, y, z ∈ M,

(1) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 implies that x = 0,
(2) 〈λx + y, z〉 = λ〈x, z〉 + 〈y, z〉,
(3) 〈ax, y〉 = a〈x, y〉,
(4) 〈x, y〉 = 〈y, x〉∗.

The mapping 〈·, ·〉 is called an A-valued inner product. The inner prod-
uct induces a norm on M: ‖x‖ = ‖〈x, x〉‖1/2. M is called a Hilbert A-module
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(or more exactly, a Hilbert C*-module over A), if it is complete with respect
to this norm.

We denote by 〈M,M〉 the closure of the linear span of all the elements
of the form 〈x, y〉, x, y ∈ M. M is called a full Hilbert A-module if 〈M,M〉 =
A.

For a full Hilbert A-module M, we have the following lemma:

Lemma 1.1. Let A be a C*-algebra with unit e and M be a full Hilbert A-
module. There exists a sequence {xi}n

i=1 ⊆ M, such that
∑n

i=1〈xi, xi〉 = e.

A linear mapping T from M into itself is said to be A-linear if T (ax) =
aT (x) for each a ∈ A and x ∈ M. A bounded A-linear mapping from M
into itself is called an operator on M. Denote by EndA(M) all operators on
M. EndA(M) is a Banach algebra.

A mapping T from M into itself is said to be adjointable if there exists
a mapping T ∗ such that 〈Tx, y〉 = 〈x, T ∗y〉, for all x, y ∈ M. Notice that
each adjointable mapping must be an operator. Denote by End∗

A(M) all
adjointable operators on M. End∗

A(M) is a C*-algebra.
Similarly, a linear mapping f from M into A is said to be A-linear if

f(ax) = af(x) for each a ∈ A and x ∈ M. The set of all bounded A-linear
mappings from M to A is denoted by M′

.
For each x in M, one can define a mapping x̂ from M to A as follows:

x̂(y) = 〈y, x〉, for all y ∈ M. Obviously, x̂ ∈ M′
.

For each x in M and f in M′
, one can define a mapping θx,f from

M into itself as follows: θx,fy = f(y)x, for all y ∈ M. Obviously, θx,f ∈
EndA(M).

In particular, for each x, y in M, we have θx,ŷz = ŷ(z)x = 〈z, y〉x, for
all z ∈ M.

For the operators of the above forms, we have the following lemmas:

Lemma 1.2. Let M be a Hilbert C*-module over a C*-algebra A.
For all a ∈ A, x, y ∈ M, f, g ∈ M′

, A ∈ EndA(M), we have
(1) θx,fA = θx,f◦A,
(2) Aθx,f = θAx,f ,
(3) if in addition, A is commutative, then θx,fθy,g = f(y)θx,g, θax,f = aθx,f .

Lemma 1.3. Let M be a Hilbert C*-module over a C*-algebra A.
For all a ∈ A, x, y, z, w ∈ M, A ∈ End*A(M), we have
(1) θx,ŷ ∈ End*A(M), and θ∗

x,ŷ = θy,x̂,
(2) θx,ŷA = θx,ŷ◦A = θ

x,Â∗y
,

(3) Aθx,ŷ = θAx,ŷ,
(4) if in addition, A is commutative, then θx,ŷθz,ŵ = 〈z, y〉θx,ŵ, θax,ŷ =

aθx,ŷ = θx,â∗y.

For a commutative C*-algebra A, for each a in A, one can define a
mapping Ta from M into itself as follows: Tax = ax, for all x ∈ M. Obviously,
Ta ∈ EndA(M). It is worthwhile to notice that if A is not commutative, then
Ta is not A-linear. In this case, Ta is not in EndA(M).
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Lemma 1.4. Let A be a commutative C*-algebra with unit e and M be a full
Hilbert A-module. Then Z(EndA(M)) = {Ta : a ∈ A}.
Proof. For each A in EndA(M) and x in M, since ATax = A(ax) = aAx =
TaAx, we have ATa = TaA. It is to say Ta ∈ Z(EndA(M)).

On the other hand, assume A ∈ Z(EndA(M)). By Lemma 1.1, there
exists a sequence {xi}n

i=1 ⊆ M, such that
∑n

i=1〈xi, xi〉 = e. Thus we have
n∑

i=1

Aθx,x̂i
xi =

n∑

i=1

〈xi, xi〉Ax = Ax,

and
n∑

i=1

θx,x̂i
Axi =

n∑

i=1

〈Axi, xi〉x.

Let
∑n

i=1〈Axi, xi〉 = a. Then we have A = Ta. The proof is complete. �
For an algebra A, if for each a in A, aAa = 0 implies that a = 0, then

it is said to be semi-prime.

Lemma 1.5. Let A be a C*-algebra and M be a Hilbert A-module. Then
EndA(M) is a semi-prime Banach algebra.

Proof. Let A be in EndA(M). Assume that ABA = 0 for each B in EndA(M).
In particular, for each x ∈ M and f ∈ M′

, we have

Aθx,fAx = θAx,f◦Ax = f(Ax)Ax = 0.

By taking y = Ax and f = ŷ, we have 〈y, y〉y = 0. It follows that

〈〈y, y〉y, 〈y, y〉y〉 = 〈y, y〉3 = 0.

Since 〈y, y〉 is a self-adjoint element, we have 〈y, y〉 = 0, and y = 0. Hence
A = 0, and EndA(M) is semi-prime. The proof is complete. �

2. Derivations on EndA(M)

In this section, we study derivations on EndA(M). We begin with several
lemmas.

Lemma 2.1. Let A be a commutative unital C*-algebra and M be a full
Hilbert A-module. Then each derivation on EndA(M) is A-linear, i.e. d(aA)
= ad(A), for each a ∈ A and A ∈ EndA(M).

Proof. Suppose d is a derivation on EndA(M).
By Lemma 1.4, we have Z(EndA(M)) = {Ta : a ∈ A}. For each A in

EndA(M), By

d(TaA) = d(Ta)A + Tad(A)

and

d(ATa) = Ad(Ta) + d(A)Ta,

we obtain d(Ta)A = Ad(Ta). Hence d(Ta) ∈ Z(EndA(M)), and d(Z(EndA
(M))) ⊆ Z(EndA(M)).
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Since Z(EndA(M)) = {Ta : a ∈ A} is a commutative C*-algebra, and
every derivation on a commutative C*-algebra is zero, we have d(Ta) = 0.

It follows that

d(aA) = d(TaA) = d(Ta)A + Tad(A) = Tad(A) = ad(A),

which means that d is A-linear. The proof is complete. �

Lemma 2.2. Let A be a commutative unital C*-algebra and M be a full
Hilbert A-module. Then each derivation on EndA(M) is continuous.

Proof. Suppose d is a derivation on EndA(M). Assume that {Tn} is a se-
quence converging to zero in EndA(M), and {d(Tn)} converges to T .

According to the closed graph theorem, to show d is continuous, it is
sufficient to prove that T = 0.

By Lemma 2.1, we know d is A-linear. For x, y ∈ M, f, g ∈ M′
, we

have

d(θx,fTnθy,g) = d(f(Tny)θx,g) = f(Tny)d(θx,g) → 0,

and

d(θx,fTnθy,g) = d(θx,f )Tnθy,g + θx,fd(Tn)θy,g + θx,fTnd(θy,g).

Since {Tn} converges to zero and {d(Tn)} converges to T , we have

d(θx,fTnθy,g) → θx,fTθy,g = f(Ty)θx,g.

It follows that f(Ty)θx,g = 0.
Let a = f(Ty); then we have aθx,g = θax,g = 0. For each z ∈ M, we

have

θax,gz = g(z)ax = 0. (1)

By taking g = âx and z = ax in (1), we can obtain ax = 0, i.e.

f(Ty)x = 0. (2)

By taking f = T̂ y and x = Ty in (2), we can obtain Ty = 0. i.e. T = 0. The
proof is complete. �

Now we can prove our main theorem in this section.

Theorem 2.3. Let A be a commutative C*-algebra with unit e and M be a full
Hilbert A-module. Then each derivation on EndA(M) is an inner derivation.

Proof. Suppose d is a derivation on EndA(M) and {xi}n
i=1 is a sequence in

M such that
∑n

i=1〈xi, xi〉 = e.
Define a mapping T from M into itself by the following:

Tx =
n∑

i=1

d(θx,xi
)xi,

for all x ∈ M.
By Lemmas 2.1 and 2.2, d is A-linear and continuous; thus T is also

A-linear and continuous. That is to say T ∈ EndA(M).
Now it is sufficient to show that d(A) = TA − AT , for each A ∈

EndA(M).
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For each x ∈ M, we have

TAx =
n∑

i=1

d(θAx,xi
)xi

=
n∑

i=1

d(Aθx,xi
)xi

=
n∑

i=1

d(A)θx,xi
xi +

n∑

i=1

Ad(θx,xi
)xi

= d(A)
n∑

i=1

〈xi, xi〉x + A

n∑

i=1

d(θx,xi
)xi

= d(A)x + ATx.

It implies that d(A) = TA − AT . Hence d is an inner derivation. The
proof is complete. �

3. 2-Local Derivations on EndA(M) and End∗
A(M)

In this section, we characterize 2-local derivations on EndA(M) and
End∗

A(M). First, we show the following lemma:

Lemma 3.1. Let A be a commutative unital C*-algebra and M be a Hilbert A-
module. For xi ∈ M and fi ∈ M′

, if
∑n

i=1 θxi,fi
= 0, then

∑n
i=1 fi(xi) = 0.

Proof. Let ai,j = fj(xi) ∈ A and Λ = (ai,j)n×n ∈ Mn(A). We have
n∑

i=1

fi(xk)xi =
n∑

i=1

θxi,fi
xk = 0.

It follows that
n∑

i=1

ak,iai,j =
n∑

i=1

fi(xk)fj(xi) = fj(
n∑

i=1

fi(xk)xi) = 0,

which implies that Λ2 = 0.
Since A is a commutative unital C*-algebra, it is well known that A is

∗-isomorphic to C(S) for some compact Hausdorff space S. Without loss of
generality, we can assume A = C(S).

Then for each t ∈ S, we have ai,j(t) ∈ C and Λ(t),Λ2(t) ∈ Mn(C).
Recall that for a matrix A in Mn(C), A2 = 0 implies that tr(A) = 0,

where tr(A) denotes the trace of A, i.e. the sum of all the diagonal elements.
Hence Λ2(t) = 0 implies that tr(Λ(t)) = 0. It follows that tr(Λ) = 0,

that is to say
∑n

i=1 fi(xi) = 0. The proof is complete. �

Theorem 3.2. Let A be a commutative unital C*-algebra and M be a full
Hilbert A-module. Then each 2-local derivation on EndA(M) is a derivation.
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Proof. Denote by Γ(M) the linear span of the set {θx,f : x ∈ M, f ∈ M′}.
By Lemma 1.2, Γ(M) is a two-side ideal of EndA(M).

For each S =
∑n

i=1 θxi,fi
∈ Γ(M), define φ(S) =

∑n
i=1 fi(xi).

One can verify that φ is well defined by Lemma 3.1. And obviously, φ
is A-linear. Moreover, for each A ∈ EndA(M), we have

φ(θx,fA) = φ(θx,f◦A) = f(Ax) = φ(θAx,f ) = φ(Aθx,f ).

It follows that φ(SA) = φ(AS) for each A ∈ EndA(M) and S ∈ Γ(M).
Suppose δ is a 2-local derivation on EndA(M). By the definition of 2-

local derivation, there exists a derivation d on EndA(M) such that δ(A) =
d(A) and δ(S) = d(S). By Theorem 2.3, d is an inner derivation, i.e. there
exists an element T ∈ EndA(M) such that d = DT .

Thus we have

δ(A)S + Aδ(S) = d(A)S + Ad(S) = d(AS) = DT (AS) = TAS − AST.

Since Γ(M) is a two-side ideal of EndA(M), we know that AS ∈ Γ(M).
Hence

φ(δ(A)S + Aδ(S)) = φ(TAS − AST ) = 0,

which follows that φ(δ(A)S) = −φ(Aδ(S)).
Now, for each A,B ∈ EndA(M) and S ∈ Γ(M), we have

φ(δ(A + B)S) = −φ((A + B)δ(S))

= −φ(Aδ(S)) − φ(Bδ(S))

= φ(δ(A)S) + φ(δ(B)S)

= φ((δ(A) + δ(B))S).

Let C = δ(A + B) − δ(A) − δ(B); we obtain φ(CS) = 0.
By taking S = θx,f , we have

φ(Cθx,f ) = f(Cx) = 0 ⇒ 〈Cx,Cx〉 = 0 ⇒ Cx = 0 ⇒ C = 0.

It means that δ(A + B) = δ(A) + δ(B). That is to say δ is an additive
mapping. In addition, by the definition of 2-local derivation, it is easy to show
that δ is homogeneous and δ(A2) = Aδ(A) + δ(A)A for each A ∈ EndA(M).
Hence δ is a Jordan derivation.

By Lemma 1.5, EndA(M) is a semi-prime Banach algebra. According
to the classical result that every Jordan derivation on a semi-prime Banach
algebra is a derivation [5], we obtain that δ is a derivation. The proof is
complete. �

Theorem 3.3. Let A be a commutative unital C*-algebra and M be a full
Hilbert A-module. Then each 2-local derivation on End*A(M) is a derivation.

Proof. Denote by Γ∗(M) the linear span of the set {θx,ŷ : x, y ∈ M}. By
Lemma 1.3, Γ∗(M) is a two-side ideal of End∗

A(M).
For each S =

∑n
i=1 θxi,ŷi

∈ Γ∗(M), define φ(S) =
∑n

i=1〈xi, yi〉.
By Lemma 3.1, φ is well defined. For each A ∈ End∗

A(M), we have

φ(θx,ŷA) = φ(θ
x,Â∗y

) = 〈x,A∗y〉 = 〈Ax, y〉 = φ(θAx,ŷ) = φ(Aθx,ŷ).



230 Page 8 of 11 J. He et al. MJOM

It follows that φ(SA) = φ(AS) for each A ∈ End∗
A(M) and S ∈ Γ∗(M).

In [15], the authors prove that for a commutative unital C*-algebra A
and a full Hilbert A-module M, each derivation on End∗

A(M) is an inner
derivation.

The rest of the proof is similar to Theorem 3.2, so we omit it. �

4. Local Derivations on EndA(M)

In this section, we discuss local derivations on EndA(M). Through this sec-
tion, we assume that A is a commutative C*-algebra with unit e, and M is
a Hilbert A-module, and moreover, there exist x0 in M and f0 in M′

such
that f0(x0) = e. Denote the unit of EndA(M) by I. Define L = span{θx,f0 :
x ∈ M}, and R = span{θx0,f : f ∈ M′}.

Lemma 4.1. (1) θx0,f0 is an idempotent;
(2) each element in L is an A-linear combination of some idempotents in L,

and each element in R is an A-linear combination of some idempotents
in R;

(3) L is a left ideal of EndA(M), and R is a right ideal of EndA(M);
(4) L is a left separating set of EndA(M), i.e. for each A in EndA(M),

AL = 0 implies that A = 0, and R is a right separating set of EndA(M),
i.e. for each A in EndA(M), RA = 0 implies that A = 0

Proof. (1) θx0,f0θx0,f0 = f0(x0)θx0,f0 = θx0,f0 .
(2) For each x ∈ M, there exists a non-zero complex number λ ∈ C, such
that e − λf0(x) is invertible in A. Denote e − λf0(x) by a−1; then we have

f0(a(x0 − λx)) = af0(x0 − λx) = a(e − λf0(x)) = aa−1 = e.

By (1), we know that θa(x0−λx),f0 is an idempotent.
Thus we have

θx,f0 = λ−1θx0,f0 − λ−1a−1θa(x0−λx),f0 .

That is to say θx,f0 is an A-linear combination of idempotents in L.
Similarly, for each f ∈ M′

, there exists a non-zero complex number
λ ∈ C, such that e − λf(x0) is invertible in A. Denote e − λf(x0) by a−1,
then we have

(a(f0 − λf))(x0) = a(e − λf(x0)) = aa−1 = e.

Again by (1), we know that θx0,a(f0−λf) is an idempotent.
Thus we have

θx0,f = λ−1θx0,f0 − λ−1a−1θx0,a(f0−λf).

(3) For each A ∈ EndA(M), since Aθx,f0 = θAx,f0 , we know that L is a left
ideal of EndA(M). Similarly, R is a right ideal of EndA(M) since θx0,fA =
θx0,f◦A.
(4) Suppose A ∈ EndA(M), θx,f0 ∈ L, θx0,f ∈ R.

If Aθx,f0 = 0, then

0 = Aθx,f0x0 = θAx,f0x0 = f0(x0)Ax = Ax,
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i.e. A = 0.
If θx0,fA = 0, then for each x in M, we have f(Ax)x0 = θx0,fAx = 0. It

follows that f(Ax) = f(Ax)f0(x0) = f0(f(Ax)x0) = 0. Since f is arbitrarily
chosen, we can obtain 〈Ax,Ax〉 = 0, which means that Ax = 0. Hence A = 0.
The proof is complete. �

Let J be a left A-module, and φ be a bilinear mapping from EndA(M)×
EndA(M) into J .

We say that φ is A-bilinear if φ(aA,B) = φ(A, aB) = aφ(A,B) for each
A,B ∈ EndA(M) and a ∈ A.

We say that φ preserves zero product if AB = 0 implies that φ(A,B) = 0
for each A,B ∈ EndA(M).

Lemma 4.2. Let J be a left A-module, and φ : EndA(M) × EndA(M) → J
be an A-bilinear mapping preserving zero product. Then for each A,B ∈
EndA(M), L ∈ L, and R ∈ R, we have

φ(A,LB) = φ(AL,B) = φ(I,ALB) (3)

and

φ(AR,B) = φ(A,RB) = φ(ARB, I). (4)

Proof. Suppose P is an idempotent in EndA(M). Let Q = I − P .
Since φ preserves zero product, we have

φ(A,PB) = φ(AP + AQ,PB) = φ(AP,PB) = φ(AP,B − QB) = φ(AP,B).

By Lemma 4.1(2), each element in L is an A-linear combination of
idempotents in L. Considering φ is A-bilinear, we obtain that φ(A,LB) =
φ(AL,B).

By Lemma 4.1(3), L is a left ideal, so AL ∈ L. Hence φ(AL,B) =
φ(I,ALB).

Similarly, we can show the equation (4.2) is true. �

For an algebra A with unit e, a linear mapping δ on A is said to be a
generalized derivation if δ(ab) = aδ(b) + δ(a)b − aδ(e)b, for all a, b in A.

Theorem 4.3. Suppose that A is a commutative C*-algebra with unit e, and
M is a Hilbert A-module, and moreover, there exist x0 in M and f0 in
M′

such that f0(x0) = e. If δ is an A-linear mapping from EndA(M) into
itself such that: for each A,B,C in EndA(M), AB = BC = 0 implies that
Aδ(B)C = 0, then δ is a generalized derivation. In particular, if δ(I) = 0,
where I is the unit of EndA(M), then δ is a derivation.

Proof. Suppose A,B,X, Y,A0, B0 are arbitrary elements in EndA(M), where
A0B0 = 0, L and R are arbitrary elements in L and R, respectively.

Define a bilinear mapping φ1: φ1(X,Y ) = Xδ(Y A0)B0. Then φ1 is an
A-bilinear mapping preserving zero product.

By Lemma 4.2, we have

φ1(R,A) = φ1(RA, I),
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i.e.

Rδ(AA0)B0 = RAδ(A0)B0.

Since R is a right separating set of EndA(M), we have

δ(AA0)B0 = Aδ(A0)B0.

Now define a bilinear mapping φ2: φ2(X,Y ) = δ(AX)Y − Aδ(X)Y .
Then φ2 is also an A-bilinear mapping preserving zero product.

Again by Lemma 4.2, we have

φ2(B,L) = φ2(I,BL),

i.e.

δ(AB)L − Aδ(B)L = δ(A)BL − Aδ(I)BL.

Since L is a left separating set of EndA(M), we obtain that

δ(AB) = Aδ(B) + δ(A)B − Aδ(I)B.

That is to say δ is a generalized derivation. The proof is complete. �

Applying the above Theorem, we can get the following corollary imme-
diately:

Corollary 4.4. Suppose A is a commutative C*-algebra with unit e, M is a
Hilbert A-module, and moreover, there exist x0 in M and f0 in M′

such
that f0(x0) = e. Then each A-linear local derivation δ on EndA(M) is a
derivation.

Proof. For each A,B,C in EndA(M), if AB = BC = 0, by the definition of
local derivation, there exists a derivation δB such that δB(B) = δ(B). Thus
we have

Aδ(B)C = AδB(B)C = δB(ABC) − δB(A)BC − ABδB(C) = 0.

Let I be the unit of EndA(M), by the definition of local derivation;
there exists a derivation δI such that δI(I) = δ(I) = 0.

By Theorem 4.3, δ is a derivation. The proof is complete. �
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