
Mediterr. J. Math. (2017) 14:229
https://doi.org/10.1007/s00009-017-1026-3
1660-5446/17/060001-12
published onlineOctober 28, 2017
c© Springer International Publishing AG 2017

Oscillatory Behavior of Second-Order Non-
linear Differential Equations with a Nonpos-
itive Neutral Term

Said R. Grace

Abstract. We shall present new oscillation criteria of second-order non-
linear differential equations with a nonpositive neutral term of the form:

(
(a(t)

((
x(t) − p(t)x(σ(t))′)γ)′

+ q(t)xβ(τ(t)) = 0,

with positive coefficients. The obtained results answer an open prob-
lem raised in Li et al. [Adv Differ Equ 35:7, 2015, Remark 4.3 (P2)].
Examples are given to illustrate the main results.
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1. Introduction

This paper deals with oscillatory behavior of all solutions of the nonlinear
second-order differential equations with a nonpositive neutral term of the
form:

((a(t)((x(t) − p(t)x(σ(t))′)γ)′ + q(t)xβ(τ(t)) = 0. (1.1)

We assume that
(i) γ, β are the ratios of positive odd integers, γ ≥ β;
(ii) a, p, q : [t0,∞) → R+ are continuous functions, and 0 < p(t) < p0 < 1,
(iii) τ, σ : [t0,∞) → R are continuous functions τ(t) ≤ t,σ(t) ≤ t,τ ′(t) >

0, σ′(t) > 0 for t ≥ t0, and τ(t),σ(t) → ∞ as t → ∞.
(iv) h(t) = σ−1(τ(t)) ≤ t, h′(t) ≥ 0 and h(t) → ∞ as t → ∞. We let

A(v, u) =
∫ v

u

1
a1/γ(s)

ds, v ≥ u ≥ t0,

and assume that

A(t, t0) → ∞ as t → ∞. (1.2)
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By a solution of Eq. (1.1), we mean a function x(t) with both quasi-
derivatives a(t)y′(t), and (a(t)y′(t))′ are continuous on [Tx,∞), Tx ≥ t0, which
satisfies Eq. (1.1) on [Tx,∞), where y(t) = x(t) − p(t)x(σ(t)). We consider
only those solutions x (t) of (1.1) which satisfy sup{|x(t)| : t ≥ T} > 0 for all
T ≥ Tx}.

A solution of (1.1) is said to be oscillatory if it has arbitrarily large
zeros, and otherwise, it is called nonoscillatory. Equation (1.1) is said to be
oscillatory if all its solutions are oscillatory.

In recent years, there has been much research activity concerning the
oscillation and nonoscillation of solutions of various differential equations.
Meanwhile, there also have been numerous research for second-order neutral
functional differential equations, due to the comprehensive use in natural
science and theoretical study.

For the oscillation results of second-order neutral functional differential
equations, we refer the reader to [1–6,8–13] and the references cited therein.
A commonly employed condition is as follows:

−1 ≤ p(t) ≤ 0

as well as the condition

−∞ < −p0 ≤ p(t) ≤ 0.

In [12], several oscillation results were obtained for Eq. (1.1) in the
special case γ = 1 and under the assumptions:

0 ≤ p(t) ≤ p0 < 1, τ(t) = t−τ0 and σ(t) = t−σ0.

Further contribution for Eq. (1.1) and its particular cases were made
in [5,8] where authors established sufficient conditions ensuring that every
solution x (t) of Eq. (1.1) is either oscillatory or converge to zero as t → ∞.

In [8, Remark 4.3 (P2)], the authors proposed the following open prob-
lem:”Is it possible to suggest a different method to study Eq. (1.1) and obtain
some sufficient conditions which ensure that all solutions of Eq. (1.1) are
oscillatory.”

The main objective of this paper is to give an affirmative answer to this
problem. We shall present some new criteria for the oscillation of second-
order nonlinear differential equations with a nonpositive neutral term of type
(1.1). Examples are inserted to illustrate the main results.

2. Main Results

For t ≥ T for some T ≥ t0, we let

μ(t) = a1/γ(t)A(t, T ) and Q(t) =
∫ ∞

t

q(s)ds.

We begin with the following new result.
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Theorem 2.1. Let conditions (i)–(iv) and (1.2) hold. If there exists a positive
continuously differentiable function ρ(t) and ρ′(t) ≥ 0, such that

lim sup
t→∞

[
ρ(t)Q(t) +

∫ t

t0

[
ρ(s)q(s) − γγ

(1 + γ)γ+1

× a(τ(s))
(βτ ′(s)g(s))γ

(
(ρ′(s))γ+1

ργ(s)

)]
ds

]
= ∞, (2.1)

where

g(t) =
{

1 when β = γ
c(A(β−γ)/γ(t)) when β < γ for some constant c > 0,

(2.2)

lim sup
t→∞

∫ t

h(t)

Aβ(h(t), h(s))q(s)ds > 1 when β = γ (2.3)

and

lim sup
t→∞

∫ t

h(t)

Aβ(h(t), h(s))q(s)ds > 0 when β < γ, (2.4)

then Eq. (1.1) is oscillatory.

Proof. Let x (t) be a nonoscillatory solution of Eq. (1.1), say x (t) > 0,
x(τ(t)) > 0, x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. It follows from Eq.
(1.1) that:

(
a(t) (y′(t))γ)′ ≤ −q(t)xβ(τ(t)) (2.5)

where y(t) = x(t) − p(t)x(σ(t)). Hence, a(t) (y′(t))γ is nonincreasing and of
one sign. That is, there exists a t2 ≥ t1, such that y′(t) > 0 or y′(t) <
0 for t ≥ t2. We claim that y′(t) > 0 for t ≥ t2. To prove it, we assume that
y′(t) < 0 for t ≥ t2. Then

a(t) (y′(t))γ ≤ −c < 0 for t ≥ t2,

where c = −a(t2) (y′(t2))
γ

> 0. Thus, we conclude that

y(t) ≤ y(t2) − c1/γ

∫ t

t2

a−1/γ(s)ds.

By virtue of (1.2), limt→∞ y(t) = −∞. �

Now, we consider the following two cases:
Case 1. If x (t) is unbounded, then there exists a sequence {tk}, such
that limk→∞ tk = ∞ and limk→∞ x(tk) = ∞ where x(tk) = max{x(s) :
t0 ≤ s ≤ tk}. Since limt→∞ σ(t) = ∞, σ(tk) > t0 for all sufficiently
large k. By τ(t) ≤ t, x(τ(tk)) = max{x(s) : t0 ≤ s ≤ τ(tk)} ≤ max
{x(s) : t0 ≤ s ≤ tk} = x(tk).
Therefore, for all large k,

y(tk) = x(tk) − p(tk)x(τ(tk)) ≥ (1 − p(tk)) x(tk) ≥ (1 − p(tk))x(tk) > 0,

which contradicts the fact that limt→∞ y(t) = −∞.
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Case 2. If x (t) is bounded, then y(t) is also bounded, which contradicts
limt→∞ y(t) = −∞.
This completes the prove of the claim and concludes that y′(t) > 0 for
t ≥ t2.

Next, we have two cases to consider:

(I) y (t) > 0 or, (II) y (t) < 0 for t ≥ t2.

First assume that (I) holds. In view of (2.5) and x (t) ≥ y (t), we have
(
a(t) (y′(t))γ)′ ≤ −q(t)yβ(τ(t)) ≤ 0. (2.6)

It follows that:

y(t) = y(t2) +
∫ t

t2

(
a(s) (y′(s))γ)1/γ

a1/γ(s)
ds

≥ a1/γ(t) (y′(t))
∫ t

t2

a−1/γ(s)ds

:= μ(t)y′(t). (2.7)

Integrating (2.6) from t to u, letting u → ∞ and using the fact that
y (t) is increasing, we have

a(t) (y′(t))γ ≥
∫ ∞

t

q(s)yβ(τ(s))ds ≥ yβ(τ(t))
(∫ ∞

t

q(s)ds

)

:= Q(t)yβ(τ(t)). (2.8)

Suppose that y (t) > 0 for t ≥ t2. Define

w(t) = ρ(t)
a(t)(y′(t))γ

yβ(τ(t))
> 0 for t ≥ t2. (2.9)

Then, it follows that:

w(t) = ρ(t)
a(t)(y′(t))γ

yβ(τ(t))
≥ ρ(t)

(∫ ∞

t

q(s)ds

)
. (2.10)

Now,

w′(t) =
(

ρ(t)
yβ(τ(t))

)′
(a(t)(y′(t))γ

+ ((a(t)(y′(t))γ)′
(

ρ(t)
yβ(τ(t))

)

≤ −ρ(t)q(t) +
(

ρ′(t)
ρ(t)

)
w(t)

−βρ(t)
a(t)(y′(t))βy′(τ(t))τ ′(t)

yβ+1(τ(t))
. (2.11)

Since (a(t)(y′(t))γ is decreasing, we have

y′(τ(t))
y′(t)

≥
(

a(t)
a(τ(t))

)1/γ

. (2.12)
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Using (2.12) in (2.11), we obtain

w′(t) ≤ −ρ(t)q(t) +
(

ρ′(t)
ρ(t)

)
w(t) − βρ(t)τ ′(t)

a1/γ(τ(t))

(
w(t)
ρ(t)

)(γ+1)/γ

y(β−γ)/γ(t).

For the case β = γ, we see that y(β−γ)/γ(t) = 1, while for the case β < γ
and since a(t)(y′(t))γ is decreasing, there exists a constant c > 0, such that

a(t)(y′(t))γ ≤ c for t ≥ t2.

Integrating this inequality from t2 to t, we have

y(t) ≤ y(t2) + A(t, t2),

and thus,

y(β−γ)/γ(t) ≥ c(β−γ)/γA(β−γ)/γ(t, t2) := c∗A(β−γ)/γ(t, t2),

where c∗ = c(β−γ)/γ . Using those two cases and the definition of g(t), we get

w′(t) ≤ −ρ(t)q(t) +
(

ρ′(t)
ρ(t)

)
w(t) -

βτ ′(t)
a1/γ(τ(t))ρ1/γ(t)

g(t)w(γ+1)/γ(t). (2.13)

Setting

B :=
(

ρ′(t)
ρ(t)

)
and C :=

βτ ′(t)
a1/γ(τ(t))ρ1/γ(t)

g(t),

and using

Bu-Cu(1+γ)/γ ≤ γγ

(1 + γ)γ+1

(
Bγ+1

Cγ

)
,

(see [7]), we have

w′(t) ≤ −ρ(t)q(t) +
γγ

(1 + γ)γ+1

a(σ(t))
(βτ ′(t)g(t))γ

(
(ρ′(t))γ+1

ργ(t)

)
.

Integrating this inequality from t2 to t, we get

w(t) ≤ w(t2) −
∫ t

t2

[
ρ(s)q(s) − γγ

(1 + γ)γ+1

a(τ(s))
(βτ ′(s)g(s))γ

×
(

(ρ′(s))γ+1

ργ(s)

)]
ds.

Taking into account (2.8), we find

w(t2) ≥ ρ(t)Q(t) +
∫ t

t2

[
ρ(s)q(s) − γγ

(1 + γ)γ+1

a(τ(s))
(βτ ′(s)g(s))γ

×
(

(ρ′(s))γ+1

ργ(s)

)]
ds.

Taking the lim sup of both sides in the above inequality as t → ∞, we
obtain a contradiction to the condition (2.1)
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Consider now case (II). If we put z (t) = - y (t) > 0 for t ≥ t2, then Eq.
(1.1) gives

(
a(t) (z′(t))γ)′ ≥ q(t)xβ(τ(t)),

and

z(t) = −y(t) = p(t)x(σ(t)) − x(t) ≤ p(t)x(σ(t)),

or,

x(σ(t)) ≥ z(t) or z(t) = x(σ−1(t)).

Using this inequality in (1.1), we have
(
a(t) (z′(t))γ)′ ≥ q(t)zβ(σ−1(τ(t))) = q(t)zβ(h(t)). (2.14)

Clearly, we have z′(t) < 0. Now, for t2 ≤ u ≤ v, we may write

z(u) − z(v) = −
∫ v

u

(a−1/γ(s) (a(s)(z′(s))γ)1/γ ds

≥ A(v, u)
(
− (a(s)(z′(s))γ)1/γ

)
;

for t ≥ s ≥ t2, setting u=h(s) and v=h(t) in the above inequality, we get
z(h(s)) = A(h(t), h(s))

(
− (a(h(t))(z′(h(t)))γ)1/γ

)
.

Integrating inequality (2.14) from h(t) ≥ t2 to t, we find

Z(t) := −a(h(t))(z′(h(t)))γ

≥ (−a(h(t)(z′(h(t))γ)β/γ
∫ t

h(t)

Aβ(h(t), h(s))q(s)ds

= Zβ/γ(t)
∫ t

h(t)

Aβ(h(t), h(s))q(s)ds

and hence

Z1−β/γ(t) ≥
∫ t

h(t)

Aβ(h(t), h(s))q(s)ds.

Taking lim sup of both sides of this inequality as t → ∞, we arrive at a
contradiction to (2.3) when β = γ and (2.4) when β < γ. This completes the
proof.

Remark 2.1. We note that Theorem 2.1 holds when Q(t) < ∞ and the
additional term ρ(t)Q(t) in condition (2.1) may improve some of the well-
known existing results appeared in the literature.

In the case when Q(t) does not exists as t → ∞, we see that condition (2.1)
can be replaced by

lim sup
t→∞

∫ t

t2

[
ρ(s)q(s) − γγ

(1 + γ)γ+1

a(τ(s))
(βτ ′(s)g(s))γ

(
(ρ′(s))γ+1

ργ(s)

)]
ds = ∞ (2.15)

and the conclusion of Theorem 2.1 holds.
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For the nonneutral equations, i.e., Eq. (1.1) when p(t) = 0 and q(t) is
either nonnegative or nonpositive for all large t, Eq. (1.1) is reduced to the
equation
(
(a(t)

(
(x(t))′)γ

)′
+ δq(t)xβ(τ(t)) = 0 (1, δ),

where δ ± 1. From Theorem 2.1, we extract the following immediate results.

Corollary 2.1. Let conditions (i)–(iii) and (1.2) hold. If there exists a positive
continuously differentiable function ρ(t) and ρ′(t) ≥ 0, such that condition
(2.1) holds, then equation (1,+1) is oscillatory.

Proof. The proof is contained in the proof of Theorem 2.1-Case (I) and,
hence, is omitted. �

We note that Corollary 2.1 is related to some of the results in [1] and
the references cited therein. The details are left to the reader.

Corollary 2.2. Let conditions (i)–(iv) and (1.2) hold. If condition (2.3) or
(2.4) holds, then every bounded solution of equation (1,−1) is oscillatory.

Proof. The proof is contained in the proof of Theorem 2.1-Case (II) and,
hence, is omitted. �

The following examples are illustrative.

Example 2.1. Consider the neutral equation
(

x(t) − 1
2
x

(
t − π

2

))′′
+ 8x(t − π) = 0. (2.16)

Here, σ(t) = t − π
2 and σ−1(t) = t + π

2 , τ(t) = t − π and so, h(t) = t − π
2 .

All conditions of Theorem 2.1 with condition (2.1) be replaced by condition
(2.15) are satisfied, and hence, Eq. (2.16) is oscillatory. One such solution
is x (t) = sin 4t. We may note that the results in [8] are failed to conclude
that all solutions of Eq. (2.16) are oscillatory. In fact, the results in [8] can
be applied to Eq. (2.16) to conclude that every solution x (t) of Eq. (2.16) is
oscillatory or, limt→∞ x(t) = 0.

Example 2.2. Consider the neutral equation
((

x(t) − 1
2
x(

√
t

)3
)′′

+
m

t5/4
x(t1/4) = 0, (2.17)

where m is a positive constant. Here, σ(t) =
√

t and σ−1(t) = t2, τ(t) =
t1/4 and so, h(t) =

√
t. All conditions of Theorem 2.1 are satisfied for suitable

m and all large t, and hence, Eq. (2.17) is oscillatory. One can easily see that
the results reported in [3–6,9–13] cannot be applied to (1.1) with p(t) > 0.
Therefore, these results are not applicable to Eq. (2.17).

Next, we present the following interesting results.
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Theorem 2.2. Let the hypotheses of Theorem 2.1 hold with ρ′(t) ≤ 0 for t ≥ t0
and condition (2.1) be replaced by

lim sup
t→∞

[
ρ(t)Q(t) +

∫ t

t0

ρ(s)q(s)ds

]
= ∞. (2.18)

Then, Eq. (1.1) is oscillatory.

Proof. Let x (t) be a nonoscillatory solution of Eq. (1.1), say x(t) >
0, x(τ(t)) > 0, x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in
the proof of Theorem 2.1, we conclude that y′(t) > 0 for t ≥ t2 and we have
two cases to consider: (I) y(t) > 0 or y(t) < 0 for t ≥ t2.
Case (I). Suppose that y(t) > 0 t ≥ t2. As in the proof of Theorem 2.1, we
obtain (2.13). Thus

w′(t) ≤ −ρ(t)q(t).

Integrating this inequality and using (2.8), we arrived at the desired contra-
diction.

In the following theorem, we employ different approaches to replace
condition (2.1) in Theorem 2.1. �

Theorem 2.3. Let the hypotheses of Theorem 2.1 hold with γ ≤ 1, and condi-
tion (2.1) be replaced by

lim sup
t→∞

[
ρ(t)Q(t) +

∫ t

t0

(ρ(s) q(s)

− a1/γ(τ(t)) (ρ′(t))2

4βτ ′(t)g(t)ρ(t)Q(1/γ)−1(t)

)
ds

]
= ∞. (2.19)

Then, Eq. (1.1) is oscillatory.

Proof. Let x (t) be a nonoscillatory solution of Eq. (1.1), say x(t) >
0, x(τ(t)) > 0, x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in
the proof of Theorem 2.1, we conclude that y′(t) > 0 for t ≥ t2 and y(t)
satisfies either (I) or (II) for t ≥ t2.

If (I) holds, then as in the proof of Theorem 2.1, we obtain (2.13). Thus

w′(t) ≤ −ρ(t)q(t) +
(

ρ′(t)
ρ(t)

)
w(t) -

βρ−1/γ(t)τ ′(t)
a1/γ(τ(t))

g(t) w(γ+1)/γ(t)

≤ −ρ(t)q(t) +
(

ρ′(t)
ρ(t)

)
w(t) − βτ ′(t)g(t)

a1/γ(τ(t))ρ(t)
Q(1/γ)−1(t)w2(t)

:= −ρ(t)q(t) −
(√

βτ ′(t)g(t)
a1/γ(τ(t))ρ(t)

Q(1/γ)−1(t)w(t)

−
ρ′(t)
ρ(t)

2
√

βτ ′(t)g(t)
a1/γ(τ(t))ρ(t)

Q(1/γ)−1(t)

⎞
⎠

2
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+
a1/γ(τ(t)) (ρ′(t))2

4βτ ′(t)g(t)ρ(t)Q(1/γ)−1(t)

≤ −ρ(t)q(t) +
a1/γ(τ(t)) (ρ′(t))2

4βτ ′(t)g(t)ρ(t)Q(1/γ)−1(t)
.

The rest of the proof is similar to that of Theorem 2.1 and, hence, is omitted.
�

Next, we present the following new and easily verifiable oscillation cri-
teria for Eq. (1.1).

Theorem 2.4. Let conditions (i)–(iv) and (1.2) hold.
Assume that condition (2.3) and

lim sup
t→∞

Aβ(τ(t), t0)Q(t) > 1, (2.20)

hold when β = γ and condition (2.4) and

lim sup
t→∞

Aβ(τ(t), t0)Q(t) > 0, (2.21)

hold when β < γ, then Eq. (1.1) is oscillatory.

Proof. Let x (t) be a nonoscillatory solution of Eq. (1.1), say x(t) >
0, x(τ(t)) > 0, x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in
the proof of Theorem 2.1, we conclude that y′(t) > 0 for t ≥ t2 and y(t)
satisfies either (I) or (II) for t ≥ t2.

If (I) holds, then as in the proof of Theorem 2.1, we obtain (2.7) and
(2.8).

Using the facts that τ(t) ≤ t and a(t) (y′(t))γ is decreasing, we find

w(t) := a(t) (y′(t))γ ≥ Q(t)μβ(τ(t)) (y′(τ(t)))β

= Q(t)μβ(τ(t))
(
a−β/γ(τ(t))

)
(a(τ(t))(y′(τ(t)))γ)β/γ

≥ Q(t)μβ(τ(t))
(
a−β/γ(τ(t))

)
(a(t)(y′(t))γ)β/γ

= Q(t)μβ(τ(t))
(
a−β/γ(τ(t))

)
wβ/γ(t),

or,

w1−β/γ(t) ≥ Q(t)μβ(τ(t))
(
a−β/γ(τ(t))

)

= Q(t)

(∫ τ(t)

t2

a−1/γ(s)

)β

ds = Aβ(τ(t), t2)Q(t).

Taking lim sup of both sides of this inequality as t → ∞, we arrive at a
contradiction to condition (2.20) when β = γ and condition (2.21) when
β < γ. The proof of case (II) is similar to that of Theorem 2.1 and, hence, is
omitted. �

For Eq. (1.1) with advanced argument, we present the following result.
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Theorem 2.5. Let τ(t) ≥ t, conditions (i)–(iv) and (1.2) hold.
Assume that the conditions

lim sup
t→∞

A(t, t0)Q1/γ(t) > 1 (2.22)

lim sup
t→∞

∫ t

h(t)

(
1

a(u)

∫ t

u

q(s)ds

)1/γ

du > 1, (2.23)

hold when γ = β and the conditions

lim sup
t→∞

A(t, t0)Q1/γ(t) = ∞ (2.24)

lim sup
t→∞

∫ t

h(t)

(
1

a(u)

∫ t

u

q(s)ds

)1/γ

du > 0, (2.25)

hold when β ≤ γ, then Eq. (1.1) is oscillatory.

Proof. Let x (t) be a nonoscillatory solution of Eq. (1.1), say x(t) >
0, x(τ(t)) > 0, x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in
the proof of Theorem 2.1 and consider the two cases (I) and (II)
First, suppose case (I) holds. From (2.8), we have

(y′(t))γ ≥
(

Q(t)
a(t)

)
yβ(τ(t)),

or,

y′(t) ≥
(

Q(t)
a(t)

)1/γ

yβ/γ(τ(t)).

Using (2.7) in the above inequality, we get

y(t) ≥ μ(t)y′(t) ≥ μ(t)
(

1
a(t)

∫ ∞

t

q(s)ds

)1/γ

yβ/γ(τ(t))

≥ A(t, t2)Q1/γ(t)yβ/γ(t),

or,

y1−β/γ(t) ≥ A(t, t2)Q1/γ(t).

Taking lim sup of both sides of this inequality as t → ∞, we arrive at a
contradiction to (2.22) when β = γ and (2.24) when β ≤ γ. �

If (II) holds, then as in the proof of Theorem 2.1-Case (II), we obtain (2.14)
Integrating this inequality from u to t

(a(t)(z′(t))γ − (a(u)(z′(u))γ ≥
∫ t

u

q(s)zβ(h(s))ds

or,

−z′(u) ≥
(

1
a(u)

∫ t

u

q(s)zβ(h(s))ds

)1/γ

≥
(

1
a(u)

∫ t

u

q(s)ds

)1/γ

zβ/γ(h(t)).
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Integrating this inequality from h (t) ≥ t2 to t, we arrive at a contradiction
to (2.22) when β = γ or, (2.24) when β ≤ γ.

Remark 2.2. We may note that corollaries similar to Corollaries 2.1 and 2.2
can be also drawn from Theorems 2.2–2.5. The details are left to the reader.

Remarks:

1. Our new results of this paper can be extended to higher order equations
of the form

(a(t)
((

x(t) − p(t)x(σ(t))(n−1)
)γ)′

+ q(t)xβ(τ(t)) = 0, n is a positive integer. (2.26)

The details are left to the reader.
2. It will be of interest to study Eq. (1.1) with β > γ.
3. The work in this paper can be extended to second-order damped equa-

tion of the form(
(a(t)

(
(x(t) − p(t)x(σ(t))′)γ

)′

+ b(t)
(
(x(t) − p(t)x(σ(t))′)γ

+ q(t)xβ(τ(t)) = 0. (2.27)

Here, we let C(t) = exp
∫ t

t0

−b(s)
a(s) ds. One can easily see that Eq. (2.26)

is reduced to (
(a(t)
C(t)

(z(t)′)γ
)′

+ q(t)xβ(τ(t)) = 0,

where z(t)= (x(t) − p(t)x(σ(t)). To obtain similar results as these above,
we impose the condition

A(v, u) =
∫ v

u

(
C(s)
a(s)

)−1/γ

ds, v ≥ u ≥ t0 and A(t, t0) → ∞ as t → ∞.

The details are left to the reader.
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