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1. Introduction

In this paper, we deal with singular integral operators in generalized Mor-
rey spaces. The well-known classical Morrey spaces were widely investigated
during last decades; see for instance books [1,21], survey paper [22], and ref-
erences therein. We study the boundedness of a singular integral operator SΓ

in the space Lp,ϕ(Γ, �), where Γ is a composite curve which is a union of a
finite number of non-intersecting curves without self-intersection, satisfying
arc-chord condition. The boundedness of singular integral operators in clas-
sical Morrey spaces on a single curve was studied in [23]. We also refer to
the paper [20], where conditions for the weighted boundedness of a general
class of multidimensional singular integral operators in generalized Morrey
spaces are found. In [17] weighted results for singular integral operators were
obtained in classical Morrey spaces, but with more general weights. To prove
the boundedness of the singular integral operator SΓ in the weighted gen-
eralized Morrey space Lp,ϕ(Γ, �), first we have to prove the non-weighted
boundedness of the maximal operator along such a curve in Lp,ϕ(Γ). Then
we derive the non-weighted boundedness of SΓ via the Alvarez–Pérez-type
point-wise estimate

M# (|SΓf |s) (t) ≤ C [Mf(t)]s , 0 < s < 1. (1.1)
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For two-weight estimates for the maximal operator in local Morrey spaces we
refer to [26]. We apply the obtained results to the study of Fredholm prop-
erties of singular integral operators in weighted generalized Morrey spaces.

The theory of the Riemann boundary value problem and singular inte-
gral equations on curves in the complex plane, including Fredholm properties,
is well known, see the books [5,15,16]. In particular, this theory was exten-
sively developed in such spaces as Lebesgue, Orlicz and recently in variable
exponent Lebesgue spaces and their weighted versions; see [7,10]. For the
case of composite curves we refer to [7].

We study the Fredholmness of the following singular integral operator:

Au := a(t)u(t) + b(t) (SΓu) (t), (SΓu) (t) =
1
πi

∫

Γ

u(τ)
τ − t

dτ, t ∈ Γ, (1.2)

in weighted generalized Morrey space Lp,ϕ(Γ, �), where Γ is a set of non-
intersecting oriented closed curves without self-intersection, satisfying arc-
chord condition. Γ may be such a single curve or union of such curves.

Fredholmness of such operators in classical weighted Morrey spaces was
studied in [24]. The case of generalized Morrey spaces on an interval was
studied in [13]. We apply the methods from these papers to extend the re-
sults obtained there to the case of generalized weighted Morrey spaces on
composite curves.

The paper is organized as follows: in Sect. 2, we provide necessary
definitions on generalized Morrey spaces, Zygmund classes of functions and
Matuszewska–Orlicz indices. In Sect. 3, we describe some known facts we use.
In Sect. 4, we present our new results on the boundedness and Fredholmness
of singular integral operators in weighted generalized Morrey spaces on com-
posite curves. First we prove the Fefferman–Stein inequality ‖Mf‖Lp,ϕ(X) ≤
C‖M#f‖Lp,ϕ(X) for a metric space X to derive the non-weighted bounded-
ness of SΓ via (1.1). Then we prove the boundedness of SΓ and Fredholmness
of A in the weighted case.

2. Definitions

2.1. Generalized Morrey Spaces on Homogeneous Underlying Spaces

Let (X, d, μ) be a homogeneous metric measure space with quasi-distance
d and measure μ. We restrict ourselves to the case where X has constant
dimension: there exists a number N > 0 (not necessarily integer) such that

C1r
N ≤ μB(x, r) ≤ C2r

N , (2.1)

where the constants C1 and C2 do not depend on x ∈ X and r > 0. In this
case, the generalized Morrey space Lp,ϕ(X) may be defined by the norm:

‖f‖p,ϕ = sup
x∈X,r>0

⎧⎪⎨
⎪⎩

1
ϕ(r)

∫

B(x,r)

|f(y)|p dμ(y)

⎫⎪⎬
⎪⎭

1
p

, (2.2)
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where 1 ≤ p < ∞ and 0 ≤ M(ϕ) < N and the standard notation B(x, r) =
{y ∈ X : d(x, y) < r} is used.

Everywhere in the sequel it is assumed that ϕ : R+ → R+ is a measur-
able function satisfying the following assumptions:

1. ϕ(r) is continuous in a neighborhood of the origin;
2. ϕ(0) = 0;
3. infr>δ ϕ(r) > 0 for every δ > 0

and

ϕ(r) ≥ crn (2.3)

for 0 < r ≤ l, if l < ∞, and 0 < r ≤ N with an arbitrary N > 0, if l = ∞,
the constant c depends on N in the latter case. Condition (2.3) makes the
space Lp,ϕ(X) non-trivial (see [18, Corollary 3.4]).

2.2. Curves Satisfying Arc-Chord Condition

Let Γ be a bounded curve in the complex plane C. We denote τ = t(σ), t =
t(s), where σ and s stand for the arc abscissas of the points τ and t, and
dμ(τ) = dσ will stand for the arc-measure on Γ. We also use the notation

Γ(t, r) = {τ ∈ Γ : |τ − t| < r} and Γ∗(t, r) = {τ ∈ Γ : |σ − s| < r},

so that Γ∗(t, r) ⊆ Γ(t, r), and denote � = μΓ = length of Γ.

Definition 2.1. A curve Γ is said to satisfy the arc-chord condition at a point
t0 = t(s0) ∈ Γ, if there exists a constant k > 0, not depending on t, such that

|s − s0| ≤ k|t − t0|, t = t(s) ∈ Γ. (2.4)

Finally, a curve Γ is said to satisfy the (uniform) arc-chord condition, if

|s − σ| ≤ k|t − τ |, t = t(s), τ = t(σ) ∈ Γ. (2.5)

In the sequel Γ is always assumed to be a curve satisfying the arc-chord
condition.

The generalized Morrey space Lp,ϕ(Γ) is defined by the norm

‖f‖p,ϕ = sup
t∈Γ,r>0

⎧⎪⎨
⎪⎩

1
ϕ(r)

∫

Γ(t,r)

|f(τ)|p dμ(τ)

⎫⎪⎬
⎪⎭

1
p

. (2.6)

For a non-negative weight function �(t) the weighted generalized Morrey
space is introduced as

Lp,ϕ(Γ, �) = {f : �f ∈ Lp,ϕ(Γ)} (2.7)

with

‖f‖p,ϕ;� := ‖f‖Lp,ϕ(Γ,�) = ‖�f‖Lp,ϕ(Γ). (2.8)
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2.3. On Admissible Weight Functions

In the sequel, when studying the singular operator SΓ along a curve Γ in
weighted generalized Morrey space, we deal with radial type weights of the
form

�(t) = w(|t − t0|), t0 ∈ Γ. (2.9)

We introduce below the class of weight functions wk(x), x ∈ [0, �], admitted
for our goals. Although the functions wk should be defined only on [0, d],
where d = diamΓ = supt,τ∈Γ |t − τ | < �, everywhere below we consider them
as defined on [0, �].

Definition 2.2. By W = W (R+) we denote the class of functions ϕ which
are continuous and positive on R+ and such that there exists the finite limit
limx→0 ϕ(x). By W = W (R+) we denote the class of functions ϕ ∈ W such
that xaϕ(x) is almost increasing on R+ for some a = a(ϕ) ∈ R. By W =
W (R+) we denote the class of functions ϕ ∈ W such that there exists a
number b ∈ R such that ϕ(x)

xb is almost decreasing.

Definition 2.3. Let x, y ∈ (0, l], x+ = max(x, y) and x− = min(x, y). By V±
we denote the classes of functions w ∈ W defined by the following conditions:

V+ :
∣∣∣∣w(x) − w(y)

x − y

∣∣∣∣ ≤ C
w(x+)

x+
, (2.10)

V− :
∣∣∣∣w(x) − w(y)

x − y

∣∣∣∣ ≤ C
w(x−)

x+
. (2.11)

Lemma 2.4. Functions w ∈ V+ are almost increasing on [0, l] and functions
w ∈ V− are almost decreasing on [0, l].

For the proof of this lemma we refer to [18].

Definition 2.5. We say that a function ϕ ∈ W belongs to the Zygmund class
Z

β , β ∈ R
1, if ∫ r

0

ϕ(t)
t1+β

dt ≤ c
ϕ(r)
rβ

, r ∈ (0,∞), (2.12)

and to the Zygmund class Zγ , γ ∈ R
1, if

∫ l

r

ϕ(t)
t1+γ

dt ≤ c
ϕ(r)
rγ

, r ∈ (0,∞). (2.13)

It is known that the property of a function to be almost increasing or
almost decreasing after the multiplication (division) by a power function is
closely related to the notion of the so-called Matuszewska–Orlicz indices. We
refer for instance to [9,19] for the properties of the indices of such a type.

For a function ϕ ∈ W(R+) := W
⋂

W such indices at the origin are
defined as follows:

m(ϕ) = lim
r→0

ln
(
lim suph→0

ϕ(rh)
ϕ(h)

)

ln r
; M(ϕ) = lim

r→∞

ln
(
lim suph→0

ϕ(rh)
ϕ(h)

)

ln r
.

(2.14)
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The indices m(ϕ) are finite numbers when ϕ ∈ W (R+) and M(ϕ) are finite
numbers when ϕ ∈ W (R+). Besides this,

m(ϕ) = sup
{

a :
ϕ(t)
ta

is almost increasing on (0, 1]
}

, (2.15)

and

M(ϕ) = inf
{

a :
ϕ(t)
ta

is almost decreasing on (0, 1]
}

. (2.16)

We will also use the following known properties:

ϕ ∈ Z
β ⇐⇒ m(ϕ) > β (2.17)

and
ϕ ∈ Zγ ⇐⇒ M(ϕ) < γ. (2.18)

For other properties of the indices of functions ϕ ∈ W(R+), we refer for
instance to the paper [25, Section 6] and references therein.

3. Preliminaries

3.1. Maximal Operator

To prove the boundedness of the singular integral operator in generalized
Morrey space, we need to consider the maximal operator in this space. The
boundedness of the maximal operator

Mf(x) = sup
r>0

∫

B(x,r)

|f(y)|dμ(y)

in the space Lp(·),ϕ(·)(X) is known, see [8], in the setting of quasi-metric
measure spaces. In particular, we can use this result for curves with arc-
chord condition.

In the proof of Lemma 4.2 for maximal operator, we will use the follow-
ing lemma.

Lemma 3.1. [2, Lemma 3.2] Let g(r) : R+ → R+ be a non-negative almost
decreasing function. Then

∞∑
k=0

g(2k+1r) ≤ C

∞∫

r

g(t)
t

dt, r > 0. (3.1)

3.2. Point-Wise Estimate for the Weighted Singular Integral Operator on a
Curve Which Satisfies the Arc-Chord Condition

Let Γ be a curve satisfying the arc-chord condition. We consider radial type
weights of the form �(t) = w(|t − t0|), t0 ∈ Γ.

We define the operator K in the following way:

Kf(t) :=
(

�S
1
�

− S

)
f(t) =

∫

Γ

K(t, τ)f(τ) dμ(τ),
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where

K(t, τ) :=
�(t) − �(τ)
�(τ)(τ − t)

=
w(|t − t0|) − w(|τ − t0|)

w(|τ − t0|)(τ − t)
.

In [23, Theorem 6.1] the following point-wise estimate was proved:

|Kf(t)| ≤ C
w(s)

s

s∫

0

|f∗(σ)|dσ

w(σ)
+ C

l∫

s

|f∗(σ)|
σ

dσ, t = t(s), (3.2)

when w ∈ V+, and

|Kf(t)| ≤ C

s

s∫

0

|f∗(σ)|dσ + Cw(s)

l∫

s

|f∗(σ)|
σw(σ)

dσ, t = t(s), (3.3)

when w ∈ V−, where f∗(σ) = f [t(s)].
It is easy to see that in the right-hand sides of (3.2)–(3.3) we have

Hardy-type operators. Thus, according to the point-wise estimate (3.2)–(3.3)
the boundedness of the weighted singular integral operator is reduced to the
boundedness of the corresponding Hardy-type operators.

3.3. Hardy-Type Operators

We study the following Hardy-type operators:

Hwf(x) =
w(x)

x

x∫

0

f(τ)dτ

w(τ)
, Hwf(x) = w(x)

l∫

x

f(τ)dτ

τw(τ)
. (3.4)

For Hardy-type operators in various function spaces, we refer for instance to
[3,14], and the recent book [12], see also references therein. The boundedness
of the operators (3.4) in generalized Morrey spaces was proved in [13]. We
present here this result in a slightly modified form so as we need it here.

Theorem 3.2. [13, Theorem 3.4] Let 1 < p < ∞. Let the function ϕ ∈ W(R+),
defining the generalized Morrey space, satisfy the conditions

0 < m(ϕ) ≤ M(ϕ) ≤ 1,
ϕ(r)

r
is almost decreasing.

Then the Hardy-type operators Hw and Hw with the weight w ∈ W(R+) are
bounded in the generalized Morrey space Lp,ϕ(R) if the conditions

m
( ϕ

wp

)
> 1 − p, and M

( ϕ

wp

)
< 1, (3.5)

respectively, are fulfilled.
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4. Main Results

In this section, we study singular integral operators in generalized Mor-
rey spaces on composite curves, which satisfy the arc-chord condition. The
boundedness of singular integral operators on the single such a curve in clas-
sical Morrey spaces was proved in [23].

4.1. Singular Integral Operator on Composite Curves

By a composite curve we mean a union Γ =
⋃m

k=1 Γk of a finite number of non-
intersecting curves without self-intersection, satisfying arc-chord condition.
Then the singular integral operator SΓf(t) on such curves can be defined in
the following way:

It is convenient to treat the function f(t), t ∈ Γ, defined on Γ, as follows:
Denote fk(t) = f(t)|t∈Γk

. Then we treat f(t) as

f(t) = (f1(t), f2(t), . . . , fm(t)) .

Then

SΓf(t) = ((Sf)1 , (Sf)2 , . . . , (Sf)m) , (4.1)

where

(Sf)k =
1
πi

m∑
j=1

∫

Γj

fj(τ)
τ − t

dτ =
1
πi

∫

Γk

fk(τ)
τ − t

dτ +
1
πi

m∑
j=1,j �=k

SΓj
fj(t), t ∈ Γk.

We define, for k = 1, 2, . . . ,m:

SΓk
fk(t) :=

1
πi

∫

Γk

fk(τ)
τ − t

dτ, Tkf(t) :=
1
πi

m∑
j=1,j �=k

SΓj
fj(t), t ∈ Γk. (4.2)

Hence,

SΓf(t)|t∈Γk
= SΓk

fk(t) + Tkf(t), t ∈ Γk, (4.3)

where Tk is an operator with bounded kernel.
We define the norm in the Morrey space on composite curves in a natural

way, namely as

‖f‖Lp,ϕ(Γ) :=
m∑

k=1

‖fk‖Lp,ϕk (Γk),

where ϕ(r) = (ϕ1(r), ϕ2(r), . . . , ϕm(r)) . From (4.3) there follows the obvious
statement: if the singular integral operator is bounded in the generalized
Morrey spaces on every separate curve, then it is also bounded in this space
on the composite curve.
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4.2. Boundedness of the Singular Integral Operator on Composite Curves:
Non-weighted Case

The main result in this case reads.

Theorem 4.1. Let 1 < p < ∞, ϕk(r) ≥ cr and 0 ≤ M(ϕk) < 1, k =
1, 2, . . . , m. Then the singular integral operator SΓ is bounded in the space
Lp,ϕ(Γ), where ϕ(r) = (ϕ1(r), ϕ2(r), . . . , ϕm(r)) .

To prove this theorem we need the following new lemma, which is a
generalization of the Lemma 5.3, proved in [23] for classical Morrey spaces.

Let M# be defined as follows:

M#f(x) := sup
r>0

1
|B(x, r)|

∫

B(x,r)

|f(y) − fB(x,r)|dμ(y),

fB(x,r) =
∫

B(x,r)

f(y) dμ(y).

Lemma 4.2. Let X be a metric measure space with μ(X) = ∞. Under the
condition (2.1), i.e., C1r

N ≤ μB(x, r) ≤ C2r
N , the following estimate holds:

‖Mf‖p,ϕ ≤ C‖M#f‖p,ϕ, 1 < p < ∞, 0 ≤ M(ϕ) < N.

Proof. To prove this statement, we use the following point-wise estimate from
[23, Lemma 5.3]:

∫

B(x,r)

|Mf(y)|p dμ(y)

≤
∫

B(x,r)

|M#f(y)|p dμ(y) +
∞∑

j=0

C

(2j+1 + 1)Nε

∫

B(x,2j+1r)

|M#f(y)|p dμ(y).

Note that,
∞∑

j=0

C

(2j+1 + 1)Nε

∫

B(x,2j+1r)

|M#f(y)|p dμ(y)

=
∞∑

j=0

Cϕ(2j+1r)

(2j+1 + 1)Nε
· 1

ϕ(2j+1r)

∫

B(x,2j+1r)

|M#f(y)|p dμ(y)

≤ ‖M#f(y)‖p
p,ϕ

∞∑
j=0

Cϕ(2j+1r)

(2j+1 + 1)Nε
≤ ‖M#f(y)‖p

p,ϕ · rNε
∞∑

j=0

Cϕ(2j+1r)

(2j+1r)Nε

(by Lemma 3.1) ≤ C‖M#f(y)‖p
p,ϕ · rNε

∞∫

r

ϕ(t)

tNε+1
dt ≤ C‖M#f(y)‖p

p,ϕ · ϕ(r),

for ε ∈
(

M(ϕ)
N , 1

)
.
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Then

1
ϕ(r)

∫

B(x,r)

|Mf(y)|p dμ(y) ≤ 1
ϕ(r)

∫

B(x,r)

|M#f(y)|p dμ(y) + C‖M#f(y)‖p
p,ϕ

≤ C‖M#f(y)‖p
p,ϕ.

Therefore

‖Mf(y)‖p,ϕ ≤ C‖M#f(y)‖p,ϕ.

�

Proof of Theorem 4.1. Due to (4.3), i.e., SΓf(t)|t∈Γk
= SΓk

fk(t)+Tkf(t), t ∈
Γk, we need to prove the boundedness of SΓk

and Tk.
Using the property ‖f‖p,ϕk

= ‖fs‖ p
s ,ϕk

, 0 < s < 1, of the norm we
have

‖SΓk
f‖p,ϕk

= ‖(SΓk
f)s‖ p

s ,ϕk
≤ ‖M [(SΓk

f)s]‖ .

To prove the boundedness of SΓk
we apply Lemma 4.2 and the inequality

(1.1), and obtain

‖SΓk
f‖p,ϕk

≤ C‖M# [SΓk
f ]s ‖ p

s ,ϕk
≤ C‖ (Mf)s ‖ p

s ,ϕk
= C‖Mf‖p,ϕk

. (4.4)

To this end, we need the boundedness of the maximal operator in Lp,ϕk(Γk).
According to [8] such a boundedness holds under the condition:

sup
t>r

inft<s ϕ(s)

|τ − t| 1
p

≤ C
ϕ(r)

|τ − r| 1
p

, (4.5)

where C does not depend on τ and r. It is easy to check that the conditions of
our theorem imply the validity of the condition (4.5). Thus, the boundedness
of SΓk

is proved under the conditions of our theorem.
Boundedness of Tk is evident, since Tk is the operator with bounded

kernel. Indeed, 1
τ−tk

=: Kj(τ, tk) is bounded, since τ ∈ Γj and tk ∈ Γk, k �= j.
Therefore,

|Tkf | =

∣∣∣∣∣∣
m∑

j=1,j �=k

(
SΓj

fj

)
(tk)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
m∑

j=1,j �=k

∫

Γj

fj(τ)dτ

τ − tk

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
m∑

j=1,j �=k

∫

Γj

Kj(τ, tk)fj(τ) dτ

∣∣∣∣∣∣∣
≤

m∑
j=1,j �=k

∫

Γj

|Kj(τ, tk)| |fj(τ)| dτ

≤
m∑

j=1,j �=k

Cj‖fj(τ)‖L1(Γj) ≤ C

m∑
j=1,j �=k

‖fj(τ)‖Lp(Γj)

≤ C2

m∑
j=1,j �=k

‖fj(τ)‖Lp,ϕj (Γj) ≤ C2‖f‖Lp,ϕ(Γ).
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Hence, in particular

‖Tkf‖Lp,ϕ(Γ) ≤ C‖f‖Lp,ϕ(Γ), since 1 ∈ Lp,ϕ(Γ).

The proof is complete. �

4.3. Weighted Case

For simplicity we fix the weight at a single point tk0 on each curve Γk. There-
fore,

� = (�1, . . . , �m) , where �k = wk

(|t − tk0 |) , (4.6)

wk ∈ W ∩ (V+ ∪ V−) , tk0 ∈ Γk, k = 1, 2, . . . ,m.

Theorem 4.3. Let Γ =
⋃m

k=1 Γk, where Γk is a curve satisfying the arc-chord
condition. Let 1 < p < ∞, ϕk(r) ≥ cr,

0 < m(ϕk) ≤ M(ϕk) < 1, k = 1, 2, . . . ,m, (4.7)

and
ϕk(r)

r
be an almost decreasing function. (4.8)

Then the operator SΓ is bounded in the generalized Morrey space Lp,ϕ(Γ, �),
if

m

(
ϕk

wp
k

)
> 1 − p, M

(
ϕk

wp
k

)
< 1, (4.9)

where ϕ = (ϕ1, ϕ2, . . . , ϕm) and � = (�1, �2, . . . , �m) .

Proof. According to the representation (4.3) to prove the boundedness of the
weighted singular integral operator on composite curves we have to prove the
weighted boundedness of SΓk

and Tk. To prove the weighted boundedness of
SΓk

in generalized Morrey space we use the point-wise estimates (3.2)–(3.3).
According to these estimates, we need the boundedness of the non-weighted
SΓk

and weighted boundedness of the corresponding Hardy-type operators.
The non-weighted boundedness of SΓk

fk is proved under the right-hand
side condition in (4.7) in Theorem 4.1. The boundedness of the Hardy-type
operators Hw and Hw was proved in Theorem 3.2 under Conditions (4.7),
(4.8) and (4.9).

The boundedness of Tkf in the weighted space Lp,ϕ(Γ, �) can be proved
by using the same arguments as in the non-weighted case, proved in Theorem
4.1. The right-hand side condition in (4.9) is sufficient for such boundedness.
The proof is complete. �

4.4. On Some Basics Related to Fredholmness

In the sequel Γ =
⋃m

k=1 Γk is regarded as a union of a finite number of
non-intersecting closed oriented curves Γk without self-intersection, satisfy-
ing arc-chord condition. The contour Γm has counterclockwise orientation
and the contours Γk, k ∈ 1,m − 1 = {1, 2, . . . ,m − 1} have clockwise orien-
tation. Thus, the contours Γk, k ∈ 1,m − 1, are inside the contour Γm. This
orientation divides the complex plane into two areas D+ and D−, where D+
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is to the left of Γ , and D− = C\D+ =
⋃m

k=1 D−
k , where D−

k , k ∈ 1,m, are
to the right of the contours Γk, k ∈ 1,m. For simplicity we assume that the
origin is in D+.

Let X = X(Γ) be any Banach space of functions on Γ. We recall that
a linear operator A in a Banach space X is called Fredholm if its kernel
kerA := {u ∈ X : Au = 0} has a finite dimension α := dim(kerA) < ∞,
the range R(A) := {f ∈ X : f = Au, u ∈ X} is closed in X and has a
finite dimension β := dim(R(A)) < ∞. Following [6], the ordered pair (α, β)
will be referred to as the d-characteristic of the operator A. The difference
IndXA := α − β is called the index of A.

In this section we consider the operator

Au := a(t)u(t) + b(t) (SΓu) (t), t ∈ Γ,

where a, b ∈ C(Γ).
It is well known that the following conditions:

(1) the singular integral operator SΓ in Lp,ϕ(Γ, �) is bounded;
(2) the commutator gSΓ − SΓg in Lp,ϕ(Γ, �), where g ∈ C(Γ) is compact;
(3) S2

Γ = I in this setting

guarantee the Fredholmness of the singular integral operator aI + bSΓ with
continuous coefficients a and b, under the condition a(t) �= ±b(t), t ∈ Γ.
See for instance [11, Theorem A], where Fredholmness of singular integral
operators in the setting of an abstract Banach space of functions on curves
was proved.

Thus, it remains to check the above conditions (1)–(3). The condition
(1) was proved in Theorem 4.3. Condition (3) on composite curves is known,
see [7]. As regards condition (2) in weighted generalized Morrey space it is
covered by the following theorem.

Theorem 4.4. Let g ∈ C(Γ) and � be a weight (4.6). Under the assumptions
1 < p < ∞, m(ϕ) < 1 and condition (4.9), the commutator SΓg − gSΓ is
compact in the weighted generalized Morrey space Lp,ϕ(Γ, �).

Proof. From (4.3) it is easy to see that to prove compactness of commutator
SΓg−gSΓ, we have to prove the compactness of the commutators SΓk

g−gSΓk

and Tkg − gTk, k = 1, 2, . . . ,m. We start with the commutator SΓk
g − gSΓk

.
From the famous Mergelyan’s result, see for instance [4], p. 169, it is known
that the continuous functions may be uniformly approximated by rational
functions for an arbitrary Jordan curve Γ. Since the compactness of such
commutator for rational functions is known, and the boundedness of our
singular integral operators is proved in Theorem 4.3, the statement of this
theorem for this commutator is proved.

Now we consider the commutator Tkg − gTk. Since the function g is
continuous and a product of a compact operator with a continuous function
is compact, we need to prove the compactness of the operator

Tkf(t) :=
1
πi

m∑
j=1,j �=k

(
SΓj

fj

)
(t) =

1
πi

m∑
j=1,j �=k

(Tkjfj) (t), t ∈ Γk,



203 Page 12 of 15 E. Burtseva MJOM

defined in (4.2), where

Tkjfj =
1
πi

∫

Γj

fj(τ)
τ − t

dτ, t ∈ Γk, j �= k.

We denote

k(s, σ) :=
1

τ − t
=

1
τ(σ) − t(s)

.

Thus,

Tkjfj =
1
πi

∫

Γj

k(s(t), σ(τ))fj(τ) dτ, t ∈ Γk, j �= k. (4.10)

First we consider the kernel k(s, σ), where t = t(s), s ∈ [0, lk] and τ =
τ(σ), σ ∈ [0, lj ], k, j = 1, 2, . . . ,m, j �= k. It is easy to see that the function
K(s, σ) is continuous function on Π := [0, lk] × [0, lj ]. Since, by the Stone–
Weierstrass theorem, any continuous function on a compact set Π in R

n

can be uniformly approximated by a polynomial, we have that for any ε >
0, ∃ pn(s, σ) =

∑
0≤μ+ν≤n Cμ,νsμσν , such that

|Rn| = |k(s, σ) − pn(s, σ)| < ε, (4.11)
uniformly in both variables.

We denote

Pnfj :=
1
πi

∫

Γj

pn(s(t), σ(τ)) dτ =
1
πi

∑
0≤μ+ν≤n

Cμ,νsμ(t)
∫

Γj

σν(τ)fj(τ) dτ.

(4.12)
Then

Tkjfj = Pnfj + Rnfj .

Since Pn is a finite dimensional operator, it is enough to prove its boundedness
by the norm, to claim that Pn is compact.

Hence, for the operator Pn, defined by (4.12), we have

|Pnfj | ≤
∑

0≤μ+ν≤n

Cμ,ν |sμ(t)|
∫

Γj

|σν(τ)| |fj(τ)| dτ

≤ C

∫

Γj

|fj(τ)| dτ ≤ C1‖fj‖L1(Γj), since σ and s are bounded.

Then, applying the norm we get

‖Pnfj‖Lp,ϕj (Γj ,�j)
≤ C‖fj‖L1(Γj), since 1 ∈ Lp,ϕj (Γj , �j).

It is not hard to show that, under the assumptions of our theorem,

‖fj‖L1(Γj) ≤ C‖fj‖Lp,ϕj (Γj ,�j). (4.13)
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Therefore, by (4.13) we obtain that

‖Pnfj‖Lp,ϕj (Γj ,�j)
≤ C‖fj‖Lp,ϕj (Γj ,�j).

Thus, the operator Pn is compact in the space Lp,ϕj (Γj , �j). Now we have to
estimate

|Rnfj | = |Tkjfj − Pnfj | (4.14)

by the norm of our space. Passing to the norm in (4.14), by (4.11) and (4.13)
we obtain

‖Rnfj‖Lp,ϕj (Γj ,�j)
= ‖Tkjfj − Pnfj‖Lp,ϕj (Γj ,�j)

≤ Cε‖fj‖L1(Γj) ≤ ε‖fj‖Lp,ϕj (Γj ,�j) → 0.

Thus, we can conclude that the operator Tkf is compact in Lp,ϕ(Γ, �), since
Tkf is the limit of the sequence of compact operators. The proof is
complete. �

Now we can formulate the theorem on Fredholmness of the operator A,
which indeed is proved by the above statements.

Theorem 4.5. Let 1 < p < ∞, ϕk(r) ≥ cr. Let Γ =
⋃m

k=1 Γk be a set of
non-intersecting oriented closed curves without self-intersection, satisfying
arc-chord condition. Let a(t), b(t) ∈ C(Γ) and �(t) be a weight (4.6), i.e.,
� = (�1, . . . , �m) . Then the operator A is Fredholm in the space Lp,ϕ(Γ, �) if

inf
t∈Γ

|a(t) ± b(t)| �= 0, (4.15)

and

m

(
ϕk

wp
k

)
> 1 − p, M

(
ϕk

wp
k

)
< 1, k = 1, 2, . . . ,m. (4.16)

The index of the operator A in the space Lp,ϕ(Γ, �) is equal to the Lp,ϕ-index
of the function g:

IndLp,ϕ(Γ,�)A = −indLp,ϕ(Γ,�)g(t) := κ

(and the d-characteristic is equal to (κ, 0), if κ ≥ 0 and (0, |κ|), if κ ≤ 0),
where g(t) = a(t)+b(t)

a(t)−b(t) .

Indeed: (1) The boundedness of SΓ in the weighted space Lp,ϕ(Γ, �) was
proved in Theorem 4.3. (2) The compactness of the commutator gSΓ − SΓg,

where g(t) = a(t)+b(t)
a(t)−b(t) , under Condition (4.15) on g(t), follows from Theorem

4.4. (3) For the fact that S2
Γ = I, we refer for instance to [7]. Then the

operator A is Fredholm in the space Lp,ϕ(Γ, �), since all (1)–(3) conditions
are satisfied.
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