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Lipschitz Conditions in Laguerre
Hypergroup

Selma Negzaoui

Abstract. The purpose of this paper is to prove analogous of Titch-
marsh’s theorems for the Laguerre transform. More precisely, we give a
Lipschitz-type condition on f in Lp(K) for which its Laguerre transform

belongs to Lβ(K̂) for some values of β, where K = [0,+∞) × R and K̂

is its dual. In the particular case, when p = 2, we provide equivalence
theorem : we get a characterization of the space Lipα(γ, 2) of Lipschitz
class functions by means of asymptotic estimate growth of the norm
of their Laguerre transform for 0 < γ < 1. Furthermore, we introduce
Laguerre–Dini–Lipschitz class LDLipα(γ, δ, p) and we obtain analogous
of Titchmarsh’s theorems in this occurence.
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1. Introduction

Lipschitz condition states that

|f(x) − f(x′)| ≤ M |x − x′|α; 0 < α ≤ 1. (1.1)

It was first considered by Lipschitz in 1864 while studying the convergence
of the Fourier series of a periodic function f . He proved that inequality (1.1)
is sufficient to have that the Fourier series of f converges everywhere to the
value of f . A strengthening criterion was introduced by Dini in 1872 whose
conclusion states that the convergence is in addition uniform. If we denote
w(h, f) = sup|x−x′|<h |f(x)−f(x′)| the modulus of continuity, Lipschitz con-
dition can be written as

w(h, f) = O(hα), 0 < α ≤ 1

and the Dini–Lipschitz condition states

lim
h→0

ln
1
h

w(h, f) = 0 i.e w(h, f) = o

(
ln(

1
h

)−1

)
.
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A continuous version was studied by Titchmarsh [13]. He proved that if f

belongs to the Lipschitz class Lip(α, p), then its Fourier transform f̂ belongs
to Lβ(R) for p

p+αp−1 < β ≤ p
p−1 . Note that a function f ∈ Lp(R) is said to

be in Lipschitz class if the integral modulus of continuity wp(h, f) verifies

wp(h, f) = ‖f(x + h) − f(x)‖p = O(hα).

A second result [13, Theorem 85] states that f belongs to Lipschitz class
Lip(α, 2) if and only if

∫
λ≥r

f̂(λ)dλ = O(r−2α) as r → +∞.
An extension of these theorems to functions of several variables on R

n

and on the torus group Tn was studied by Younis [15,16]. Later, analogous
results were given, where considering generalized Fourier transforms: Bessel,
Dunkl, Jacobi,. . . One can cite [2,3,7].

Krovokin [9] considered Dini–Lipschitz class as the set of functions in
Lp(R), such that wp(h, f) = o(

(
ln 1

h

)−1). Younis [17], showed that the re-
sult of Titchmarsh’s theorem [13, Theorem 84] does not hold for the Dini–
Lipschitz functions: it does not improve the Hausdorff–Young inequality and
the conclusion is that f̂ belongs to Lp′

(R). Therefore, he considered some
conditions which are rather situated in between the Lipschitz and the Dini–
Lipschitz conditions. These were inspired from Weiss and Zygmund [14]. It
states that

w(h, f) = O

(
hα ln

(
1
h

)−δ
)

, δ ≥ 0.

He showed that Titchmarsh’s theorems [13, Theorem 84, Theorem 85] could
be extended.

In this paper, we are interested in the Laguerre hypergroup K = [0,+∞)
×R which can be seen as a deformation of the hypergroup of radial functions
on the Heisenberg group [5]. Let α ≥ 0, K is provided with the convolu-
tion product ∗α generalizing the convolution product of radial functions on
the (2n + 1)-dimensional Heisenberg group H

n. It was seen that (K, ∗α) is
a commutative hypergroup in the sense of Jewett with the involution the
homeomorphism i(x, t) = (x,−t) and the Haar measure dmα, given by

dmα(x, t) =
x2α+1

πΓ(α + 1)
dx dt. (1.2)

The unit element of (K, ∗α) is given by e = (0, 0), since δ(x,t)∗αδ(0,0) = δ(0,0)∗α

δ(x,t) = δ(x,t). The convolution product of two bounded Radon measures μ1

and μ2 on K is defined by
〈
μ1 ∗α μ2, f

〉
=

∫
K×K

Tα
x,tf(y, s) dμ1dμ2,

where Tα
x,t, (x, t) ∈ K are the generalized translation operators on K given,

for α = 0, by

Tα
x,tf(y, s) =

1
2π

∫ 2π

0

f
(√

x2 + y2 + 2xy cos θ, t + s + xy sin θ
)

dθ
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and, for α > 0, by

Tα
x,tf(y, s) =

α

π

∫ 2π

0

∫ 1

0

f
(√

x2 + y2 + 2xyr cos θ, t + s + xyr sin θ
)

r(1 − r2)α−1dr dθ.

If μ1 and μ2 are Dirac measure at (x, t) and (y, s) ∈ K, then

(δ(x,t) ∗α δ(y,s))(f) = Tα
x,tf(y, s). (1.3)

The outline of this paper is given as follows:
First in Sect, 2, we collect some useful results related to Laguerre hy-

pergroup. Second, in Sect. 3, we prove analogous of Titchmarsh theorem
[13, Theorem 84]: we prove that if f ∈ Lp(K) satisfying ‖Tα

x,yf − f‖p,mα
=

O(xγ) for 1 < p ≤ 2 and 0 < γ ≤ 1, then FLf belongs to Lβ(R × N),

where
(α + 2)p

(α + 2)(p − 1) + γ p
2

< β ≤ p

p − 1
. Third, in Sect. 4, we introduce

the Laguerre–Lipschitz class Lipα(γ, 2) and we establish the analog of [13,
Theorem 85]. Finally, in Sect. 5, we extend these results to Laguerre–Dini–
Lipschitz-type class LDLipα(γ, δ, p), δ ≥ 0, using similar technics as in Sects.
3 and 4.

Throughout this paper, p and p′ are real numbers, such that 1 ≤ p ≤ 2
and 1

p + 1
p′ = 1 and C denote a positive constant which can differ from line

to other.

2. Preliminaries

Recall ϕλ,m(x, t) the Laguerre Kernel given by

∀(x, t) ∈ K, ϕλ,m(x, t) = eiλ tL(α)
m (|λ|x2), (2.1)

where L(α)
m is the Laguerre function defined on R+ by

L(α)
m (x) = e− x

2
Lα

m(x)
Lα

m(0)
and Lα

m is the Laguerre polynomial of degree m and order α, given by

Lα
m(x) =

m∑
k=0

(−1)k Γ(m + α + 1)
Γ(k + α + 1)

1
k!(m − k)!

xk. (2.2)

For (λ,m) ∈ R × N, ϕλ,m is the unique solution of the initial problem:⎧⎪⎪⎨
⎪⎪⎩

D1u = i λ u,

D2 u = −4|λ|(m +
α + 1

2
)u

u(0, 0) = 1,
∂u

∂x
(0, t) = 0 for all t ∈ R,

where for all (x, t) ∈ K and α ≥ 0⎧⎪⎨
⎪⎩

D1 =
∂

∂t

D2 =
∂2

∂x2
+

2α + 1
x

∂

∂x
+ x2 ∂2

∂t2
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When α = n − 1, n ∈ N\{0}, the operator D2 is the radial part of the sub-
Laplacian on the Heisenberg group Hn and ϕλ,m(‖z‖, t) are zonal spherical
functions of the Gelfand pairs (G,U(Cn)), where G is the semi-direct product
of U(Cn)) by H

n (see [5]). For the general case α ≥ 0, the functions ϕλ,m

(λ,m) ∈ R × N are characters of the Laguerre hypergroup (K, ∗α), i.e, ele-
ments of the dual space K̂ the space of all bounded functions χ : K → C,
such that χ̃(x, t) = χ(x,−t) = χ(x, t), where (x, t) ∈ K. Indeed, this space is
given by

{ϕλ,m ; (λ,m) ∈ R
∗ × N} ∪ {ϕρ ; ρ ≥ 0},

where ϕρ = jα(ρ x); jα is the normalized Bessel function of order α. This
space K̂ can be topologically identified to the so–called Heisenberg fan [5]:⋃

m∈N

{
(λ, μ) ∈ R

2;μ = |λ|(2m + α + 1)
} ⋃ {

(0, μ) ∈ R
2;μ ≥ 0

}
.

The subset {(0, μ) ∈ R
2;μ ≥ 0} is usually disregarded, since it has zero

Plancherel measure.
For all (λ,m) ∈ R × N, the kernel ϕλ,m verifies the following product

formula

ϕλ,m(x, t)ϕλ,m(y, s) = Tα
x,tϕλ,m(y, s), (x, t), (y, s) ∈ K (2.3)

and has the property

∀(λ,m) ∈ R × N, sup
(x,t)∈K

|ϕλ,m(x, t)| = 1. (2.4)

Denote Lp(K) = Lp(K, dmα) the space of measurable functions f : K −→ C,
such that

‖f‖p,mα
=

(∫
K

|f(x, t)|pdmα(x, t)
) 1

p

< +∞.

The Fourier–Laguerre transform of a function in L1(K) is given by

FLf(λ,m) =
∫
K

f(x, t)ϕ−λ,m(x, t)dmα(x, t).

From [11], it is well known that Fourier–Laguerre transform can be inverted
to

F−1
L f(x, t) =

∫
R×N

f(λ,m)ϕλ,m(x, t)dγα(λ,m),

where

dγα(λ,m) = Lα
m(0)δm ⊗ |λ|α+1dλ.

In the following, we can write dγα to designate dγα(λ,m) if necessary. Nessibi
and Trimèche proved in [11] the Plancherel formula:

‖FLf‖2,γα
= ‖f‖2,mα

.

Furthermore, we have

‖FLf‖∞,γα
≤ ‖f‖1,mα

.
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Then, applying the Riez–Thorin interpolation theorem [6], we can extend
the definition of FLf to Lp(K) for 1 ≤ p ≤ 2 and we have the following
Hausdorff–Young inequality:

‖FLf‖p′,γα
≤ C ‖f‖p,mα

. (2.5)

It is well known from [10,11] that the translation Tα
x,t is linear operator from

Lp(K) onto itself and we have

‖Tα
(x,t)f‖p,mα

≤ C ‖f‖p,mα

and it verifies, as a consequence of the product formula (2.3), the relation

FL(Tα
x,tf) = ϕλ,m(x, t)FLf(λ,m). (2.6)

These results would be useful in the following sections.

3. Lipschitz Conditions in Laguerre Hypergroup

We denote, for all (x, t) ∈ K, |x, t| = |(x, t)|K = (x4 + 4t2)
1
4 the homo-

geneous norm on K and for all (λ,m) ∈ R × N, |λ,m| the quasinorm on
R × N defined by |λ,m| = |(λ,m)|R×N = 4|λ|κm, where κm = m + α+1

2
(cf. [12]). Lets denote Br the ball centered on 0 and of radius r, defined by,
Br = {(λ,m) ∈ R × N; |λ,m| < r} and B

c
r = (R × N)\Br.

Theorem 3.1. Let f be a function in Lp(K), such that ‖Tα
x,yf − f‖p,mα

=
O(xγ) for 1 < p ≤ 2 and 0 < γ ≤ 1. Then, FLf belongs to Lβ(R×N), where

(α + 2)p
(α + 2)(p − 1) + γ p

2

< β ≤ p

p − 1
.

Proof. For fixed (x, t) ∈ K, we have, using relations (2.6) and (2.5)∫
R×N

|ϕλ,m(x, t) − 1|p′ |FLf(λ,m)|p′
dγα(λ,m) = O(xγp′

).

On the other hand, relations (2.1) and (2.2) yield to

lim
|λ,m|x2→0

( ||ϕλ,m(x, t)| − 1|
|λ,m|x2

)
=

1
4(α + 1)

> 0. (3.1)

Consequently, there exists a constant C, such that if |λ,m|x2 < η, then

||ϕλ,m(x, t)| − 1| ≥ C |λ,m|x2.

Therefore
∫
B η

x2

|λ, m|p′ |FLf(λ, m)|p′
dγα ≤ x−2p′

∫
B η

x2

|ϕλ,m(x, t) − 1|p′ |FLf(λ, m)|p′
dγα

≤ Cx(γ−2)p′
.

Now, let β ≤ p′. From Hölder inequality, one gets

∫
BX

|λ, m|β |FLf(λ, m)|βdγα ≤
(∫

BX

|λ, m|p′ |FLf(λ, m)|p′
dγα

) β

p′
(∫

BX

1dγα

)1− β

p′
.
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Therefore∫
BX

|λ,m|β |FLf(λ,m)|βdγα(λ,m) = O

(
X

(2−γ)p′
2

β
p′ +(α+2)

(
1− β

p′
))

. (3.2)

Recall that Bc
1 = (R×N)\B1. To get the theorem, it is enough to prove that∫

B
c
1∩BX

|FLf(λ,m)|βdγα(λ,m) is bounded when X → +∞. Therefore, we can
write

∫
B

c
1∩BX

|FLf(λ,m)|βdγα(λ,m) =
+∞∑
m=0

Lα
m(0) I,

where I depend on m and X and has the expression

I =
∫ X

4m+2α+2

1
4m+2α+2

(|FLf(λ,m)|β + |FLf(−λ,m)|β)
λα+1dλ.

Consider

Φm(X) =
∫ X

4m+2α+2

1
4m+2α+2

|(λ,m)|β (|FLf(λ,m)|β + |FLf(−λ,m)|β)
λα+1dλ.

Thus

I =
∫ X

4m+2α+2

1
4m+2α+2

(4m + 2α + 2)|(λ,m)|−βΦ′
m(|(λ,m)|)dλ.

Making a change of variables and an integration by parts, we get

I = Φm(X)X−β + β

∫ X

1

t−β−1Φm(t)dt.

Consequently
∫
B

c
1∩BX

|FLf(λ,m)|βdγα(λ,m) = X−βψ(X) + β

∫ X

1

t−β−1ψ(t)dt, (3.3)

where

ψ(X) =
+∞∑
m=0

Lα
m(0)Φm(X) =

∫
B

c
1∩BX

|(λ,m)|β |FLf(λ,m)|βdγα(λ,m).

From relation (3.2), we have∫
B

c
1∩BX

|FLf(λ,m)|βdγα(λ,m) = O

(
X

−β+ 2−γ
2 β+(α+2)

(
1− β

p′
))

+O

(∫ X

1

t−β−1t
2−γ
2 β+(α+2)(1− β

p′ )dt

)
.

This is bounded as X → +∞ if −β(γ
2 + α+2

p′ ) + (α + 2) < 0 that gives

β >
(α + 2)p

(α + 2)(p − 1) + γ p
2

. �
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4. An Equivalence Theorem for Laguerre–Lipschitz Class
Functions

In this paragraph, we consider 0 < γ < 1 and p = 2. We try to put the
previous theorem into form in which it is reversible. Hence, we give a char-
acterization of the space Lipα(γ, 2) of Laguerre–Lipschitz class functions by
means of asymptotic estimate growth of the norm of their Laguerre trans-
form.

The behavior in 0 of the characters ϕλ,m(x, t) could be deduced from
relations (2.1) and (2.2) as follows:

|ϕλ,m(x, t) − 1|2 = |λ t|2 +
|λ,m|2x4

42(α + 1)2
+ o(|λ|2|x, t|4). (4.1)

Exploiting this result, one can find the two following propositions.

Proposition 4.1. Let f ∈ L2(K) and 0 < γ < 1. Assume that∫
Bc

r

|FLf(λ,m)|2 dγα(λ,m) = O(r−γ) as r → +∞, then f verifies

‖Tα
x,tf − f‖2,mα

= O(|x, t|γ).

Proof. Denote r = η
|x,t|2 . According to Plancherel formula, one has

‖Tα
x,tf − f‖2

2,mα
= I1 + I2

where

I1 =
∫
Br

|ϕλ,m(x, t) − 1|2|FLf(λ,m)|2dγα(λ,m)

and

I2 =
∫
Bc

r

|ϕλ,m(x, t) − 1|2|FLf(λ,m)|2dγα(λ,m).

Using relation (2.4), we find that

I2 ≤ 4
∫
Bc

r

|FLf(λ,m)|2dγα = O(r−γ) = O(|x, t|2γ).

Denote g(X) =
∫ ∞

X

(|FLf(λ,m)|2 + |FLf(−λ,m)|2)λα+1dλ, then

g′(λ) = −(|FLf(λ,m)|2 + |FLf(−λ,m)|2)λα+1.

Using relation (4.1), there exist C > 0 and η > 0 such that for all (x, t) ∈ K,

|λ| |x, t|2 < η =⇒ |ϕλ,m(x, t) − 1|2 ≤ C|λ,m|2|x, t|4
which gives

I1 ≤ C|x, t|4
∞∑

m=0

Lα
m(0)Jm, where Jm =

∫ η

4κm|x,t|2

0

(4κm)2λ2(−g′(λ))dλ.

By integration by parts, we have

Jm = − η2

|x, t|4 g

(
η

4κm|x, t|2
)

+ (4κm)2
∫ η

4κm|x,t|2

0

2λg(λ)dλ.
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Remark that
∞∑

m=0

Lα
m(0)g

(
R

4κm

)
=

∫
B

c
R

|FLf(λ,m)|2dγα = O(R−γ).

Making a change of variable in the second part of Jm, one gets

I1 ≤ C |x, t|2γ + C |x, t|4
∫ η

|x,t|2

0

u

∞∑
m=0

Lα
m(0)g

(
u

4κm

)
du

= O(|x, t|2γ) + |x, t|4O
(∫ η

|x,t|2

0

u−γ+1du

)

= O(|x, t|2γ)

which proves the wanted result. �

Proposition 4.2. Let 0 < γ < 1 and f ∈ L2(K), such that ‖Tα
x,tf − f‖2,mα

=
O(|x, t|γ). Then∫

|λ|>r

|FLf(λ,m)|2 dγα = O(r−γ) as r → +∞.

Proof. From relation (4.1), one deduce that there exist C > 0 and η > 0,
such that for all (x, t) ∈ K

|λ| |x, t|2 < η =⇒ |ϕλ,m(x, t) − 1|2 ≥ C|λ|2|x, t|4.
By Plancherel formula, we have∫

η

2h2 <|λ|< η

h2

|FLf(λ,m)|2dγα ≤ C

∫
η

2h2 <|λ|< η

h2

|λ|2|x, t|4 |FLf(λ,m)|2dγα

≤ ‖FL((ϕλ,m(x, t) − 1)f)‖2
2,γα

= O(|x, t|2γ).

If we denote kr = η
2|x,t|2 , then
∫ 2kr

kr

|FLf(λ,m)|2dγα ≤ C(kr)−γ .

Consequently
∫

|λ|>r

|FLf(λ,m)|2 dγα =
∞∑

k=0

∫ 2k+1r

2kr

|FLf(λ,m)|2dγα

≤ C
∞∑

k=1

(2kr)−γ = C
r−γ

1 − 2−γ
= O(r−γ).

�

The conclusion of Proposition 4.2 is not sufficient to get an equivalence
theorem, since {(λ,m); |λ| > r} ⊂ {(λ,m); |λ,m| > r}. Therefore, we give
here another property verified by Laguerre kernel ϕλ,m.

Lemma 4.3. ∀x > 0 and t ∈ R ,we have

lim
|λ,m|→+∞

ϕλ,m(x, t) = 0.
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Proof. From (1.2) and (1.3), δx,t ∗α δx,t is absolutely continuous with respect
to the Haar measure dmα; then, from [8, p. 41], we have that the Fourier–
Laguerre transform of δ(x,t) on the dual space K̂ of the hypergroup (K, ∗α)
is a C0 function. This implies that

lim
|λ,m|→+∞

ϕλ,m(x, t) = 0.

�

Definition 4.4. Let 0 ≤ γ ≤ 1. A function f is said to be in Laguerre–
Lipschitz class of order γ and we denote f ∈ Lipα(γ, 2), if f belongs to
L2(K) and verifies, for all (x, t) ∈ K

w(h, f) = ‖Tα
Δh(x,t)f − f‖2,mα = O(hγ),

where Δh(x, t) is the dilated of (x, t) ∈ K given by Δr(x, t) = (rx, r2t).

Now, we are able to establish the equivalence theorem.

Theorem 4.5. Let f ∈ L2(K). Then, the two statements

(i) f is in Laguerre–Lipschitz class Lipα(γ, 2), 0 < γ < 1.
(ii)

∫
Bc

r
|FLf(λ,m)|2 dγα(λ,m) = O(r−γ) as r → +∞,

are equivalent.

Proof. Let h > 0, from relation (2.1), we have

ϕh2λ,m(x, t) = ϕλ,m(Δh(x, t))

Therefore, using Lemma 4.3, we get

lim
h2|λ,m|→+∞

|ϕλ,m(Δh(x, t)) − 1| = 1.

Hence, there exist C > 0 and A > 0, such that

|λ,m| >
A

h2
=⇒ |ϕλ,m(Δh(x, t)) − 1|2 ≥ C.

Let f ∈ L2(K) verifying (i)∫
B

c
A
h2

|FLf(λ,m)|2dγα ≤ C

∫
B

c
A
h2

|ϕλ,m(Δh(x, t)) − 1|2|FLf(λ,m)|2dγα

≤ C‖Tα
Δh(x,t)f − f‖2

2,mα = O(h2γ).

Consequently, (ii) holds.
Lets prove that (ii) ⇒ (i). From Proposition 4.1, one has

‖Tα
x,tf − f‖2,mα = O(|x, t|γ) as |x, t| → 0.

Thus, for (x, t) ∈ (0,+∞) × R

‖Tα
Δh(x,t)f − f‖2,mα = O(hγ).

�
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5. Laguerre Dini–Lipschitz Conditions

The reader can find analogous results of this section in the references [1,4,17].

Definition 5.1. Let 0 < γ < 1 and δ ≥ 0, we define the Laguerre–Dini–
Lipschitz class and we denote LDLipα(γ, δ, p) the set of functions f belonging
to Lp(K) satisfying

∀(x, t) ∈ K, wp(h, f) = ‖Tα
Δh(x,t)f − f‖p,mα

= O

(
hγ ln(

1
h

)−δ

)
.

Δh(x, t) the dilated of (x, t) is given in Definition 4.4.

Since the same technics previously are available, then we remove details
in the proofs of the theorems below.

Theorem 5.2. Let f ∈ L2(K). Then, the following statements are equivalent.
(i) f belongs to Laguerre–Dini–Lipschitz class LDLipα(γ, δ, 2), 0 < γ < 1,

δ ≥ 0.
(ii)

∫
Bc

r
|FLf(λ,m)|2 dγα(λ,m) = O(r−γ ln(r)−2δ) as r → +∞.

Proof. By proceeding similarly to Theorem 4.5, we have∫
B

c
A
h2

|FLf(λ,m)|2dγα = O(w2
2(h, f)).

Thus,
∫
Bc

r
|FLf(λ,m)|2 dγα(λ,m) = O(r−γ ln(r)−2δ)) as r → +∞.

The converse can be done in the same way as in Proposition 4.1. Con-
sider the same notation ‖Tα

Δh(x,t)f − f‖2
mα

= I1 + I2. Then, we get

I2 = O

(
h2γ ln(

1
h

)−2δ

)

and

I1 = O

(
h2γ ln

(
1
h

)−2δ
)

+ h4

∫ η

h2|x,t|2

0

u O
(
u−γ ln(u−2δ)

)
du

= O

(
h2γ ln

(
1
h

)−2δ
)

which completes the proof. �
Theorem 5.3. If γ > 2, δ ≥ 0 and f ∈ LDLip(γ, δ, 2), then f = 0 a.e.

Proof. We have for all (x, t) ∈ K, ‖Tα
Δh(x,t)f−f‖2,mα

= O(hγ ln( 1
h )−δ). Thus

∫
R×N

∣∣∣∣ |ϕh2,m(x, t)| − 1
h2|λ,m|x2

∣∣∣∣
2

|λ,m|2|FLf(λ,m)|2dγα ≤ Ch2γ−4 ln
(

1
h

)−2δ

.

Since γ > 2, then limh→0 h2γ−4 ln( 1
h )−2δ = 0. Hence, from relation (3.1), one

gets

‖|λ,m|FLf(λ,m)‖2,γα
= 0.

Thereby for all (λ,m) ∈ R×N, |λ,m|FLf(λ,m) = 0. The injectivity of the
Fourier–Laguerre transform yields to the wanted result. �



MJOM Lipschitz Conditions in Laguerre Hypergroup Page 11 of 12 191

Remark 5.4. The same conclusion holds if we consider a function such that
w2(h, f) = o(h2) and also if we take f a function in LDLip(γ, δ, p), for
1 < p < 2 and γ > p′ (by using Hausdorff–Young inequality).

Theorem 5.5. Let 0 < γ < 1 and f ∈ LDLip(γ, δ, p), 1 < p < 2. Then, FLf

belongs to Lβ for
(α + 2)p

(α + 2)(p − 1) + γ p
2

< β ≤ p

p − 1
.

Proof. As in Theorem 4.5, we have, for fixed x > 0 and t ∈ R

‖ϕλ,m(Δh(x, t) − 1)FLf‖p′,γα
= O

(
hγ ln(

1
h

)−δ

)
.

Therefore, for β ≤ p′

ψ(X) = O

(
X

(2−γ)β
2 +(α+2)

(
1− β

p′
)
ln(X)−δβ

)
.

This allows us to deduce, by relation (3.3), that∫
B

c
1∩BX

|FLf(λ,m)|βdγα = O

(
X

−β+ 2−γ
2 β+(α+2)

(
1− β

p′
)
ln(X)−δβ

)

+O

(∫ X

1

t−β−1t
2−γ
2 β+(α+2)

(
1− β

p′
)
ln(t)−δβdt

)
.

If β >
(α + 2)p

(α + 2)(p − 1) + γ p
2

, then this integral is bounded when X tends to

infinity. �
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d’Analyse Harmonique de Tunis. Birkhaüser, Boston (1984)



191 Page 12 of 12 S. Negzaoui MJOM

[6] Folland, G.: Real analysis. Modern Techniques and their Applications, Pure
Appl. Math., 2nd edn. Wiley, New York (1999)

[7] Ghabi, R., Mili, M.: Lipschitz conditions for the generalised Fourier transform
associated with the Jacobi-cherednik operator on R. Adv. Pure Appl. Math.
7(1), 51–62 (2016)

[8] Jewett, R.I.: Spaces with an abstract convolution of measures. Adv. Math. 18,
1–101 (1975)

[9] Krovokin, P.P.: Linear operators and approximation theory, International
Monographs on Advanced Mathematics and Physics (1960)

[10] Nessibi, M.M., Sifi, M.: Laguerre hypergroup and limit theorem. In: Kom-
rakov, B.P., Krasilshchink, I.S., Litvinov, G.L., Sossink, A.B. (eds.) Lie Groups
and Lie Algebras Their Representations, Generalizations and Applications, pp.
133–145. Kluwer Academic Publishers, Dordrecht (1998)
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